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INTRODUCTION 
 

The increased longevity associated with improved 

health care, sanitation and nutrition has resulted in 

larger numbers of people living with the consequences 

of age-related cognitive decline and dementias. Such 

conditions impose heavy burdens on the elderly, their 

careers, health-care providers and society in general 

[1, 2]. Attempts to mitigate the impact of ageing on the 

brain have included non-pharmacological interventions, 

such as social interaction, cognitive stimulation and 

physical exercise [3–9], in effect, essentially enriching 

the day-to-day experiences of the elderly. 

That experience exerts a profound influence on the 

structure and function of the mammalian brain has been 

known for many years [10]. A convenient means to 

study the influence of experience on the nervous system 

is to expose experimental animals to environmental 

enrichment, a manipulation that provides animals with a 

larger social group, a higher level of novelty, greater 

opportunities for exploration, and to increased physical 

exercise. Initially conceived by Donald Hebb to 

demonstrate that genetics alone did not determine 
intelligence [11, 12], this protocol induces neurogenesis, 

greater dendritic spine density, enhanced synaptic 

plasticity, profound changes in gene expression, and 
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ABSTRACT 
 

Positive experiences, such as social interaction, cognitive training and physical exercise, have been shown to 
ameliorate some of the harms to cognition associated with ageing. Animal models of positive interventions, 
commonly known as environmental enrichment, strongly influence neuronal morphology and synaptic function 
and enhance cognitive performance. While the profound structural and functional benefits of enrichment have 
been appreciated for decades, little is known as to how the environment influences neurons to respond and 
adapt to these positive sensory experiences. We show that adult and aged male wild-type mice that underwent 
a 10-week environmental enrichment protocol demonstrated improved performance in a variety of behavioural 
tasks, including those testing spatial working and spatial reference memory, and an enhancement in 
hippocampal LTP. Aged animals in particular benefitted from enrichment, performing spatial memory tasks at 
levels similar to healthy adult mice. Many of these benefits, including in gene expression, were absent in mice 
with a mutation in an enzyme, MSK1, which is activated by BDNF, a growth factor implicated in rodent and 
human cognition. We conclude that enrichment is beneficial across the lifespan and that MSK1 is required for 
the full extent of these experience-induced improvements of cognitive abilities, synaptic plasticity and gene 
expression. 
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ultimately improved performance across a range of 

behavioural tasks [13–18]. These benefits are observed 

across the lifespan, including into old age [3, 19–25] 

and in experimental models of age-related and other 

neurodegenerative and neurological disorders [26–31]. 

While providing models and parallels for similar 

enrichment strategies in the elderly human, such studies 

have additionally prompted attempts to harness the 

beneficial effects of enrichment through pharma-

cological “enviromimetics” to halt or even reverse age-

related cognitive decline [14, 32, 33]. 

 

Recently, a neuronal protein kinase, mitogen- and 

stress-activated protein kinase 1 (MSK1) has been 

identified as being a prime effector within the 

mammalian brain of the beneficial effects of enrichment 

in the early phase of the lifespan (birth to 4 months) 

[34–38]. MSK1 plays a pivotal role in transducing the 

additional sensory experiences associated with enrich-

ment into long-lasting changes in gene expression, 

neuronal morphology and synaptic activity, and 

ultimately to improvements in cognition [16]. MSK1 is 

activated by brain-derived neurotrophic factor (BDNF) 

and regulates the expression, notably via the 

phosphorylation of CREB and histone H3 [39, 40], of a 

range of genes including those for the key plasticity-

related proteins Arc/Arg3.1 and EGR1 [36, 41]. 

Importantly, BDNF has been implicated in human 

cognition, hippocampal volume increases, and the 

response to physical exercise [42–44]. Furthermore, 

MSK1 is expressed in neurons of the hippocampus [38, 

45–48], a major brain structure that underpins certain 

forms of learning and memory, which is shaped by 

experience [49], benefits from environmental 

enrichment [16, 50], and is particularly affected by 

normal ageing and neurodegenerative dementias such as 

Alzheimer’s disease [51]. 

 

Using mice harbouring a knock-in point mutation of the 

MSK1 gene, which results in the elimination of the 

kinase activity of MSK1 (kinase dead; MSK1 KD), we 

previously showed that the kinase activity of MSK1 was 

required for homeostatic synaptic scaling in vitro, and 

the in vivo enrichment-induced enhancement of 

miniature excitatory postsynaptic currents [34, 37]. 

More recently we have found that the kinase activity of 

MSK1 is necessary for the full benefits of enrichment 

on cognition, in particular, in the strength of 

hippocampal spatial memory and cognitive flexibility. 

This may be due to an experience- and MSK1-

dependent expansion of the synaptic dynamic range as 

evidenced by greater LTP and LTD in enriched wild-

type (WT), but not MSK1 KD mice [36]. Via an RNA-

Seq analysis of the hippocampal transcriptome under 

standard and enriched conditions, we also showed a 

crucial role for MSK1 in the experience-dependent 

regulation of gene expression, and the initiation of a 

genomic homeostasis characterised by the unexpected 

downregulation of key plasticity-related proteins such 

as EGR1 and Arc/Arg3.1 [16, 36]. 

 

These findings, while providing novel insight into the 

mechanistic basis of the beneficial effects of 

enrichment, did not address the role of MSK1 

throughout the lifespan, and especially during the latter 

period of life when cognitive decline is more prevalent 

and pressing, and for which effective therapies to halt or 

reverse this decline are lacking. To this end we have 

studied the role of MSK1 on cognitive performance, 

synaptic plasticity and dendritic spine density in healthy 

mice that underwent an extensive 10-week environ-

mental enrichment protocol during two distinct periods 

of life. One group underwent enrichment starting at 6 

months of age, with testing starting at 8.5 months of age 

(Adult mice). A second group underwent the same 

protocol starting at 18 months of age and with testing 

initiated at 20.5 months of age (Aged mice), and in 

which we additionally conducted an RNA-Seq analysis 

of experience- and MSK1-dependent hippocampal gene 

expression. 

 

We provide experimental evidence that a 10-week 

environmental enrichment protocol, which had some 

benefits in Adult mice, was sufficient to improve spatial 

memory in WT, but not MSK1 KD Aged mice. 

Moreover, these benefits of enrichment were associated 

with enhancements of LTP at both ages, but largely 

absent in mice lacking the kinase activity of MSK1. The 

benefits of enrichment in WT Aged mice compared to 

MSK1 KD mice likely reside in the MSK1-dependent 

up-regulation of hippocampal gene expression observed 

in enriched WT mice. We propose that MSK1 is 

necessary for the brain to embody the full molecular 

and cellular benefits associated with enriched 

experience, and which lead to the remediation of age-

related cognitive decline. 

 

RESULTS 
 

Enrichment influences motor and anxiety-like 

behaviours in an age- and MSK1-dependent manner 
 

Since the main aim of the behavioural testing was to 

assess higher cognitive functions, such as hippocampus-

dependent spatial working and reference memory 

(Figure 1A), we adopted a bottom-up approach to 

identify potential confounding factors due to 

physiological, neurological and emotional influences on 

behaviour that might be occasioned by housing 

conditions, genotype or age, and which might have had 

an impact on cognition [52]. We first assessed the general 

health of all the mice using a standardized neurological 
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test well adapted to mice [36, 53] to reveal any gross 

motor impairments that could be expected in aged mice. 

No animals in any of the Adult or Aged (Figure 1B) 

groups showed any neurological signs (data not shown). 

The neurological health of all animals in this study thus 

avoided potential motor confounds that could influence 

performance on any of the behavioural tests. 

 

To confirm that our enrichment protocol had tangible 

effects on animal behaviour, we initially assessed the 

influence of enrichment on open field and novelty-

induced locomotion, and anxiety-like behaviour, as both 

are sensitive to enrichment [36, 54]. WT and MSK1 KD 

Adult mice raised from birth in standard housing behaved 

similarly when exposed to an open field arena, in that 

activity declined over time (Figure 2). However, in 

contrast to their counterparts raised in standard housing, 

Adult enriched animals of both genotypes displayed 

reduced locomotor activity in the open field throughout 

the entire period of open field exploration, as previously 

reported for young mice [36], and suggestive of prior 

habituation to larger and novel environments. The 

introduction of an object into the centre of the open field 

as a novelty stimulus provoked greater exploration in 

standard-housed and enriched WT mice, compared to the 

preceding level of activity at 60 min. In contrast, the 

response in MSK1 KD mice to novelty was significantly 

blunted, despite similar amounts of time spent facing the 

object across the four groups (Supplementary Figure 1A). 

After this initial difference, Adult enriched mice of both 

genotypes subsequently showed reduced exploration of 

the open field arena compared to their standard-housed 

counterparts. 

 

Aged mice showed a different pattern of behaviour in 

the open field with similar levels of exploration across 

genotypes and housing condition, except for the first 10 

minutes when standard-housed mice showed greater 

exploration compared to enriched mice (Figure 3). In 

response to the introduction of the object, where again 

all groups faced the object for comparable periods of 

time (Supplementary Figure 1B), all groups except  

the standard-housed WT mice showed increased 

exploration. Thereafter, only the enriched WT group 

showing reduced exploratory behaviour, as per the 

Adult mice, and in contrast to enriched Aged MSK1 KD 

mice, which behaved similarly to the standard-housed 

mice of both genotypes. 

 

In the elevated plus maze test for anxiety-like 

behaviour, there was no influence of genotype or 

housing on the behaviour of Adult mice in terms of 

distance travelled (Figure 4A) or time spent 
(Supplementary Figure 1C) in the open arms. In 

contrast, Aged mice of both genotypes raised in the 

enriched environment travelled further (Figure 4B) and 

spent more time (Supplementary Figure 1D) in the open 

arms of the elevated plus maze. This likely reflects 

reduced anxiety-like behaviour, a classic effect of 

environmental enrichment [55], and was also seen in a 

previous study of younger enriched WT and MSK1 KD 

mice [36]. These observations confirm the effectiveness 

of the enrichment protocol in influencing behaviour in 

both Adult and Aged WT and MSK1 mutant mice, but 

reveal age- and experience-dependent differences on 

locomotion (Adult > Aged) and anxiety-like behaviour 

(Aged > Adult). 

 

MSK1 is necessary for preserving spatial working 

memory and spatial reference memory in aged mice 

 

To assess hippocampus-dependent forms of spatial 

working memory we first employed a spontaneous 

alternation task, which has been shown to be a reliable 

tool to assess mutant mice with neurological conditions 

[56, 57]. While Adult standard-housed mice of both 

genotypes performed at comparable levels, there was a 

significant effect of enrichment, with enriched mice 

making more correct alternations, an effect that was 

statistically more pronounced in enriched WT mice 

(Figure 5A). In the Aged mice, the influence of 

genotype and housing on spatial working memory was 

even more stark, with a clear genotype x housing 

interaction in which the benefits of enrichment were 

only observed in the enriched WT mice (Figure 5B). 

These data suggest that the benefits of enrichment on 

spatial working memory becoming increasingly 

dependent on MSK1 as ageing progresses. 

