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INTRODUCTION 
 

Glioma has the highest incidence rate (70%) among 

intracranial primary tumors and is characterized by high 

malignancy and rate of recurrence [1]. In addition to 

conventional treatment, immunotherapy is also an option 

for glioma patients [2–4]. However, the treatment effect 

of these regimens is not optimistic, recurrence is almost 

inevitable [5], and the median overall survival (OS) is 

hardly more than 1.5 years [6, 7]. Besides intra-tumoral 

heterogeneity, genetic and epigenetic factors also 

influence patients’ response to treatment. Identifying and 

elucidating the intrinsic molecular mechanism of glioma 

provides a theoretical basis for developing more effective 

therapeutic schemes. 

 

FAs allow cells to contact the extracellular matrix 

(ECM), helping to maintain cell tension and enabling 
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ABSTRACT 
 

Focal adhesions (FAs) allow cells to contact the extracellular matrix, helping to maintain tension and enabling 
signal transmission in cell migration, differentiation, and apoptosis. In addition, FAs are associated with 
changes in the tumor microenvironment (TME) that lead to malignant progression and drug resistance in 
tumors. However, there are still few studies on the comprehensive analysis of focal adhesion-related genes 
(FARGs) in glioma. Expression data and clinical information of glioma samples were downloaded from public 
databases. Two distinct molecular subtypes were identified based on FARGs using an unsupervised consensus 
clustering algorithm. A scoring system consisting of nine FARGs was constructed using integrated LASSO 
regression and multivariate Cox regression. It not only has outstanding prognostic value but also can guide 
immunotherapy of glioma patients, which was verified in TCGA, CGGA, GSE16011, and IMvigor210 cohorts. The 
results of bioinformatics analysis, immunohistochemistry staining, and western blotting all revealed that the 
expression of COL1A2 was up-regulated in glioblastoma and related to poor prognosis outcomes in patients 
from public datasets. COL1A2 promotes the proliferation, migration, and invasion of glioblastoma cells. A 
positive correlation between COL1A2 and CD8 was determined in GBM specimens from eight patients. 
Moreover, the results of cell co-cultured assay showed that COL1A2 participated in the killing of GBM cells by 
Jurkat cells. Our study indicates that the FARGs have prominent application value in the identification of 
molecular subtypes and prediction of survival outcomes in glioma patients. Bioinformatics analysis and 
experimental verification provide a direction for further research on FARGs. 
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signal transmission [8, 9] during cell migration, 

differentiation, and apoptosis. FA proteins are classified 

according to their functions [10] as integrins, FA 

kinases, paxillin, etc. Some of these have been testified 

linked to cancer progression [11–13]. However, the 

predictive value of FA proteins for prognosis and 

treatment response in cancer is still unknown. 

 

TME is closely related to tumorigenesis and malignant 

progression [14]. The change in TME, which reduces 

the adhesion of tumor cells, has an important impact on 

the drug resistance of tumors [15] and can cause 

metastasis [16, 17] by promoting epithelial-

mesenchymal transition [18–21]. As an important 

component of TME, macrophages account for 30% 

among the immune cells, which is the highest 

proportion of cells in the glioma [22]. Immune 

checkpoint blockades (ICBs) can prevent immune 

escape by modulating the function of T cells [23, 24]. 

At present, CTLA-4, PD-1, and PD-L1 are the main 

immunotherapeutic targets for patients with advanced 

tumors, although they do not always prolong the 

survival time of patients [23, 25]. The failure of tumor 

immunotherapy is thought to be related to an 

immunosuppressive TME and low tumor mutational 

burden (TMB) [26, 27]. Up to now, glioma patients 

have neither effective immunotherapeutic targets nor 

biomarkers that can effectively predict immuno-

therapeutic response. 
 

In this paper, we not only identified two distinct 

molecular subtypes but also constructed a scoring 

system with outstanding clinical application value. In 

addition, we screened the gene COL1A2, which is up-

regulated in GBM tissue and closely related to the poor 

prognosis of glioma patients. In addition, we conducted 

intensive study on the COL1A2 gene and found that it 

not only participates in the regulation of biological 

behavior of GBM but also may be a key molecule in the 

TME of glioma. 