 

To investigate a more cognitively demanding form of 

hippocampus-dependent spatial memory, we used the 

Morris water maze task. To allow for a direct 

comparison across the ages of mice, we accounted for 

the reduced swimming speed of the Aged groups when 

compared to younger mice (Supplementary Figure 2A, 

2B) by analysing the distance swum, rather than the 

time taken to reach the escape platform. We also limited 

trial exposure to 90 s, as opposed to the usual 120 s 

[36], to avoid the possibility of fatigue or hypothermia 

in Aged mice. As a further control for the sensorimotor 

abilities in the Adult and Aged mice we also ran a 

visual test before starting the learning stage to assess the 

ability of mice to see visual cues, a basic function upon 

which spatial memory relies, and their motivation to 

escape from immersion. This, together with the 

previous habituation stage, ensured that all mice were 

proficient swimmers and had experience in swimming 

and navigating to a platform before the learning session 

started. Accordingly, all mice of both age groups 
performed proficiently and similarly on the visual cue 

task, with no differences between the groups (data not 

shown). The absence of performance biases across 
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Figure 1. Experimental outline and age comparison. (A) Time-course of housing provision and experimental treatments for Adult 
mice (upper panel) and Aged mice (lower panel). Abbreviations: P: postnatal day; MWM: Morris water maze; LTP: long-term potentiation 
and electrophysiological analysis of synaptic transmission. (B) Comparison of mouse and human ages based on data from Wang et al., 
(2020) [71]. The broken vertical lines represent the weeks at which two separate cohorts of mice (blue; Adult and red; Aged): went into 
enrichment (weeks 26 and 78); behavioural testing started (weeks 36 and 88), behavioural testing ended (weeks 42 and 92), and the end of 
ex vivo analyses (weeks 50 and 100). For comparison, the previously reported young group (cyan) were born into standard housing or 
enrichment (week 0), began behavioural testing at week 10, with all testing completed by week 20 [36]. 
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Figure 2. Enrichment reduces novelty-induced locomotion in adult mice. An RM-ANOVA on the open field task in the Adult groups 

showed an effect of Time for all groups (F(5,300) = 49.74, p < 0.0001) indicating a reduction in activity over time, and also a Housing effect 
(F(1,60) = 9.88, p = 0.003) showing that mice in the enriched groups were less active regardless of their genotype. Following the 
introduction of an object into the arena (broken vertical line; 50 ml plastic Falcon tube), exploration increased from the previous level of 
activity at 60 mins. There was a borderline genotype effect (F(1,60) = 4.02, p = 0.049) with the WT group showing an enhanced response to 
novelty. Subsequently, enrichment reduced exploration in both genotypes following the introduction of an object, with a significant 
interaction of Time x Genotype x Housing (F(5,300) = 51.75 p = 0.012). In this open field + object stage an RM-ANOVA also showed an effect 
of Time for all groups (F(5,300) = 128.53, p < 0.0001) indicating a reduction in activity over time, and also a Housing effect (F(1,60) = 17.03, 
p < 0.0001) showing again that enriched mice were less active in response to the introduction of an object regardless of their genotype. The 
data are presented as distance travelled in metres as cumulative distance reported in 10-min intervals. 60 min per stage (120 min in total). 
Datapoints are presented as mean ± SEM. The heatmaps below the graphs depict the arena occupancy in the open field ± object stages for 
the mice of each group. 
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Figure 3. Enrichment reduces novelty-induced locomotion in aged mice. In the Aged groups an RM-ANOVA showed an effect of 

Time for all groups on the distance travelled (F(5,260) = 27.53, p < 0.0001) indicating a reduction in activity over time. There was also a 
Time x Housing effect (F(52,260) = 6.25, p < 0.0001), but the Simple Main Effects showed this was significant only for the first 10 minutes of 
the OF between WTSH and WTEE (p = 0.025), but not between KDSH and KDEE (p = 0.077). Following the introduction of an object (broken 
vertical line) an analysis of the novelty-induced locomotor shift was carried out comparing levels of activity during the first 10 minutes from 
the introduction of the object with the last 10 minutes of the open field. A significant effect for both Genotype and Housing was found 
(F(1,52) = 4.71, p = 0.035 and F(1,52) = 10.34, p = 0.002, respectively) indicating a greater effect of novelty in the enriched animals and in 
the MSK1 KD mutants. In the open field + object phase of the trial, an RM-ANOVA showed an effect of Time for all groups (F(5,260) = 
132.43, p < 0.0001) reflecting a reduction in activity over time. There was a Time x Housing and a Time x Genotype effect (F(52,260) = 
10.43, p < 0.0001 and F(52,260) = 4.20, p = 0.001, respectively) and also a Genotype effect; F(1,52) = 5.78, p = 0.020 indicating a greater 
activity in the MSK1 KD mutant mice, and with lower levels of activity in the enriched WT mice. The data are presented as distance travelled 
in metres as cumulative distance reported in 10 min intervals. Each phase lasted 60 min (120 min in total). Datapoints are presented as 
mean ± SEM. Heatmaps below the graphs depict the arena occupancy in the open field ± object stages for the mice of each group. 
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genotypes, housing, and ages thus precluded confounds 

associated with different levels of sensorimotor ability, 

anxiety, motivation or fatigue. 

In the Adult groups during the learning (Training) phase 

of the water maze the WT mice performed better than the 

MSK1 KD mice (Figure 6A). While there was no 

 

 
 

Figure 4. Enrichment reduces anxiety-like behaviour in aged mice. (A) In the Elevated Plus Maze task in the Adult groups the 

distance travelled in the open area vs. that in the closed area (Distance travelled in the open arms/distance travelled in the closed arms 
×100 expressed in %.) was not different between Genotype nor Housing condition (Genotype effect: F(1,56) = 0.12, p = 0.740; Housing 
effect: F(1,56) = 3.87, p = 0.054; Interaction Genotype x Housing: F(1,56) = 0.81, p = 0.370). (B) In the Aged groups the distance travelled in 
the open area vs. that in the closed area was greater in the enriched groups of both genotypes, indicating that enrichment effectively 
reduced anxiety-like behaviour (Housing: F(1,49) = 13.81, p = 0.001). Heatmaps below the graphs depict the arm occupancy for the mice of 
each group, with the horizontal arms being the open arms in all conditions. Individual data points are presented for each animal, with the 
bar graph representing the mean ± SEM of the data. 
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genotype x housing interaction, enriched WT mice 

performed significantly better than standard-housed WT 

mice, whereas no such differential was observed between 

the MSK1 mutant mice. Similarly, when a Reversal 

learning stage was carried out after the learning phase, 

WT mice performed better than the MSK1 KD mutant 

mice (Figure 6A). A more detailed between factors 

statistical analysis showed that, while there was no 

significant genotype x housing interaction, the difference 

between enriched WT and MSK1 KD mice was highly 

significant indicating that enrichment benefited WT mice 

more than the MSK1 KD mutants in this test of cognitive 

flexibility. Measurements of the latency to the platform 

location during the Training and Reversal phases were 

consistent with those obtained with distance travelled 

(Supplementary Figure 2C). A similar genotype effect, 

where the WT outperformed the MSK1 KD mice, was 

also seen in the Probe trial for memory persistence 

administered 24 hrs later (Figure 6B). 

In the Aged groups, the benefits of enrichment were 

selectively observed in WT mice even during the Training 

stage (Figure 7A), when their performance level was 

comparable to that of the younger enriched WT Adults 

(Figure 6A). In contrast, there was little evidence of robust 

learning in standard-housed WT or MSK1 KD mice, or 

indeed in enriched MSK1 KD mice (Figure 7A). Similar 

observations were made with measurements of latency to 

platform location (Supplementary Figure 2D). The paucity 

of learning in these latter three groups obviated conducting 

the Reversal learning stage since the location of the initial 

target platform had not been well consolidated. The clear 

benefits of enrichment in Aged WT mice was also evident 

in the Probe trial where a post-hoc analysis after a 

significant genotype x housing interaction showed that 

enriched WT mice spent more time in the Training 

quadrant, compared to the other groups (Figure 7B). These 

data indicate that the full cognitive benefits of enrichment 

in the acquisition of spatial locations, reversal learning of 

 

 
 

Figure 5. Enrichment improves hippocampus-dependent spatial working memory via MSK1. (A) In the Adult groups the 

percentage of correct alternations was higher for mice in enrichment (Housing: F(1,61) = 6.10 p = 0.016). Although there was no significant 
interaction, the difference between EE and SH was greater in the WT mice, which showed a significant improvement (F(1,61) = 5.64 p = 
0.021) compared to the MSK1 KD which showed no significant (ns) improvement in performance compared to their standard-housed 
counterparts (F(1,61) = 1.27 p = 0.270). (B) In the Aged groups there was a significant interaction of Genotype x Housing F(1,68) = 8.17 p = 
0.006. The Simple Main Effect analysis showed that the difference between EE and SH was greater in the WT which showed a highly 
significant improvement F(1,68) = 15.04 p = 0.0002 compared to the KD which showed none F(1,68) = 0.01 p = 0.920. Results are expressed 
as arm entries sequence over 10 minutes for which a correct alternation % was calculated with the criterion of one repetition across 5 
entries. These results indicate that the benefit of enrichment was exclusive to WT. Individual data points are presented for each animal, 
with the bar graph representing the mean ± SEM of the data. 
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Figure 6. Environmental enrichment improves cognitive flexibility in adult mice via MSK1. No differences were observed across 

groups in the visual cue version of the test (Genotype: F(1,59) = 0.09, p = 0.760; Housing: F(1,59) = 1.17, p = 0.280; Genotype x Housing: 
F(1,59) = 2.57, p = 0.110; data not shown) suggesting comparable levels of visual acuity, swimming ability and motivation to navigate to the 
platform. (A) All four Adult groups showed learning over the first stage of training (Days (D) 1–4). The RM-ANOVA on distance swum to 
reach the escape platform showed a significant effect of Session F(3,177) = 52.38, p < 0.0001. It also showed a main effect of Genotype 
F(1,59) = 7.19 p = 0.010 where WT mice performed better than MSK1 KD mutant mice. Although there was no significant interaction of 
Genotype x Housing, the enriched WT mice were significantly better than standard-housed WT mice (F(1,59) = 4.09 p = 0.048) while no 
significant difference was seen between standard-housed or enriched MSK1 KD mice (F(1,59) = 0.32, p = 0.570). On the Reversal (R) 
learning stage (2 days) the RM-ANOVA on the distance swum to reach the new escape platform location showed an effect of session F(1,59) 
= 36.53 p < 0.0001 and Genotype F(1,59) = 16.97, p = 0.0001 indicating that all groups learned over the time but WT mice performed better 
than MSK1 KD mice. Although there was no significant interaction, the WT mice performed much better than the MSK1 KD mice in both 
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standard and enriched housing (F(1,59) = 6.77, p = 0.012 and F(1,59) = 10.37, p = 0.002, respectively). Data are presented as mean ± SEM. 
(B) On the probe trial 24 hours later WT mice showed the best goal directed behaviour for the reversed location of the escape platform 
(south west quadrant) and the standard-housed MSK1 KD mutant mice showed the worst performance. The Univariate ANOVA on the total 
time spent in the reversal quadrant (where the platform had been last) showed a strong effect for Genotype (F(1,59) = 9.15, p = 0.004; not 
shown). The effect of genotype was also significant for latency to enter the Reversal platform area (F = 7.91 p = 0.007). Although the 
interaction did not reach significance, the Simple Main effects showed a significant difference on the time spent in the reversal platform 
quadrant between enriched WT mice and enriched MSK1 KD mice (F(1,59) = 9.28, p = 0.003) and between standard-housed WT and MSK1 
KD mice on the latency to reach the reversal platform location (F(1,59) = 6.07, p = 0.017). Heatmaps below the graphs depict the arena 
occupancy for the mice of each group during the last day of reversal learning and the Probe trial. Individual data points are presented for 
each animal, with the bar graph representing the mean ± SEM of the data. 