 

RESULTS 
 

Molecular classification based on FARGs in TCGA 

cohort 
 

First, we show the workflow of this study in Figure 1. 

According to the flow chart, 192 FARGs were obtained 

from the intersection of TCGA, CGGA, and GSE16011 

cohorts (Figure 2A). A novel molecular classification 

was identified by using an unsupervised clustering 

algorithm based on the expression profiles of the 192 

FARGs extracted from the TCGA cohort. According to 
the area under the CDF curves, probably approximately 

correct algorithm and correlations between clusters, we 

determined the optimal number of clusters is two (k=2) 

(Figure 2B–2E). Principal components analysis (PCA) 

can effectively distinguish glioma patients with the 

FARG1 subtype and FARG2 subtype (Figure 2F).  

 

Basic analysis between different subtypes in the 

TCGA cohort 

 

The OS and progression-free survival (PFS) of glioma 

patients, low-grade glioma (LGG) patients, and GBM 

patients with the FARG1 subtype were significantly 

longer than those with the FARG2 subtype (Figure 2G, 

2H). Except for gender, there are dramatic differences 

in the distribution of the other four clinicopathological 

characteristics between FARG1 and FARG2 subtypes. 

In addition, most FARGs are differentially expressed 

between the two subtypes (Figure 2I). We simultaneously 

performed GSVA in TCGA, CGGA, and GSE16011 

cohorts and identified 167 functional pathways with 

different relative activity between the two subtypes 

(Figure 2J and Supplementary Table 3), of which 65 

functional pathways were more active in FARG1 

subtype, such inositol phosphate metabolism, glycerol 

lipid metabolism and lysine degradation, and the other 

102 functional pathways were more active in FARG2 

subtypes, such as cell lung cancer, pancreatic cancer, 

and primary immunodeficiency. 

 

Immune-related analysis between different subtypes 

in TCGA cohort 

 

Given our above finding, we further investigated whether 

different subtypes have different immunological 

characteristics. The results revealed that there were 

remarkable differences in most immune signatures 

(except for dendritic cells and mast cells) and all  

four TME-related scores among the two subtypes 

(Figure 3A, 3C–3F). Compared with the FARG1 

subtype, the glioma tissue of the FARG2 subtype 

contains more immune cells and stromal cells. We  

also estimated the content of immune cells and  

found that the content of almost all immune cells was 

different between the two subtypes (Figure 3B and 

Supplementary Table 4). Moreover, we also found that 

except for TNFSF9, other immune checkpoints (ICPs) 

were differentially expressed between the two subtypes 

of FARG1 and FARG2 (Figure 3G). Considering the 

effect of gene mutations on tumorigenesis and 

progression, we found that the TMB was dramatically 

different between the two subtypes (Figure 3H). 

 

Construction of a nine-gene scoring system 

 

To establish a scoring system, 175 FARGs were 
screened from 192 FARGs using uni-Cox regression 

analysis (Supplementary Table 5). These genes were 

further screened using the LASSO algorithm, and then 
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17 FARGs were obtained (Figure 4A, 4B). After that, 

multi-Cox regression analysis in both directions was 

performed and yielded nine FARGs (CDC42, COL1A2, 

ELK1, ERBB2, FLNC, PDGFA, PTEN, SPP1, and 

THBS4) (Figure 4C). The nine genes were used to 

construct a scoring system according to the following 

equation: risk score = 0.298 × (CDC42 expression) + 

0.103 × (COL1A2 expression) + 0.408 × (ELK1 

expression) + 0.237 × (ERBB2 expression) + 0.111 × 

(FLNC expression) + 0.179 × (FDGFA expression) - 

0.577 × (PTEN expression) + 0.259 × (SPP1 expression) 

+ 0.138 × (THBS4 expression). 