 

the task, and persistence of the memory depend upon 

MSK1 in an increasingly age-dependent manner. 

 

MSK1 underpins the experience-dependent enhance-

ment of synaptic plasticity across the lifespan 

 

Environmental enrichment has repeatedly been shown 

to influence synaptic activity [15, 16, 50]. To establish 

the extent to which changes in synaptic function could 

underlie the age-, enrichment- and MSK1-dependent 

effects on spatial working and reference memory, we 

conducted dual-pathway extracellular recordings from 

area CA1 of hippocampal slices prepared from the eight 

groups of experimental animals (2 × genotype, 2 × 

housing, 2 × age), as previously described [36, 58]. In 

Adult mice we replicated the observations made 

previously [36, 58] of a deficit in basal synaptic 

transmission in the MSK1 KD mice (Figure 8A). This 

was not associated with an effect of the mutation on 

axon excitability, as measured by the amplitude of the 

presynaptic fibre volley, that could account for the 

differences in basal synaptic transmission (Figure 8A). 

Similarly, there was no effect on paired-pulse 

facilitation (PPF; Figure 8B), indicative of similar 

probabilities of glutamate release between the two 

genotypes. While these parameters were not obviously 

affected by enrichment, there was a tendency for the 

fEPSP to be smaller in enriched WT mice, and for PPF 

to be increased, but with no change in the presynaptic 

fibre volley, as we observed in younger animals [36]. 

These observations are internally consistent as a 

decrease in the probability of neurotransmitter release 

would be reflected in both increased PPF and smaller 

fEPSPs. 

 

In Aged mice, where there was no influence of housing 

or genotype on the presynaptic fibre volley, enrichment 

had a significant depressant effect of the fEPSP in WT 

mice (Figure 8C), with evidence of enhanced PPF at 

shorter inter-pulse intervals (Figure 8D). In contrast, in 

enriched Aged MSK1 KD mice there was a marginal 

increase in the fEPSP (Figure 8C), but without affecting 

PPF (Figure 8D). Overall, these observations, consistent 

with those made previously in younger animals [36], 

suggest that enrichment reduces synaptic transmission 

in WT mice in an age- and MSK1-dependent manner. 

This potentially occurs via the reduction in the 

probability of neurotransmitter release and may serve as 

a homeostatic measure to limit excessive excitation 

associated with the continuous sensory stimulation 

provided by enrichment. 

 

To confirm that the deficit in synaptic transmission, 

which has also been observed in the medial perforant 

path input to granule cells in the dentate gyrus in MSK1 

knockout mice [59], was not due to a reduction in the 

density of dendritic spines, upon which excitatory 

synapses on CA1 neurons are located, we performed an 

age-, housing condition- and genotype-blind analysis of 

dendritic spines in stratum radiatum of Golgi-stained 

CA1 pyramidal neurons (Figure 9). Comparing the 

mean spine density in individual animals indicated that 

spine density is similar to (Figure 9A–9C; Adult mice), 

or indeed greater in MSK1 KD mice compared to WT 

mice (Figure 9D–9F; Aged mice), replicating 

observations made previously in younger mice 

(Figure 9G) [34, 36]. A comparison of CA1 stratum 

radiatum spine density across the lifespan (Figure 9H) 

demonstrated that, for the most part, standard-housed 

MSK1 mutant mice had greater spine density than their 

WT counterparts, and that enrichment enhanced spine 

density in both groups, most consistently in WT mice. 

This suggests that MSK1 is not required for the spine 

density increase provoked by enrichment. The data also 

suggest that MSK1 is either required for the pruning of 

dendritic spines, or that the elaboration of dendritic 

spines is a compensatory mechanism for reduced 

synaptic strength at individual spines. 

 

To further understand the behavioural phenotype of 

MSK1 mutants we also investigated their ability to 

strengthen synaptic connections with an ex vivo double 

pathway analysis of LTP in stratum radiatum of area 

CA1 [36, 58]. In such experiments, one pathway served 

as an internal control for the stability of synaptic 

transmission, and the other pathway received 

stimulation to induce LTP. As a further criterion for the 

validity of the recordings, stimulus strength was 

adjusted to evoke fEPSPs of comparable amplitudes (~3 
mV) across the 8 experimental groups in order that 

equivalent postsynaptic depolarisation was elicited. In 

Adult mice (Figure 10A) these experiments confirmed 
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Figure 7. Enrichment of aged mice improves hippocampus-dependent reference memory via MSK1. No differences were 

observed across groups in the visual cue version of the test (Genotype: F(1,51) = 0.001, p = 0.970; Housing: F(1,51) = 0.37, p = 0.570; 
Genotype x Housing F(1,51) = 2.26, p = 0.140; data not shown) suggesting comparable levels of visual acuity, swimming ability and 
motivation to navigate to the platform. (A) In the Aged groups the enriched WT mice were the best performers and did not show the age-
related impairment seen in standard-housed WT mice. The RM-ANOVA analysis on the distance travelled to reach the escape platform 
showed a significant effect of Session F(3,153) = 12.63, p < 0.0001. Importantly the standard-housed WT mice did not show any significant 
learning improvement in this period F(3,42) = 1.95, p = 0.136. The analysis also showed a main effect of the Housing (F(1,51) = 15.23 p = 
0.0003) where enriched mice performed better than standard-housed mice, and of Genotype (F(1,51) = 6.00 p = 0.018) where WT mice 
performed better than MSK1 KD mice. Although there was no significant interaction, on training day 3 and 4 the WT enriched mice clearly 
outperformed all the other groups. Data are presented as mean ± SEM. (B) On the probe trial the enriched WT mice had the best 
performance. The ANOVA showed a significant effect of Housing (F(1,51) = 8.84, p = 0.004), indicating a better performance of enriched 
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mice, but the significant Genotype x Housing interaction (F(1,51) = 4.98, p = 0.030) and the Simple Main effects analysis showed that the 
difference between standard-housed mice and enriched mice was only significant in the WT mice (F(1,51) = 13.26, p = 0.001). Heatmaps 
below the graphs depict the arena occupancy for the mice of each group during the last day of training and the Probe trial. Individual data 
points are presented for each animal, with the bar graph representing the mean ± SEM of the data. Abbreviation: ns: not significant. 

 

that CA1 LTP is no different between standard-housed 

WT and MSK1 KD mice, as observed previously in 

younger mice [36, 58], and in the dentate gyrus of 

MSK1 KO mice [59]. They also showed that LTP is 

selectively enhanced in enriched WT mice, with no 

effect on LTP in slices from MSK1 KD mice. 

 

In Aged mice (Figure 10B), LTP in standard-housed 

mice was different between mutants and WT mice, with 

LTP returning to baseline within 3 hrs in MSK1 KD 

mice, but not in WT mice, where robust LTP was 

observed. A facilitation of LTP was seen after 

enrichment in MSK1 KD mice but failed to reach 

statistical significance above that of the standard-housed 

MSK1 KD mice. In contrast, the duration and extent of 

the enrichment-induced facilitation of LTP was much 

more pronounced in WT mice. These observations of 

enhanced LTP, especially in Aged enriched WT mice, 

may contribute to the enhanced performance in spatial 

memory tasks seen in these mice, while the LTP deficit 

and lack of appreciable facilitation of LTP in the MSK1 

KD mice are likely factors in their poor performance on 

these tasks. 

 

MSK1 and experience regulate hippocampal gene 

expression 

 

MSK1 regulates gene expression, including through the 

phosphorylation of CREB and histone H3 [40]. Since 

we previously observed an experience- and MSK1-

dependent homeostatic downregulation of key MAPK 

signalling and plasticity-related genes and proteins in 

response to enrichment [36], we conducted an RNA-

Seq analysis of gene expression in the hippocampi of 

Aged standard-housed and enriched WT and MSK1 

KD mutant mice, since Aged mice benefitted most 

from the enrichment protocol. A principal component 

(PC) analysis (Figure 11A, 11B) revealed that the 

majority of the variance in gene expression (78 %) was 

captured by two PCs – PC1 (62 %) and PC2 (12%; 

Figure 11A). While there was overlap across the four 

groups particularly in PC1, PC2 separated WT enriched 

mice from the other three groups (Figure 11B). An 

analysis of differential gene expression (differentially-

expressed gene; DEG) between the groups 

(Supplementary Data 1–7) showed that there were no 

DEGs between WT and MSK1 KD standard-housed 

animals, two DEGs between the two WT groups, and 

twelve DEGs between the two MSK1 KD groups 

(Figure 11C). Of these DEGs, one (Batf3) was unique 

and up-regulated in enriched WT animals; one (Ighm) 

was common to both and upregulated in enriched mice 

of both genotypes, and eleven were unique to the 

MSK1 KD mutant (Figure 11D). Of these eleven, seven 

were downregulated by enrichment and four were 

upregulated (Figure 11D). 

 

Between the enriched mice, 118 DEGs were observed 

(Figure 11C), with all of them upregulated in the 

enriched WT mice (Figure 11E). The majority of these 

genes (Supplementary Data 7) were genes of unknown 

function, precluding their Gene Ontology (GO) 

classification. However, some (Batf3, Muc6, Olfr55, 

Svet1 and Kcnq1ot1) have had functions ascribed; 

these genes are indicated on the MA plot (Figure 11E) 

and the gene expression counts for each across the four 

groups of animals are provided (Figure 11F–11J, 

respectively). The role of these genes varies from a 

transcription factor regulating immune dendritic cell 

development (Batf3) [60], a long noncoding RNA 

involved in DNA methylation and transposon 

repression (Kcnq1ot1) [61], and developmental 

neuronal migration (Svet1) [62]. 

 

DISCUSSION 
 

Cognitive abilities decline across the lifespan and can 

be accelerated by neurodegenerative disorders such as 

Alzheimer’s disease. This can lead to dementia and 

increasing dependence on health-care systems, with the 

consequent impact on the individual, families and 

society [1]. Considerable interest exists in identifying 

strategies to alleviate the impact of ageing on human 

brain function, and a number of relevant factors revolve 

around lifestyle choices that may protect against the 

greater vulnerability of the human brain as ageing 

progresses [63]. Notably, several of these involve what 

might be regarded as environmental enrichment, in 

terms of being exposed to larger social groups, 

complexity/variety of experience, and physical activity 

[9, 64]. 

 

These features, which we have brought together, are 

provided in experimental environmental enrichment 

protocols that mimic holistic and translational 

approaches applicable to the ageing human. Such 

protocols have repeatedly been shown to have benefits 

on brain health and cognition across many models of 

both mental health and neurological disorders [14, 16, 

54]. For example, pioneering studies in a mouse model 

of Huntington’s disease (R6/1 mice), a condition that 

had been described as 100 % genetic [65] showed that 
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Figure 8. Basal synaptic transmission of stratum radiatum in area CA1 is affected in an experience- and MSK1-dependent 
manner. (A) The RM-ANOVA on the fEPSP Input/Output profile in the Adult groups with a within-factor as stimulus strength (20 to 300 µA) 
gave a significant effect (F(6,492) = 958.85, p < 0.0001) and an interaction of stimulus strength x Genotype: F(6,492) = 10.09, p < 0.0001 but 
no significant interaction of stimulus strength x Housing, nor stimulus strength x Genotype x Housing. There was also a significant effect of 
Genotype (F(1,82) = 13.07, p = 0.001), but no significant interaction Genotype x Housing nor Housing alone. A comparison of the fibre volley 
amplitude across a subset of experiments (10–12 pathways from 7–9 slices and from 7–9 mice) where the fiber volley was measurable at 
300 µA (inset, bottom right, data points offset for clarity) showed no significant (ns) effect of Genotype, Housing, or Genotype x Housing 
across groups. (B) The RM-ANOVA on the paired-pulse facilitation in the Adult groups with inter-pulse interval (50–350 ms) as a within-
factor variable gave only a significant effect of interval (F(6,432) = 1229.1, p < 0.0001) but not of Genotype or Housing. (C) In the Aged 
groups there was a significant effect of stimulus strength (F(6,360) = 787.75, p < 0.0001) and an interaction between stimulus strength x 
genotype (F(6,360) = 7.18, p < 0.0001). The between effects analysis revealed a significant effect of genotype (F(1,60) = 28.22, p < 0.0001) 
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and an interaction Genotype x Housing (F(1,60) = 8.26, p = 0.006). The simple main effect analysis revealed a significant difference between 
standard-housed and enriched WT mice (F(1,60) = 5.44, p = 0.023) and between standard-housed WT and MSK1 KD mice (F(1,60) = 33.51, 
p < 0.0001). A comparison of the fibre volley amplitude across a subset of experiments (10–14 pathways from 6–9 slices and from 6–9 
mice) showed no significant (ns) effect of Genotype, Housing, or Genotype x Housing across groups. (D) In the analysis of the paired-pulse 
facilitation data, there was only a significant effect of interval (F(6,348) = 614.28, p < 0.0001), but not of Genotype or Housing. Data are 
presented as mean ± SEM. 

 

enrichment from 4 weeks of age spared brain tissue and 

dramatically delayed the onset and reduced the 

incidence of the motor signs associated with the 

mutation [26]. Potential mechanisms may range from an 

enrichment-induced stabilisation of the striatal 

phosphoproteome [66] to an influence on the gut 

microbiome [67]. In models of Alzheimer’s disease, 

early studies of enrichment showed a decrease in Aβ 

deposition in the brains of enriched mice, possibly due 

to an upregulation of the Aβ protease, neprilysin [28], 

and improved performance on Morris and radial water 

mazes, despite a potentially sex-related increase in 

amyloid load [29]. Mechanisms by which enrichment 

may reduce the impact of Alzheimer’s disease 

pathology may include stimulation of adult hippo-

campal neurogenesis or the enhancement of synaptic 

plasticity, through a range of intracellular signalling 

cascades and genes upregulated by enrichment [31]. 

These beneficial effects of an enriched environment 

have led to calls for the development of 

pharmacotherapeutics (“enviromimetics”) evoking the 

benefits of this enriched experience in those with 

congenital, acquired or age-related cognitive 

impairment [14, 32, 33]. 

 

Such endeavours require insight into the biochemical 

processes evoked by enrichment in order that compounds 

may be developed that target those particular pathways. 

Of note, BDNF-dependent signalling has repeatedly been 

implicated as mediating the beneficial effects of 

environmental enrichment [16, 31, 54], and one agonist 

for the BDNF TrkB receptor, 7,8-dihydroxyflavone, is 

reported to be efficacious in a range of experimental 

models of cognitive impairment [68–70]. Downstream of 

the BDNF TrkB receptor is MSK1 [16, 40], which we 

have shown previously in young animals is required for 

homeostatic synaptic plasticity [34], and both the 

expansion of the dynamic range of synapses and the full 

cognitive benefits that enrichment brings [36]. 

 

We now extend these observations across the lifespan 

with the view to establishing whether the 

BDNF/MAPK/MSK1 signalling cascade retains its 

relevance as a key transduction pathway for the benefits 

of environmental enrichment as age increases, 

particularly since the cellular and molecular 

mechanisms underlying the benefits of enrichment in 

late life have not been elucidated. We show that MSK1 

retains its importance in converting positive experience 

into tangible synaptic and cognitive benefits well into 

old age, reinforcing the aged brain’s capacity to benefit 

from positive experience, MSK1’s prominence as a key 

player in the response to enrichment, and its potential as 

a target for enviromimetics. 

 

Experience induces age- and MSK1-dependent 

effects on exploratory and anxiety-like behaviours 

 

In the present study we exposed separate groups of male 

C57Bl/6J mice to 10 weeks of enrichment prior to 

behavioural testing at two ages, at 6 months of age (the 

Adult group) and at 18 months of age (the Aged group). 

While mouse to human age comparisons are not a linear 

function [71], this timeline broadly equates to 4–6 

human years of enrichment, starting from the late 20s 

and early 70s of human life, respectively [71], and 

approximates to the time spent by 70 year olds in care 

homes (between 4 and 6 years) [72]. Standard housing 

or enrichment continued for the remainder of the studies 

until the mice were 11.5 and 23 months of age, broadly 

equivalent to early 40s and late 70s in humans, 

respectively. 

 

A recent survey of the enrichment literature showed 

that, in addition to a wide range of different 

environmental enrichment protocols, the ages at which 

animals are exposed to enrichment, and the duration for 

which enrichment occurs also varies widely across 

studies, with enrichment lasting anywhere between 2 

and 20 weeks, with animals being tested between 6 and 

100 weeks of age [16]. Thus, our protocol is not 

dissimilar from those reported previously, and had clear 

effects on behaviour, gene expression and spine density 

and synaptic plasticity. This may reflect the fact that 

enrichment started in the Adult and Aged groups at a 

time, before the median lifespan for the species and 

strain (32–33 months in male C57BL/6J mice [73, 74]), 

when the effects of ageing may be manipulable [75]. 

 

Ten weeks of environmental enrichment in Adult mice 

had tangible effects on behaviour. This was evident in 

the open field arena where enriched mice of both 

genotypes (WT and MSK1 KD) demonstrated less 

exploratory behaviour compared to their standard-

housed counterparts. This was true for both the open 

field and open field + object components of the test, as 

we had previously observed in young (~4 months) mice 

raised form birth in enrichment [36], and by others in 

adult and aged rodents [76–79], and may be due to faster 

habituation to novelty by enriched animals [80, 81]. 
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Figure 9. Experience-, age- and MSK1-dependent effects on CA1 stratum radiatum dendritic spine density. (A) In the Adult 

groups, when average CA1 stratum radiatum spine densities per animal are compared, there was a trend for enriched animals having 
greater spine density than standard-housed mice. (B) Representative Golgi images of secondary dendrites in stratum radiatum from CA1 
pyramidal neurons across the four groups. Scale bars measure 10 µm. (C) Cumulative distribution of all spine density measurements across 
all groups showing rightward shifts of spine density in enriched groups. (D) In the Aged groups, when average CA1 stratum radiatum spine 
densities per animal are compared, there was a tendency for WT mice, but not MSK1 KD mice to show increased spine density after 
enrichment. (E) Representative Golgi images of secondary dendrites in stratum radiatum from CA1 pyramidal neurons across the four 
groups. Scale bars measure 10 µm. (F) Cumulative distribution of all CA1 stratum radiatum spine density measurements across all groups 
showing rightward shifts of spine density in enriched WT and standard-housed MSK1 KD mice. (G) Data from the Young groups are from 
Privitera et al., (2020) [36]. An across age group Univariate analysis with Genotype (WT or MSK1 KD), Treatment (SH or EE) and Age (Young, 
Adult and Aged) as independent variables revealed a main effect of Genotype (F(1,44) = 8.18, p: 0.006). A simple main Effects Analysis 
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(Sidak correction) revealed a significant difference between standard-housed WT and MSK1 KD in the Young and Aged groups (F(1,44) = 
4.96, p: 0.031 (G) and F(1,44) = 4.68, p: 0.036 (D), respectively confirming a previous report [34]. (H) A summary of CA1 stratum radiatum 
spine density changes across age, genotype and housing condition on a per animal basis (mean data from A, D, G). Enrichment consistently 
enhances spine density in WT mice. MSK1 KD mice typically have greater spine density, but the pattern over time, and the effects of 
enrichment are not correlated. In A, D, G, individual data points represent mean spine density values from individual animals (n = 4 (A, G) 
or 6 (D) mice), the horizontal line is the mean, and the box reflects ± 1 SD of the mean. In H data are presented as mean ± SEM. Additional 
CA1 stratum radiatum spine density data (per group and per animal) can be found in Supplementary Figure 3. 

 

However, a genotype-dependent effect was observed 

upon exposure to the object, with reduced locomotor 

activity in the Adult MSK1 mutant mice (which was not 

seen previously in young mice). It is possible that the 

salience or potential threat posed by this object was not 

appreciated by the MSK1 KD mice, rendering them less 

inclined to increase motor activity in response. 

 

As expected, Aged mice travelled less in the open 

arena, and the difference between enriched and 

standard-housed mice was only apparent within the first 

10 mins of the trial. The lack of a clear differential 

thereafter (as per the Adult and young mice) could 

reflect a floor effect in generally lower levels of 

locomotion and physical activity in Aged animals [23]. 

Introduction of the object initially provoked increased 

locomotion in all groups except the standard-housed 

WT mice. The reasons for this are unclear, but could 

reflect a blunted response to salient stimuli in standard-

housed Aged WT mice vs. increased anxiety-like 

behaviour in standard-housed Aged MSK1 mutant 

mice, and increased curiosity of the Aged enriched 

mice. This may be the case since the heatmaps 

suggested approaches to the object in the enriched mice. 

Thereafter in the open field + object phase only the 

enriched WT mice showed reduced locomotor activity, 

a pattern seen in young [36] and Adult enriched WT 

mice. This suggests that in Aged mice introduction of 

the object was capable of discriminating between the 

enriched genotypes, and may reflect a particular 

anxiety-like phenotype in the MSK1 mutant mice not 

completely ameliorated by enrichment. 

 

Directly examining anxiety-like behaviour in the 

elevated plus maze showed that enrichment had no 

benefit in Adult mice, with enriched mice of both 

genotypes travelling as much into the open arms as the 

standard-housed mice. This is in contrast to the benefits 

on enrichment on reducing anxiety-like behaviour 

across genotypes in both young [36] and Aged WT and 

MSK1 mutant mice, all of which displayed increased 

exploration of the open arms of the maze, and which 

has also been observed in enriched aged rats [82]. This 

lack of effect of enrichment in Adult mice anxiety-like 

behaviour is somewhat surprising, but published reports 

are equivocal, with benefits in adult rats in some studies 

[83] but not in others [23], with equally equivocal 

observations in mice, where the duration of enrichment 

may be important [84, 85]. One potential explanation 

for the lack of effect of enrichment in Adult male mice 

may be a stronger instinct for self-preservation and the 

avoidance of potentially dangerous situations at a time 

when they are most likely to be sexually active. Thus, 

the drive to reproduce may lead to the avoidance of 

risk-taking when there is nothing obvious to be gained. 

In contrast, enriched Aged mice, well into their 

reproductive senescence period [71], did show reduced 

anxiety-like behaviour. From a translational perspective, 

enrichment strategies reducing anxiety or increasing 

confidence among the elderly may reduce loneliness 

and social isolation [86] or the fear of falling [87], and 

could lead to the mental and physical health benefits 

associated with engagement with social groups and 

physical exercise [64]. 