 

Prognostic analysis of scoring system 

 

Since there are significant differences in the prognosis 

outcomes between GBM and LGG patients, IDH mutant 

and wild-type glioma patients, we should not only 

explore the prognostic value of the scoring system in 

pan-gliomas but also explore its prognostic value among 

different grades and different IDH mutation types. If the 

risk score of glioma patients was higher than the median 

value, they were classified as a high-risk group, 

otherwise, they were classified as a low-risk group. K–M 

survival curves showed that in the three cohorts, the OS 

of patients with pan-gliomas (Figure 4D and 

Supplementary Figure 1A, 1B), LGG (Supplementary 

Figure 2A, 2E, 2I), GBM (Supplementary Figure 2B, 2F, 

2J), IDH mutation (Supplementary Figures 3A, 4A, 4G) 

and IDH wildtype (Supplementary Figures 3B, 4B, 4H) 

in the low-risk group tended to be longer than that  

of patients in the high-risk group. Moreover, the  

risk score can effectively predict the 1, 3, and 5-year  

OS rate of patients with pan-gliomas (Figure 4F and 

 

 
 

Figure 1. Flow diagram of this study. 
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Supplementary Figure 1C, 1D), LGG (Supplementary 

Figure 2C, 2G, 2K), GBM (Supplementary Figure 2D, 

2H, 2L), IDH mutation (Supplementary Figures 3C, 4C, 

4I) and IDH wildtype (Supplementary Figures 3D, 4D, 

4J) in the three cohorts (Supplementary Table 6). In 

addition, in the TCGA cohort, patients with pan-

gliomas, IDH mutant and IDH wildtype in the low-risk 

group also tended to have longer PFS than patients in 

the high-risk group (Figure 4E and Supplementary 

Figure 3G, 3H), and the risk score can also effectively 

predict the 1, 3, 5-year PFS rate of patients with pan-

gliomas, IDH mutant and IDH wildtype (Figure 4G,  

and Supplementary Figure 3I, 3J and Supplementary 

Table 6). Next, we explored the differential distribution 

of five clinicopathological characteristics and the 

differential expression of nine FARGs between the two 

risk groups in the three cohorts. The results showed that 

except for gender, there were significant differences in 

the distribution of the other four clinicopathological 

characteristics and the expression of nine FARGs 

 

 
 

Figure 2. Novel molecular classification based on FARGs in TCGA cohort. (A) The intersection of 199 FARGs between TCGA, CGGA, 
and GSE16011 cohorts. (B–D) Consensus clustering matrix based on 192 FARGs for k=2, k=3, and k=4. (E) The optimal number of consensus 
clustering matrices is determined by the cumulative distribution function of the unsupervised consensus clustering algorithm. (F) Obvious 
differences in the transcriptomes between FARG1 and FARG2 subtypes were analyzed by principal component analysis (PCA). (G, H) K-M 
survival curves of glioma patients. (I) The distributions of five clinicopathological characteristics and 199 FARGs between FARG1 and FARG2 
subtypes. (J) GSVA between FARG1 and FARG2 subtypes. Red and blue represent the relative activation and inhibition of the pathways, 
respectively. *P<0.05, **P<0.01, ***P<0.001. 
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between different risk groups (Figure 4H and 

Supplementary Figure 1E, 1G). Finally, we explored 

whether the scoring system can be used as an 

independent prognostic factor for patients with pan-

gliomas, LGG, GBM, IDH mutant, or wildtype. The 

results showed that the independent prognostic value of 

risk score was superior to that of age, gender, grade, 

IDH status, and 1p19q status in TCGA, CGGA, and 

GSE16011 cohorts (Figure 4I, 4J, and Supplementary 

Figures 1F, 1H, 3E, 3F, 3K, 3L, 4E, 4F, 4K, 4L). 

 

 
 

Figure 3. Immune-related analysis between FARG1 and FARG2 subtypes in the TCGA cohort. (A) Difference analysis of 29 
immune signatures and four types of TME-related scores between FARG1 and FARG2 subtypes. (B) The difference in the content of immune 
cells was calculated by CIBERSORT, MCPCOUNTER, and QUANTISEQ algorithms between the two subtypes. (C–F) Difference analysis of TME-
related scores between the two subtypes. (G) Difference analysis of ICPs between two subtypes. (H) Difference analysis of TMB between the 
two subtypes. *P<0.05, **P<0.01, ***P<0.001, ****p < 0.0001. 
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Genomic variation analysis between high and low-

risk groups 

 

Because genomic variation can impact tumor 

immunity and immune cell infiltration patterns [28], 

we explored the association between genomic 

variation and risk score in this study. The top-16 

genes with the highest mutation frequency have 

significant differences between the two risk groups 

(Figure 5A, 5B). There are also obvious differences in 

the distribution of mutation and wildtype of six well-

known genes (TP53, PTEN, IDH1, EGFR, ATRX, 

TTN) between high and low-risk groups (Figure 5C). 

Besides, we found that glioma patients with  

low-risk scores inclined to have a lower TMB  

(Figure 5D). Moreover, patients in the low-risk group 

had a lower frequency of CNV, either amplification or 

deletion (Figure 5E, 5F). 

 

 
 

Figure 4. Construction of scoring system and analysis of its prognostic value in the TCGA cohort. (A) LASSO coefficient profiles of 

192 FARGs. (B) Selection of the penalty parameter (λ) in the LASSO model via 1,000 cross-validations. The vertical dotted line passing through 
the red dot is drawn at the optimal value. (C) Nine FARGs screened by multi-Cox regression analysis were used to construct the scoring 
system. (D, E) The K-M survival curves showed that the OS and PFS of glioma patients in the low-risk group were longer than those in the 
high-risk group. (F, G) ROC curves show that risk score can effectively predict the 1,3,5-year OS and PFS for glioma patients. (H) The 
distributions of five clinicopathological characteristics and nine FARGs between high and low-risk groups. (I, J) Uni- and multi-Cox regression 
analysis of risk score and five clinicopathological characteristics. *P<0.05, **P<0.01, ***P<0.001. 
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Immune-related analysis between high and low-risk 

groups  

 

By performing GSVA in TCGA, CGGA, and 

GSE16011 cohorts, we found that the relative activities 

of 156 functional pathways were different between the 

two risk groups: the relative activity of 53 functional 

pathways increased in the low-risk group, mainly 

focusing on metabolic-related pathways, such as 

“butanoate metabolism”, “propanoate metabolism” and 

 

 
 

Figure 5. Comparisons of genomic variations and functional annotations between high and low-risk groups in the TCGA 
cohort. (A, B) Waterfall plots of the top-16 mutated genes. The genetic alteration types are listed at the bottom of the waterfall plot. The 
mutation frequencies of genes are listed on the right side of the waterfall Plot. (C) Differential distribution of mutation and wildtype of six 
well-known genes between the two risk groups. (D) Comparison of TMB between high and low-risk groups. (E) Circular diagram of 
chromosome amplification and deletion between high and low-risk groups. (F) CNV frequencies (amplification or deletion) were lower in the 
low-risk group than that in the high-risk score group. (G) GSVA between FARG1 and FARG2 subtypes. Red and blue represent the relative 
activation and inhibition of the pathways, respectively. 
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“glyoxylate and dicarboxylate metabolism”; the relative 

activity of other 103 functional pathways increased in 

the high-risk group, including immune-related pathways 

(Figure 5G and Supplementary Table 7). Next, we 

began an in-depth analysis of the relationship between 

immunologic characteristics and risk scores. We found 

that the TME-related scores were not only highly 

correlated with the risk score (Supplementary Figure 

5C–5E) but also significantly different between the high 

and low-risk groups in the three cohorts (Figure 6A and 

 

 
 

Figure 6. Immune-related analysis in the TCGA and IMvigor210 cohorts. (A) Difference analysis of immune signatures and four types 

of TME-related scores between high and low-risk groups in the TCGA cohort. (B) The difference in infiltration level of immune cells between 
high and low-risk groups. (C) Differential expression of six well-known ICPs between high and low-risk groups. (D) The difference in risk score 
between high and low-risk groups was stratified according to response to immunotherapy. (E) The difference in the distribution of 
responders and non-responders between the two risk groups. (F) The subgroup map predicted the response to ICB therapy between the two 
risk groups. (G) ROC curves verified the accuracy of the risk score in predicting the OS for patients in the IMvigor210 cohort. (H) The K-M 
survival curves of OS in patients between the high and low-risk groups. (I) Differential expression of CD274(PDL1) between high and low-risk 
groups. (J, K) Differences in the distribution of patients with and without response to ICI immunotherapy between high and low-risk groups. 
CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. CR/PR was identified as responders, and SD/PD was 
identified as non-responders. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 