 

The benefits of enrichment on hippocampus-

dependent cognition become increasingly dependent 

upon MSK1 as ageing progresses 

 

Spontaneous alternation is a test of hippocampus-

dependent spatial working memory [88], and has been 

shown to be improved by enrichment, particularly as 

animals age [19, 23, 82, 89]. Similar to the observations 

made in young mice [36], enrichment had an overall 

beneficial effect on this form of cognition in Adult 

mice. However, in both young [36] and Adult mice, the 

benefits of enrichment were only statistically significant 

when the performance of WT mice was compared, 

suggesting that the kinase activity of MSK1 is necessary 

to fully transduce the enrichment experience into 

enhanced spatial working memory. In Aged mice, a 

clear interaction between genotype and housing was 

found, with only Aged WT mice showing benefits of 

enrichment, and the MSK1 mutant mice raised in 

standard and enriched housing behaving identically. 

This suggests that MSK1 is recruited during ageing to 

enhance spatial awareness in response to enrichment. 

 

In the more cognitively-demanding Morris water maze 

for spatial reference memory, in which performance is 

also improved by enrichment [76, 82, 90–92], further 

distinctions in performance were made across age, 

housing and genotype. In Adult mice, learning of the 

platform location occurred across all groups, but with 

the clearest evidence for accelerated learning in 

enriched WT mice compared to all other groups, and 

with no difference in learning between standard-housed 

and enriched MSK1 mutant mice. This contrasts with 
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Figure 10. The enrichment-induced facilitation of LTP in stratum radiatum of area CA1 is dependent upon the kinase 
activity of MSK1. Dual pathway fEPSP recordings from stratum radiatum in area CA1 of WT and MSK1 KD mouse hippocampal slices. 

Filled symbols represent the pathway to which theta-burst stimulation (TBS) was delivered at time zero and denoted by the filled black 
triangle. Open symbols reflect synaptic transmission in the control, non-TBS, pathway, which served as a control for the viability of the slice 
over the recording period. Inset fEPSPs show baseline fEPSPs (broken lines) and fEPSPs 150 min after TBS (solid lines) from representative 
experiments. fEPSPs were stimulus-matched for amplitude prior to TBS delivery, and normalised with respect to average fEPSP slope 
measurements over the 30 min prior to TBS. (A) In the Adult groups the LTP analysis was calculated for the area under the curve (AUC) in 
the late phase (last 60 minutes) and showed a main effect of Genotype (F(1,20) = 6.20, p = 0.022). While there was no Genotype x Housing 
interaction (F(1,20) = 3.44, p = 0.078), a direct comparison between WTEE and KDEE showed a pronounced significant difference F(1,20) = 
9.44, p = 0.006 while the same comparison between standard-housed mice was not significant (F(1,20) = 0.22, p = 0.660). In addition, while 
the difference between WT SH vs. WT EE was significant (F(1,20) = 7.05, p = 0.015), the same comparison between the MSK1 mutant mice 
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did not reach significance (F(1,20) = 0.001, p = 0.970). (B) Similarly in the Aged groups the LTP analysis was calculated for the AUC in the late 
phase (last 60 minutes) and showed an even stronger effect of Genotype (F(1,20) = 13.51, p = 0.001) where WT mice had greater LTP, and 
statistical significance for Housing (F(1,20) = 4.34, p = 0.050). A direct comparison between WTEE and KDEE showed again a pronounced 
significant difference (F(1,20) = 9.22, p = 0.007). The lack of late LTP in the aged standard-housed MSK1 KD mice contrasted with the 
appreciable LTP seen in similarly housed WT mice, and was not improved by enrichment (F(1,20) = 1.07, p = 0.312). Data are presented as 
mean ± SEM. 

 

the situation in young mice, where learning the water 

maze by enriched MSK1 KD mice was comparable to 

that of enriched WT mice [36]. Imposing further 

cognitive demands through reversal learning or the probe 

trial revealed further deficits in Adult MSK1 KD mice, in 

keeping with observations made in young mice [36]. 

Thus, the recruitment of MSK1 by enrichment for the 

learning of a spatial reference memory occurs in the 

Adult phase, while the dependence on MSK1 for more 

difficult cognitive tasks (cognitive flexibility, the 

persistence of memory) can be observed at an earlier age. 

 

This age-dependence upon MSK1 reached its apogee in 

water maze experiments in Aged mice where the only 

evidence of strong learning of the platform location was 

found in enriched WT mice, with only weak, if any, 

learning of platform location occurring in the other 

three groups. This disparate learning precluded a 

reversal learning trial, but the probe trial showed that of 

all four groups, only the enriched WT mice performed 

above chance. Thus, the ability to learn the water maze 

declines with age, but can be ameliorated by exposure 

to an enriched environment [23, 82, 91]. Given spatial 

memory deficits that occur with human ageing [93], and 

the potential impact this has on, for example elderly 

pedestrians and vehicle drivers, enrichment strategies 

may improve the ability of the elderly to navigate 

environments, and enhance spatial awareness of both 

static and moving objects. Indeed, exposure to virtual 

environments have been shown to have benefits in 

improving spatial awareness among older people [94]. 

This suggests that plasticity remains within the ageing 

visuospatial system, and that it can be rehabilitated with 

exposure to appropriate stimulation, in a manner that is 

potentially dependent upon MSK1. 

 

Enrichment provokes age- and MSK1-dependent 

changes in the density of dendritic spines, synaptic 

transmission, and synaptic plasticity in stratum 

radiatum of area CA1 

 

We have previously reported that synaptic transmission 

in area CA1 is impaired in young mice lacking the 

kinase function of MSK1 [36, 58], as it is in dentate 

gyrus of MSK1 knockout mice [59]. We replicated 

these observations in area CA1, and the absence of 

differences in axon excitability as measured by the fibre 

volley, in two further groups of mice of different ages, 

and reiterated the seeming reduction in the strength of 

synaptic transmission that enrichment provokes 

exclusively in WT mice [36]. The influence of 

enrichment on synaptic transmission has been studied 

by several groups, but the majority of studies report no 

significant differences in input/output synaptic 

transmission profiles between enriched and standard-

housed animals [15, 16, 50]. One potential explanation 

is that this lack of change in the strength of synaptic 

transmission reflects a homeostatic adjustment to  

avoid potential overexcitation of neuronal networks, 

especially in the face of increased dendritic spine 

density, or that differences in enrichment protocols 

influence the outcome for basal synaptic transmission. 

For example, in a recent survey of electrophysiological 

studies after environmental enrichment [16], we found 

that the majority of studies reporting no change in basal 

transmission lacked one or more aspects of enrichment 

(social, complexity, exercise), whereas those studies 

showing increases of transmission included female 

animals. In the present study, all of the former, and 

none of the latter, were used. 

 

Our studies, across three age groups, suggest that this 

homeostatic downregulation does occur to the point that 

electrically-evoked fEPSPs in enriched WT mice are 

subtly, but consistently, weaker than those in their 

standard-housed counterparts, and which may be due in 

part to a reduction in the probability of glutamate 

release, as evidenced by parallel increases in paired-

pulse facilitation ratios. In contrast, no such 

downregulation of the fEPSP occurred in MSK1 KD 

mice, suggesting that MSK1 is necessary for this 

homeostatic adjustment in basal synaptic strength, as it 

is for homeostatic synaptic plasticity provoked by 

pharmacological activity deprivation or enhancement in 

cultured neurons [34]. 

 

These apparent decreases in electrically-evoked 

synaptic transmission provoked by enrichment in WT 

mice contrast with observations of enhancements in the 

amplitude of miniature excitatory postsynaptic currents 

(mEPSCs) observed after in enrichment in WT mice, 

but not MSK1 KD mice at both hippocampal CA1 [34] 

and neocortical synapses [37]. mEPSCs reflect the 

spontaneous and action potential-independent release of 

individual quanta of glutamate onto individual synaptic 

sites on postsynaptic neurones, and contrast with the 

electrically-evoked and action potential-dependent 

fEPSP, which reflects the sum of glutamate release 

across large numbers of synapses, and the amplitude of 

which will be influenced by spine density. Furthermore, 
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Figure 11. Regulation of hippocampal gene expression by experience and MSK1. (A) Scree plot of Principal Component (PC) 

variation as a percentage for the top 500 variance gene transcripts. One PC accounts for the majority of the variance (PC1; 62%), while the 
second PC (PC2) accounts for 12% of the variance. (B) PC analysis across groups and individual animals (filled symbols; 4–6 mice per group). 
Groups are identified by colour and are clustered around the arithmetic mean centroid (open symbol). The enriched WT group (WT EE) can 
be distinguished by migration along PC2. (C) Differential gene expression across groups, with the number of differentially-expressed genes 
(DEGs) given (Supplementary Data 1–7). (D) Venn diagram of unique and overlapping genes between WT and MSK1 KD mice. In red are 
genes that were upregulated by enrichment; in black text are those downregulated by enrichment in MSK1 KD mice (Supplementary Data 2 
and 5). (E) MA plot of gene expression in enriched WT mice compared to that in enriched MSK1 KD mice. On the y-axis are plotted DESeq2 
β-prior transformed log2 fold changes, with mean number of counts per group plotted along the x axis. Broken lines at ± 0.38 equate to a ± 
1.3-fold change, with zero change indicated by the red broken line. Blue symbols show the 118 DEGs, while circled are five named genes 
with assigned functions (Supplementary Data 7). (F–J) Bar charts for each of the five genes showing individual counts for each animal in 
each group. 
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different neurotransmitter vesicle pools are likely to 

contribute to synaptic transmission between neurons 

[95], and their recruitment may depend upon the nature 

of the stimulus. Thus, while quantal synaptic 

transmission may be enhanced by enrichment, at least in 

our studies (but see [96, 97]), this is not reflected at the 

population fEPSP level, as has been observed by others 

[15, 16, 50]. 

 

An analysis of the density of dendritic spines in area 

CA1, upon which these excitatory glutamatergic 

synapses form, showed that any deficits in synaptic 

transmission could not be accounted for by a decrease 

in spine density, either in enriched WT mice, or in the 

MSK1 KD mice, which showed an impairment in basal 

synaptic transmission under standard housing 

conditions, and reflected to some extent at the mEPSC 

level [34, 37]. On the contrary, spine density was 

consistently increased by enrichment in WT mice as we 

[34, 36] and others have observed previously (e.g., [16, 

96]), and this was seen across the lifespan. However, 

MSK1 KD mice displayed both increased spine density 

under standard housing conditions and, depending upon 

the age of the animal, inconsistent responses to 

enrichment. This irregularity in spine density and the 

inconsistent influence of enrichment in the MSK1 KD 

mice suggests that the kinase activity of MSK1 is a 

necessary for either the formation or pruning of spines 

under basal conditions, and for the appropriate increase 

in spine density in response to enrichment. These 

observations potentially reveal another example of 

cellular homeostasis requiring MSK1, and is made all 

the more plausible given the activation of MSK1 by 

BDNF [39, 41, 58], and the importance of BDNF 

signalling in the growth and development of dendritic 

spines [98]. 

 

Whereas the majority of studies report no effect of 

enrichment on basal synaptic transmission, many 

studies reveal a facilitation of LTP by exposure to an 

enriched environment, particularly in hippocampal area 

CA1 [15, 16, 50]. This is especially the case if theta-

burst stimulation (TBS) is delivered [16], a stimulation 

protocol that may avoid a ceiling effect on the level of 

potentiation, which may otherwise obscure an 

enrichment-induced facilitation. Alternatively, TBS 

may recruit the MAPK pathway [99], which is activated 

after enrichment [100, 101], but with some elements 

undergoing downregulation [102–104]; a down-

regulation that may occur in an MSK1-dependent and 

potentially homeostatic manner [16, 36]. 