www.aging-us.com 6233 AGING 

Supplementary Figure 5A, 5B). Then, we also found that 

the enrichment scores of most immune signatures 

calculated by ssGSEA were different between the two 

risk groups in the three cohorts (Figure 6A and 

Supplementary Figure 5A, 5B). Considering that immune 

cells play a key role in tumorigenesis, tumor progression, 

and tumor immunity, we further explored the association 

between the scoring system and immune cells. The 

content of most immune cells was not only correlated 

with the risk score (Supplementary Figure 6A–6C) but 

also significantly different among different risk groups 

(Figure 6B and Supplementary Figure 6D, 6E). The 

results of the analysis between ICPs and risk scores 

(Figure 6C and Supplementary Figure 7A–7E) prompted 

us to continue to explore whether the scoring system can 

effectively predict the immunotherapy response of 

glioma patients. There was a significant difference of the 

risk score between the responder and non-responder 

groups (Figure 6D and Supplementary Figure 8A–8D). 

The proportion of responders in the high-risk group is 

much higher than those in the low-risk group, which 

indicates that glioma patients in the high-risk group are 

more likely to benefit from immunotherapy (Figure 6E 

and Supplementary Figure 8B–8E). The subclass 

mapping analysis indicated that glioma patients in the 

high-risk group are more sensitive to anti-PD-1 therapy 

(Bonferroni P = 0.016,0.032, 0.039 in GSE16011, 

TCGA, and CGGA cohorts, respectively) (Figure 6F and 

Supplementary Figure 8C–8F). If the Bonferroni 

corrected P > 0.05, the P-value would not be marked in 

the subgroup map, but from the color comparison of the 

corresponding patches in the subgroup map, it can be 

seen that the P-value of anti-CTLA4 therapy in the high-

risk group is lower than that in the low-risk group, 

indicating that glioma patients in the high-risk group are 

more likely to respond to anti-CTLA4 therapy (Figure 6F 

and Supplementary Figure 8C–8F). 

 

Validation of the clinical application value of the 

scoring system in the IMvigor210 (mUC) cohort 

 

We selected the IMvigor210 (mUC) cohort to further 

validate the clinical application value of the scoring 

system. K-M survival curves indicated that the OS of 

patients with a low-risk score was longer than those 

with a high-risk score (Figure 6H). Moreover, the risk 

score can effectively predict the 1, 3, and 5-year OS 

rates of patients in the IMvigor210 cohort (Figure 

6G). Then, the differential expression of PDL1 

(CD274) between high and low-risk groups was also 

explored. The results showed that the expression level 

of PDL1 in the high-risk group was higher than that in 

the low-risk group (Figure 6I). Furthermore, the 
proportion of CR/PR and PD/SD in the high-risk 

group is higher than that in the low-risk group  

(Figure 6J, 6K). 

COL1A2 is up-regulated in GBM 

 

First, compared with the other eight FARGs, the mRNA 

expression of COL1A2 in GBM tissues was 

significantly higher than that in normal brain tissues 

(NBT), which was verified on the GEPIA website and 

three independent GBM cohorts (Figure 7A, 7B). Then, 

immunohistochemical staining of eight pairs of GBM 

tissues and adjacent tissues showed that COL1A2 was 

significantly up-regulated in GBM tissues (Figure 7C, 

7D). In addition, at the tissue protein level, the 

expression COL1A2 in GBM tissues was also 

significantly higher than that in corresponding adjacent 

tissues (Figure 7E, 7F). Finally, the K-M survival 

curves of COL1A2 in four independent GBM cohorts 

(Rembrandt, GSE16011, TCGA, and CGGA cohorts) 

showed that the prognosis outcomes of GBM patients in 

the high expression group were significantly shorter 

than that of GBM patients in the low expression group 

(Figure 7G). 