 

In TBS LTP experiments where the stimulus strength 
was carefully adjusted to elicit basal fEPSPs of 

comparable amplitude across genotypes, we observed a 

facilitation of LTP in both Adult and Aged enriched 

WT mice, in keeping with observations made in a 

younger group of WT mice [36], and by others [15, 16, 

21, 82, 105]. In contrast, no such facilitation was seen in 

Adult enriched MSK1 KD mice, where the level of 

potentiation in the 60 minutes from 2 to 3 hours after 

TBS was comparable to that observed in standard-

housed WT and MSK1 KD mice. In Aged mice, 

differences in the MSK1-dependence of LTP did 

emerge, which were not seen in young [36] or Adult 

mice, in that LTP in Aged standard-housed mice 

decayed to baseline levels by 3 hours, a decline that was 

partially, but not significantly, attenuated by 

enrichment. These observations suggest that the 

dependence of LTP upon MSK1 increases as age 

advances, but that in parallel, or as a compensation, non 

MSK1-dependent processes can be recruited to partially 

preserve the synaptic response to enrichment. The 

MSK1-dependent enhancement of LTP by enrichment 

may occur via a lowering or restoring of the threshold 

for LTP induction that under normal circumstances rises 

with advancing age [106]. Thus, for a given stimulus, 

greater LTP is achieved, potentially via an experience- 

and MSK1-dependent tipping of the balance towards 

the NMDA-receptor dependent LTP seen in young 

animals that supports cognitive function [106]. 

Accordingly, it is plausible that the enrichment-

enhanced LTP may contribute, at least in part, to some 

of the cognitive benefits associated with exposure to an 

enriched environment, not least in terms of spatial 

working and spatial reference memory, in the 

persistence of memory, and cognitive flexibility as 

reported previously for young mice [36]. 

 

Hippocampal gene expression is regulated in an 

experience- and MSK1-dependent manner 

 

The importance of gene expression for the acquisition 

of learning and the persistence of memory has long 

been appreciated [107–109]. Similarly, adaptation to 

novel experience invokes its own transcriptional 

response characterised by the induction of immediate 

early genes that coordinate subsequent transcriptomic 

changes [108]. Since MSK1 regulates gene expression, 

including via phosphorylation of the transcription  

factor CREB and chromatin remodelling through 

phosphorylation of histone H3 [40], its recruitment is 

likely to be important in the subsequent genomic 

response to an enriched environment. Indeed, we have 

previously shown that in young enriched WT mice, 

prolonged enrichment is associated with a homeostatic 

downregulation of key plasticity-related genes and 

proteins, some of which, e.g., for Arc and EGR1, occurs 

in an MSK1-dependent manner [16, 36]. We speculated 
that this may be necessary to either stabilise the 

neuronal networks underpinning enhanced cognition, or 

to provide a low background level of expression against 
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which subsequent increases may have a greater impact. 

We thus conducted an RNA-Seq analysis on the 

hippocampal transcriptome of Aged WT and MSK1 

mice raised under both standard and enriched housing 

conditions to establish if a transcriptome signature 

might emerge that may contribute to the enhanced 

cognitive properties of Aged WT mice. 

 

In contrast to the down-regulation of gene expression 

that was prominent in young enriched WT mice 

compared to enriched MSK1 mutant mice, we found 

that there was an upregulation of gene expression 

between these two enriched groups in Aged animals. 

Given the delay (~10 weeks) between the introduction 

to the enriched environment and the sampling of 

hippocampal RNA, and at least two weeks after any 

behavioural procedures, any changes in gene expression 

are likely associated with maintenance of the enriched 

brain, as opposed to novelty associated with the new 

environment or cognitive testing. Most upregulated 

genes were of unknown function, precluding a gene 

ontology analysis, but several have been previously 

described and merit further consideration. Notably 

Batf3 was upregulated between standard-housed and 

enriched WT mice, and between enriched WT and 

MSK1 KD mice. Batf3 has been described as an 

important transcription factor regulator of dendritic 

immune cell expression, in particular of conventional 

type 1 dendritic cells (cDC1) [60]. These cells exert an 

important role in initiating innate and adaptive immune 

responses against infection [110] and brain tumours 

[111], and exert protective influences after cerebral 

ischemia [112]. It is possible that Batf3-upregulation 

reflects increased expression of these beneficial 

dendritic cells to mitigate some of the neuro-

inflammation associated with ageing [113], and which 

may manifest in some of the improvements in cognition 

and plasticity observed in enriched WT mice. Similarly, 

the upregulation of KCNQ1OT1 in Aged enriched WT 

mice compared to their MSK1 KD counterparts may 

reflect an anti-cellular ageing response. KCNQ1OT1 

has recently been shown to enhance genome stability by 

transposon repression and in doing so reduce cellular 

senescence [61]. Since the loss of genome integrity 

through the failure of mechanisms to silence 

transposable elements may contribute to ageing-related 

cognitive decline [114], it is possible that the 

upregulation of KCNQ1OT1 may retard cellular ageing 

and hence protect the neuronal networks underpinning 

the enhanced cognitive repertoire of Aged enriched WT 

mice. 

 

CONCLUSIONS 
 

We have shown that the kinase activity of MSK1 plays 

an important role in the regulation of basal synaptic 

transmission and the density of dendritic spines in area 

CA1 across the lifespan. The behavioural and synaptic 

plasticity consequences of this influence are not readily 

apparent under standard housing conditions where, for 

the most part mice lacking the kinase activity of MSK1 

behave in a manner comparable to their WT 

counterparts [36, 58]. However, age and experience 

recruit MSK1 to regulate synaptic plasticity, spatial 

memory and gene induction to allow the full expression 

of an enriched experience to be manifest through 

enhanced cognition and LTP. This suggests that MSK1 

may be both an important transducer of sensory 

experience into tangible genomic, morphological, 

cellular and behavioural manifestations of the experience, 

and a target for the development of enviromimetics for 

those suffering from the many forms of cognitive 

impairment that have been shown to benefit from 

enrichment. 

 

MATERIALS AND METHODS 
 

Animals 

 

The MSK1 kinase dead (KD) mouse used in this study 

has been described previously, as have the breeding, 

housing and genotyping of the mutant mice and their 

wild type (WT) counterparts [34, 36, 58]. The 

generation of the MSK1 KD mouse (by Taconic 

Artemis) involved mutating Asp194 in the endogenous 

MSK1 gene to Ala (D194A). This results in the 

inactivation of the N-terminal kinase domain of MSK1, 

which is responsible for the phosphorylation of MSK1 

substrates [115]. Confirmatory genotyping was 

conducted with PCR using the primers 5′-

CGGCCATGTGGTGCTGACAGC-3′ and 5′-

GGGTCAGAGGCCTGCACTAGG-3′, which gives 

378 bp and 529 bp products for WT and targeted alleles, 

respectively. The mice used in this study were on a 

C57-Bl/6J genetic background after at least four 

backcrosses from the original C57-Bl/6n strain used to 

generate the mutant mice, and were kept as separate 

homozygous and WT lines derived from founder 

homozygous and WT breeders from an initial series of 

heterozygote crosses. To avoid genetic divergence of 

the two lines, subsequent backcrossing occurred when 

the founder mice had come to the end of their 

reproductive lifetime (typically three litters). 

 

Mice were maintained under a 12/12 light/dark cycle, 

with lights on at 7.00 am, in a facility kept at 20–24°C. 

Mice were given ad libitum access to standard mouse 

chow and water. All animal procedures conformed with 

local, national and EU guidelines concerning the 

welfare of experimental animals. Behavioural studies 

were performed under the auspices of Home Office 

licence PPL 70/7821 granted to BGF. Male mice were 
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used in this study to facilitate comparison with previous 

studies on MSK1 KD mice [34, 36, 58]. The mice have 

been deposited with the INFRAFRONTIER/EMMA 

repository at MRC Harwell, UK 

(https://www.infrafrontier.eu/emma/strain-

search/straindetails/?q=13015). 

 

Environmental enrichment 

 

For the provision of mice destined to remain in standard 

housing or be placed in an enriched environment, 

pregnant dams (E14-15, based on vaginal plugs) were 

placed individually in standard open top Tecniplast 

1284L cages (365 × 207 × 140 mm; 530 cm2 floor area) 

to reduce sensory isolation during gestation. At weaning 

(P23-24), all females were removed, and the males 

(typically four) remained in an individually ventilated 

SH cage (Tecniplast 1285L; 396 × 215 × 172 mm; 542 

cm2 floor area) until the enrichment protocol began. All 

male mice initially housed in SH cages were first 

randomly split into two cohorts destined to be used as 

Adult or Aged mice. Fifty percent of Adult mice SH 

cages were then randomly allocated to go into 

enrichment at 6 months of age while the Aged groups 

underwent the same treatment when they were 18 

months old (see Figure 1 for details). Mice remained in 

their respective standard or enriched conditions for the 

remainder of their lives, up to 11.5 months for the Adult 

group, and 23 months for the Aged group, until all 

in vivo and ex vivo experiments were completed. 

 

Environmental enrichment was provided as previously 

described [36] via the housing of WT and MSK1 KD 

mice in large individually ventilated rat cages 

(Tecniplast 1500U; 480 × 375 × 210 mm; 1500 cm2 

floor area) containing bedding material, a cardboard 

tube, one running wheel and several plastic toys 

(tunnels, platforms, see-saws) and a metal ladder. To 

provide novelty, toys were moved around twice per 

week and new toys introduced once per week. Cage 

cleaning was done on Mondays for all standard and 

enriched cages. Toys in enriched cages were changed on 

Tuesdays and were moved around the enriched cages on 

Mondays and Thursdays. To keep disruption of the 

home environment to a minimum, sawdust and bedding 

were never changed at the same time as toys. To 

minimise disruptions to established hierarchies, during 

cage cleaning and behavioural testing all mice (standard 

and enriched) were removed to a different cage 

(standard cage size with one toy from the enriched cage 

for enriched mice) and then were returned together. 

This was effective in reducing within-cage aggression 

between mice. Standard housing (SH) comprised 
regular individually ventilated mouse cages (Tecniplast 

1285L) with two to four mice per cage and containing 

bedding material and a cardboard tube. 

Aged groups were composed of 8 males in enriched 

cages and 4 in standard cages. Similarly, Aged groups 

were composed of 8–10 males in enriched cages and 3, 

4 in standard cages (Figure 1). 

 

Behavioural procedures 

 

Mice used were scored for weight and against a battery 

of tests for neurological signs [53] before any 

behavioural experiment began. Different tests were 

conducted at weekly intervals to avoid one test 

influencing another (Figure 1). 

 

Open field and novelty-induced locomotion 

These tests were run as two consecutive stages of the 

same experiment. Four open field boxes (Ugo Basile; 

44 × 44 × 44 cm) were placed inside the empty water 

maze arena to form a square. Four mice were tested 

simultaneously. Each mouse was singly released in each 

box and tracked. Exposure to the open field lasted for 1 

hour after which, for the novelty stage of testing, an 

object (a 50 ml plastic vial; Falcon) was secured upside-

down to the centre of the arena and the mouse was 

tracked for an additional hour. 

 

Elevated plus maze 

An 8-radial arm maze for mice (Ugo Basile) was placed 

within the empty water tank and raised 60 cm from the 

tank base. Four of the eight arms were kept open to 

form a plus shape; two of the arms had walls while the 

other two (opposite one another) were without walls. 

Each mouse was individually released in the centre of 

the maze and video tracked for 10 minutes. 

 

Spontaneous alternation for spatial working memory 

An 8-radial arm maze for mice (Ugo Basile) was placed 

within the 180 cm wide tank used for the water maze. 

Four out the eight arms (with walls) were kept open to 

form a cross while the other four arms were kept closed. 

Each mouse was individually released in the centre of 

the maze and video tracked for 10 minutes. The 

sequence of arm entries was scored. A correct 

alternation was considered when a mouse made one 

repetition over five entries [116]. 

 

Water maze reversal learning protocol for cognitive 

flexibility – Adult mice groups 

An inter-trial interval of 120 s over 4 daily trials was 

employed. The pool was filled daily with fresh water, 

which was made opaque by the use of full fat UHT 

milk. 

 

Stage 1 (day 1 and 2) Habituation: each mouse was 
placed on a 20 cm diameter platform located in the 

centre of a 180 cm diameter pool filled with opaque 

water (28°C) and was allowed to observe the 

https://www.infrafrontier.eu/emma/strain-search/straindetails/?q=13015
https://www.infrafrontier.eu/emma/strain-search/straindetails/?q=13015
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environment for two minutes. The pool was surrounded 

by curtains which did not allow the distal visual cues to 

be seen. Water level was ~1 cm above the top of the 

platform. Each mouse then received 3 consecutive 

trials (each with a different starting point) where it was 

left free to swim in the pool for a maximum of 90 

seconds and then placed on the platform and left there 

for 30 sec. 

 

Stage 2 (day 3 and 4) Visual Cue: The platform was 

placed in the centre of the pool and a visible object was 

placed upon it (yellow TV toy 6 × 6 × 5 cm). Each 

mouse received 4 consecutive trials (different cardinal 

starting points) where it was left free to swim in the 

pool for a maximum of 90 s. Water level was ~1 cm 

above the platform surface. Water was kept at 26°C. 

The pool was surrounded by curtains which did not 

allow the distal visual cues to be seen. 

 

Stage 3 (day 5 to 8) Training: Curtains were removed. 

Water was kept at 26°C. The platform was placed in the 

centre of the South-East or North-West quadrant and 

kept constant for any given mouse. Water level was ~1 

cm above the platform surface. Each mouse received 4 

trials (different starting points) where it was left free to 

swim in the pool for a maximum of 90 seconds and then 

left on the platform for 30 sec. 

 

Stage 4 (day 9 and 10) Reversal Learning: The platform 

was placed in the quadrant opposite to that used during 

Training. All other parameters as per Stage 3. 

 

Stage 5 (day 11) 24 hrs delay Probe trial: Water was 

kept at 26°C. The platform was removed, and distal 

spatial cues were present as per previous the stage. Each 

mouse received a single 90 sec trial. Starting point was 

distal to the location of the platform during Reversal 

learning; e.g., if platform was South-East starting point 

was North. 

 

Water maze for spatial reference memory- Aged mice 

groups 

Stage 1 Habituation (day 1 and 2): as described above. 

Stage 2 (day 3 to 5) Visual Cue: as described above. 

Stage 3 (day 6 to 9) Training: as described above. 

Stage 4 (day 10) 24 hrs delay Probe trial: as described 

above in stage 5. 

 

As outlined in Figure 1, mice used for these 

experiments were experimentally naïve with respect to 

the water maze, but had undergone open field without 

and with the inclusion of an object, the elevated plus 

maze and spontaneous alternation. 
 

All behavioural tests were video-tracked and analysed 

using AnyMaze 4.99 video tracking system. 

All the behavioural experiments were conducted blind 

to genotype. 

 

Ex vivo morphological and electrophysiological 

analyses 

At least two weeks after the end of behavioural testing 

(Figure 1) male WT and MSK1 KD mice were killed by 

cervical dislocation in accordance with the UK Animals 

(Scientific Procedures) Act 1986 and with local Animal 

Welfare and Ethical Review Board approval, and as 

previously described [36]. 

 

Analysis of dendritic spine density 

Mice brains were processed with the FD Rapid Golgi 

Stain kit (FD NeuroTechnologies, Inc.) in accordance 

with the manufacturer’s protocol. Impregnated brains (4 

or 6 per group) were sectioned with a vibratome 

(coronal sections; 200 µm thick) stained and mounted. 

Dendritic spines on the secondary branches of apical 

dendrites of hippocampal CA1 neurons were counted. 

Spine count was conducted blind to genotype and 

housing condition. ImageJ software was used to 

measure dendritic length and the numbers of spines on 

each dendritic segment. Images for spine density 

analysis were captured with a 40× objective on a Zeiss 

Imager 2 AXIO microscope. 

 

Hippocampal slice preparation and extracellular 

recordings 

After decapitation, the brain was rapidly removed from 

the skull and kept covered with ice cold aCSF during 

the dissection. Two hemispheres were obtained and 

glued on their temporal side, submerged in ice cold 

aCSF bubbled with 95% O2/5% CO2. Parasagittal 

hippocampal slices (400 µm) were cut and transferred to 

an interface recording chamber, where they were 

incubated for at least 2 hrs prior the recording and 

where they remained for the duration of the experiment. 

The temperature of the aCSF was set at 31° and the 

flow rate was ~1.5 ml/min. The aCSF used for the 

incubation and recording of slices contained in mM: 

124.0 NaCl, 4.4 KCl, 1.0 Na2HPO4, 25.0 NaHCO3, 2.0 

CaCl2, 2.0 MgCl2, 10.0 D-glucose. aCSF was bubbled 

with 95% O2/5% CO2; pH 7.4. During slice preparation 

the aCSF contained a higher concentration of Mg2+ 

(8 mM). All salts used in the aCSF were obtained from 

either Fisher Scientific or Sigma-Aldrich. 

 

Recordings of field excitatory postsynaptic potentials 

(fEPSPs) were made using an aCSF-filled glass 

microelectrode placed in stratum radiatum of area CA1. 

Two concentric bipolar stimulating electrodes 

(CBBRC75, FHC) were placed either side of the 
recording electrode. This allowed alternating recordings 

to be made from two independent but convergent 

afferent Schaffer collateral/commissural fibre pathways. 
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Each pathway was stimulated every 90 s with a 

monophasic pulse of 0.1 ms duration. Pathway-

independence was assessed via a crossed paired-pulse 

facilitation protocol (at 50 ms interpulse interval). 

Independence was accepted when facilitation of the 

second pulse was ~10 % or less. To assess basal 

synaptic transmission, stimulus input/fEPSP slope 

output curves were constructed over the range of 20–

300 µA. A minimum of four fEPSPs were averaged to 

yield a fEPSP slope measurement at each stimulus 

intensity. Paired-pulse facilitation (PPF), a commonly 

used index of the probability of neurotransmitter 

release, was assessed over an inter-stimulus interval of 

50–350 ms, with the average of at least two fEPSPs 

yielding the slope measurement at each paired-pulse 

interval. In all experiments both pathways in each slice 

were tested for input-output and PPF profiles and all 

were taken into consideration in subsequent analyses. 

 

For the LTP experiments a stable baseline of at least 30 

mins was achieved on both pathways before theta-burst 

(TBS) was delivered to one pathway. TBS consisted of 

bursts of 4 stimuli at 100 Hz with 10 such bursts 

comprising a train. Each burst within a train was separated 

by 200 ms. Trains were repeated 3 times with an inter-

train interval of 20 seconds. The second pathway was not 

subject to TBS and served as a control for the stability of 

the recordings. Experiments were excluded from analysis 

if the control pathway deteriorated by more than 10 % 

within the 3 hours post-TBS monitoring period. 

 

Given the deficit in basal synaptic transmission observed 

in MSK1 KD mice, care was taken to match the baseline 

strength of synaptic transmission, which involved 

adjusting the stimulus intensity to yield fEPSPs of ~3 mV 

across all groups. Electrophysiological recording 

parameters and the analysis of fEPSPs were under the 

control of WinLTP program [117]. Experiments were 

interleaved and performed blind to the identity and 

housing condition of the mice, which was revealed only 

after the experiments had been analysed, with genotype 

confirmed with post-hoc genotyping as required. 

 

RNA-seq analysis 

 

RNA-Seq 

Hippocampal RNA was prepared from individual 

hippocampi from experimentally naïve mice of 21–23 

months of age. Samples were prepared and analysed 

blind to the two genotypes and two housing conditions, 

6 samples for each of the 4 experimental groups 

(Supplementary Table 1). 

 
RNA extraction and library preparation 

Hippocampi were extracted and then rapidly 

homogenized in Trizol (Invitrogen, #15596018). 

Precipitation of total RNA was conducted using 

isopropanol following the manufacturer’s protocol 

before DNaseI treatment. The quality of the extracted 

RNA was checked by Nanodrop and Qubit 4 

fluorimeter (Invitrogen). 

 

TruSeqv2 (Illumina) LS protocol was then used to 

prepare mRNA libraries, which was conducted in-house 

by the School of Life Sciences Genomics Facility. 

Briefly, pull-down of poly-A mRNA was performed 

using poly-T magnetic beads. The RNA was fragmented 

and random hexamers used to prime fragments prior to 

first-strand synthesis. Blunt end repair was performed 

with a 3’ to 5’ exonuclease following second-strand 

synthesis, and 3’ ends were adenylated. cDNA was then 

ligated to adaptors. Quality checking for the 24 library 

samples was performed on a Qubit 4 fluorimeter 

(Invitrogen) and a 2100 bioanalyser (Agilent) before 

being multiplexed 6 samples to a lane and 150bp 

paired-end sequencing performed on an Illumina HiSeq 

4000. A mean of 62.11M reads per sample were 

obtained (Supplementary Data 8). 

 

Analysis pipeline 

 

Quality control and trimming 

Raw fastq files for each sample were initially quality 

checked using FastQC (v0.11.3) [118]. Adaptor 

contamination removal was performed with Skewer 

(v0.2.2) [119], using Illumina TruSeq v2 adapter lists, 

which included reverse complements and theoretical 

PCR product. Adapter contamination removal was 

confirmed using FastQC. Further trimming of the Fastq 

files was also conducted if mean base quality fell below 

10 (4bp window). Only reads >50bp were kept for 

alignment. Paired fastq files for each sample (forward 

and reverse) were aligned to the mouse genome 

(GRCm38) using STAR aligner (v2.5) [120] and 

annotated (GRCm38.87). Mean read alignment was 

91.83% for samples that met quality control criteria 

(21/24) and were included in the analysis 

(Supplementary Data 8). 

 

IGV (v2.3.65) [121] was used to inspect read alignment 

and verify the presence of the point mutation (D194A) 

at the MSK1 gene locus [34] in samples belonging to 

MSK1 KD group (Supplementary Figure 4). SeqMonk 

[122], was then used to generate read probes for each 

sample and examine read alignment within ribosomal 

RNA, mitochondrial genes, and exons/introns 

(Supplementary Figure 5). Read alignment within 

individual genes was then quantified using HtSeq 

(v0.6.1p1) [123], utilising parameters specifying unique 
read alignment, that reads were un-stranded, and that 

only reads with a minimum average PHRED quality 

score of 10 were counted. 
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Ribosomal (rRNA) contamination was observed in 

samples 4 and 7 (~23% of reads aligned to rRNA in 

each sample) indicating poor polyA RNA purification 

for these samples (Supplementary Figure 5). Intra-group 

sample variation (calculated using Pearson’s correlation 

coefficient) was observed to be low (<0.9) for samples 

4, 6 and 7, indicating excessive variance compared to 

other samples within the group (Supplementary Figures 

6, 7). Samples 4, 6 and 7 were therefore excluded from 

further analysis, as reflected in the final sample table 

(Supplementary Table 2; Supplementary Data 8), which 

was used for subsequent differential gene expression 

testing. A summary of the number of differentially-

expressed genes (DEGs) across the groups can be found 

in Supplementary Data 1, and gene lists for each 

differential gene expression comparison are included in 

Supplementary Data 2–7. 

 

R (4.1.0) [124] was used to perform principal component 

analysis utilising the DEseq2 package (v1.32.0) [125]. A 

log2 fold-change cut-off of 0.38 and a Benjamini-

Hochberg corrected p value threshold of 0.05 were used 

to determine significance for differential gene expression, 

conducted using the Wald test statistic. The topGO 

package (v2.44.0) [126] was used to perform gene 

ontology enrichment analysis against ontology 

org.Mm.eg.db (v3.13.0) [127]. The “classic” algorithm 

[126] and Fisher’s exact test (Benjamini-Hochberg 

corrected) were used for enrichment scoring with an 

adjusted p value of < 0.05 considered significant. Unless 

stated, default parameters were utilised for all tools. 

Scripts used for these analyses can be found on Github. 

 

Statistical analysis 

 

Statistics were computed by IBM SPSS 27 using two-

tailed one or two-way analysis of variance (ANOVA) 

with genotype and housing condition as the two between 

group factors and day of training, time-point or stimulus 

strength as within factor as appropriate, with simple main 

effects or main effects as the post-hoc comparison. In 

addition to significant housing x genotype interactions, 

planned comparisons regarding the individual effects of 

genotype or housing were conducted and reported, as per 

[36]. The level of significance was taken to be p < 0.05 

(α = 0.05). Exact p values are reported where p  0.0001. 

For lower values, p < 0.0001 is reported; these very low p 

values ranged from p = 1.7 × 10−5 to p = 1.59 × 10−270. 

Data are reported as mean ± SEM and bar graphs display 

individual data points. 

 

Data availability 

 

The RNA-Seq data has been posted to the 

Gene Expression Omnibus database: https://www.ncbi. 

nlm.nih.gov/geo; Accession code: GSE235037. Other 

data will be made available upon reasonable request. 
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aCSF: artificial cerebrospinal fluid; BDNF: Brain-

derived neurotrophic factor; EE: environmental 

enrichment; fEPSP: field excitatory postsynaptic 

potential; GO: Gene ontology; KD: Kinase dead; LTD: 

Long-term depression; LTP: Long-term potentiation; 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Open field and elevated plus maze behaviour. (A, B) show the time spent by each Adult and Aged mouse 

facing the newly-introduced object (a 50 ml Falcon tube) in the Open Field arena, respectively, in the 10 minutes after its introduction. 
There were no significant differences or interactions in either the Adult mice (Genotype: F(1,60) = 0.01, p = 0.952; Housing: F(1,60) = 0.01, p 
= 0.977; Genotype x Housing: F(1,60) = 0.05, p = 0.822) or in the Aged mice (Genotype: F(1,52) = 0.08, p = 0.780; Treatment: F(1,52) = 2.84, 
p: 0.098; Genotype x Housing: F(1,52) = 1.34, p = 0.252). (C, D) show the % time spent in the open arm of the elevated plus maze in Adult 
and Aged mice, respectively. There were no significant difference or interactions in the Adult mice (Genotype: F(1,56) = 0.07, p = 0.786; 
Housing: F(1,56) = 0.25, p = 0.620; Genotype x Housing: F(1,56) = 0.37, p = 0.544). In the Aged mice, there was an effect of Housing (F(1,51) 
= 6.35, p = 0.015), but no effect of Genotype (F(1,51) = 0.01, p = 0.943) and no Genotype x Housing interaction (F(1,51) = 0.37, p = 0.544). 
The Simple Main Effects analysis revealed only a significant difference between WT SH and WT EE (F(1,51) = 4.98, p = 0.030). The scale and 
titles in A and C apply to B and D. 
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Supplementary Figure 2. Swimming speed and latency to platform in the Morris Water Maze. (A, B) average swimming speed 

of Adult and Aged mice, respectively. Swimming speed was significantly lower in Aged mice compared to Adult mice (F(1,110) = 64.25, p < 
0.0001). In Adult mice (A), there was no significant effects of Genotype (F(1,59) = 0.28, p = 0.600) or Housing (F(1,59) = 2.61, p = 0.111), and 
nor was there a Genotype x Housing interaction (F(1,59) = 0.04, p = 0.850). In Aged mice (B) there was an effect of Genotype (F(1,51) = 
13.37, p = 0.0006) and Housing (F(1,51) = 7.15, p = 0.010), and a Genotype x Housing interaction (F(1,51) = 4.38, p = 0.041). A Simple Main 
Effects analysis revealed that this was reflected in higher swim speeds in enriched MSK1 KD mice compared to both enriched WT mice 
(F(1,51) = 15.14, p = 0.0003) and standard-housed MSK1 KD mice, (F(1,51) = 11.61, p = 0.001). (C) Latency to platform during training and 
reversal learning in Adult mice. There was a Main effect of day of training (D1 – D4; F(3,177) = 54.01, p < 0.0001) and a Main effect of 
Genotype (F(1,59) = 10.75, p = 0.002). A Simple Main Effects analysis revealed a significant difference between WT and MSK1 KD on day 3 
and day 4 (F(1,59) = 5.83, p = 0.019 and F(1,59) = 5.53, p = 0.022, respectively). During the Reversal stage (R1 and R2) there was a Main 
effect of day of training (F(1,59) = 42.37, p < 0.0001) and a Main effect of Genotype (F(1,59) = 21.14, p < 0.0001). A Simple Main Effects 
analysis revealed significant differences between WT and MSK1 KD in the EE group on R1 (F(1,59) = 8.55, p = 0.005) and on R2 (F(1,59) = 
6.38, p = 0.014), and within the SH group on R2 (F(1,59) = 10.18, p = 0.002). (D) In the Aged group, There was a Main effect of Housing 
(F(1,51) = 18.87, p < 0.0001). A Simple Main Effects analysis revealed significant differences between SH and EE in the MSK1 KD group at D4 
(F(1,51) = 5.56, p = 0.021) and in the WT group at D3 and D4 (F(1,51) = 6.44, p = 0.014, and F(1,51) = 9.20, p = 0.004, respectively). The 
higher swim speed of the Aged enriched MSK1 KD mice (B) may have influenced the time taken to reach the hidden platform and thus 
latency might not provide the most accurate reflection of cognitive ability. 
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Supplementary Figure 3. Individual spine density measurements across groups and animals. Left hand panels depict all spine 

density measurements across animals grouped by genotype and housing for (A) Adult, (B) Aged and (C) Young animals (from Privitera et al., 
2020). Right hand panels show corresponding spine density measurements on a per animal basis according to genotype and housing. 
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Supplementary Figure 4. Screenshot from IGV Browser displaying alignment of all samples to Grcm38.87 reference 
genome, at base pair resolution at the MSK1 gene locus on chromosome 12. At base 100,616,031, a mis-match between the 

aligned reads and the genome can be observed (orange bases), due to an D194A point-mutation (Thymine to Guanine) in the MSK1 kinase 
domain (as previously described in Correa et al., 2012). Grey columns indicate a matching base pair, orange a mismatch. Heights of each 
base for each sample are based on the amount of reads overlapping each base pair. Note the y axis for each sample is auto-scaled to 
individual sample expression. 
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Supplementary Figure 5. RNAseq QC plot generated by SeqMonk. Reads are mapped to specific genome features as a percentage 

of total reads. From left to right: % reads mapping to gene features, % mapping to exons, % mapping to ribosomal RNA, % of genes with 
reads mapping to them, % when comparing reads in sample to reads of largest sample, % reads mapping to mitochondrial (non-genomic) 
RNA, % reads on sense strand. All samples are colour-coded, and the left-most sample in a column corresponds to the top-most sample in 
the legend. Note the large degree of mapping to rRNA in samples 4, 6 and 7; 20–25% for sample 4 and 7, ~10% for sample 6. This indicates 
poor quality RNA purification during sample library prep. 
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Supplementary Figure 6. Intragroup correlation matrices comparing Pearson’s correlation coefficient values between 
samples from same group. Note poor correlation (r < 0.9) in samples 4, 7 (WTSH) and 6 (KDSH). 
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Supplementary Figure 7. Intragroup gene count correlation plots. Note poor correlation in samples 4, 7 (WTSH) and 6 (KDSH). 

Samples 4 and 7 consistently correlate together. This can also be observed in the Pearson’s plots (Supplementary Figure 6). Sample 10 
exhibits greater variation compared to other samples in group, but Pearson’s r still > 0.9. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Data 1–8. 

 

Supplementary Table 1. Sample data for all samples. 

Sample name File name Condition Genotype Housing 

1 Sample_1.txt KDSH mut SH 

3 Sample_3.txt KDSH mut SH 

6 Sample_6.txt KDSH mut SH 

8 Sample_8.txt KDSH mut SH 

18 Sample_18.txt KDSH mut SH 

24 Sample_24.txt KDSH mut SH 

9 Sample_9.txt KDEE mut EE 

12 Sample_12.txt KDEE mut EE 

14 Sample_14.txt KDEE mut EE 

15 Sample_15.txt KDEE mut EE 

20 Sample_20.txt KDEE mut EE 

22 Sample_22.txt KDEE mut EE 

2 Sample_2.txt WTSH WT SH 

4 Sample_4.txt WTSH WT SH 

5 Sample_5.txt WTSH WT SH 

7 Sample_7.txt WTSH WT SH 

19 Sample_19.txt WTSH WT SH 

23 Sample_23.txt WTSH WT SH 

10 Sample_10.txt WTEE WT EE 

11 Sample_11.txt WTEE WT EE 

13 Sample_13.txt WTEE WT EE 

16 Sample_16.txt WTEE WT EE 

17 Sample_17.txt WTEE WT EE 

21 Sample_21.txt WTEE WT EE 

Table includes those samples subsequently failing quality control (QC) and not taken forward for analysis. Abbreviations: WT: 
Wild-type; KD: MSK1 Kinase Dead (KD); mut: mutant; SH: standard-housed; EE: environmental enrichment. 

 

 

Supplementary Table 2. Sample data for samples used in RNAseq DEG analysis. 

Sample name File name Condition Genotype Housing 

1 Sample_1.txt KDSH mut SH 

3 Sample_3.txt KDSH mut SH 

8 Sample_8.txt KDSH mut SH 

18 Sample_18.txt KDSH mut SH 

24 Sample_24.txt KDSH mut SH 

9 Sample_9.txt KDEE mut EE 

12 Sample_12.txt KDEE mut EE 

14 Sample_14.txt KDEE mut EE 

15 Sample_15.txt KDEE mut EE 

20 Sample_20.txt KDEE mut EE 

22 Sample_22.txt KDEE mut EE 

2 Sample_2.txt WTSH WT SH 
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5 Sample_5.txt WTSH WT SH 

19 Sample_19.txt WTSH WT SH 

23 Sample_23.txt WTSH WT SH 

10 Sample_10.txt WTEE WT EE 

11 Sample_11.txt WTEE WT EE 

13 Sample_13.txt WTEE WT EE 

16 Sample_16.txt WTEE WT EE 

17 Sample_17.txt WTEE WT EE 

21 Sample_21.txt WTEE WT EE 

Samples 4, 6 and 7 have been excluded due to failing QC. Abbreviations as per Supplementary Table 1. 

 

 