 

COL1A2 promotes the malignant progression of 

GBM cells in vitro 

 

By comparing the differential expression of COL1A2 

between different cell lines at the transcription level and 

protein level, we found that the expression level of 

COL1A2 was the highest in U87 cells and the lowest  

in U251 cells (Figure 8A–8C). Then, we constructed 

knockdown and overexpression plasmids of COL1A2  

to further explore the effect of COL1A2 on the 

biological behavior of GBM in vitro. The result of  

RT-qPCR and western blotting showed that the 

constructed knockdown and overexpression plasmids 

could significantly reduce or increase the expression of 

COL1A2 (Figure 8D–8I). The results of colony 

formation assay (Figure 8J–8M), CCK-8 assay (Figure 

8N, 8O), and EdU staining (Figure 8P, 8Q) suggest that 

COL1A2 can significantly enhance the proliferation of 

GBM cells. In addition, the outcomes of wound healing 

and transwell assay support COL1A2 promoting the 

migration and invasion of GBM cells (Figure 8R–8U). 

These results suggest that COL1A2 plays an important 

role in the progression of GBM cells. 

 

Detection of the viability of GBM cells in vitro 

 

In eight cases of GBM tissues, we found that the tissues 

with high expression of COL1A2 were accompanied by 

high expression of CD8. On the contrary, the tissues 

with low expression of COL1A2 were accompanied 

with low expression of CD8 (Figure 9A), which to some 

extent suggested that the expression of COL1A2 might 
induce the infiltration of CD8 T cells or the infiltration 

COL1A2. Then, we studied whether COL1A2 played a 

of CD8 T cells might induce the expression of role in 
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the process of Jurkat cells acting on GBM cells in vitro. 

Both methods, PMA, and ionomycin or anti- CD3  

and anti-CD28 antibodies, can effectively activate 

Jurkat cells into CD8 + Jurkat cells (Figure 9B). CD8  

T cells transiently overexpress CD69 in the early stage 

of activation, which is considered to be a costimulatory 

signal of T cell proliferation. However, we did not 

detect the expression of CD69 protein in Jurkat cells 

stimulated by anti-CD3 and anti-CD28 antibodies 

(Figure 9C), so we utilized PMA and ionomycin to 

 

 
 

Figure 7. Basic analysis of COL1A2. (A) Summary of the differential expression analysis of nine FARGs in three independent GBM cohorts 
and the GEPIA website. Red represents up-regulated genes in GBM tissue, while blue represents a down-regulated gene in GBM tissue. Grey 
represents no statistical difference. (B) Differential expression analysis of COL1A2 between GBM tissues and NBTs in TCGA (HG-UG133A), 
Kamoun and Rembrandt cohorts, and GEPIA website. (C) Immunohistochemical analysis of COL1A2 protein in eight pairs of GBM tissues and 
adjacent nontumor tissues. (D) The IHC scores of COL1A2 in GBM tissues and matched adjacent nontumor tissues. (E, F) The protein 
expression level of COL1A2 in GBM tissues was significantly higher than that in corresponding adjacent tissues. (G) K-M survival curves of OS 
in GBM patients between the high and low COL1A2 expression groups. *P < 0.05, **P < 0.01. 
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stimulate Jurkat cells. The results of the cell viability 

assay showed that activated Jurkat cells could 

effectively inhibit the viability of U87 (Figure 9D) and 

U251 (Figure 9E) cells. With the increase of COL1A2 

expression, the lethality of activated Jurkat cells to 

GBM cells decreases, which may be related to COL1A2 

promoting the proliferation of GBM cells. 

 

DISCUSSION 
 

The prognosis of glioma patients remains poor. As such, 

it is critical to identify new prognostic biomarkers and 

develop a more effective treatment. Although there have 

been multiple studies on immunotherapy, especially by 

ICB in GBM patients, the results of phase III clinical 

trials have not been satisfactory compared to other 

tumors [29, 30]. Neither anti-CTLA-4 antibody alone 

nor in combination with anti-PD-1 antibody yielded 

long-term survival benefits for glioma patients [31]. 

Numerous factors can affect the response of glioma to 

immunotherapy including factors in the TME and TMB. 

The latter is a biomarker for evaluating the therapeutic 

effect of anti-PD-1 antibody [32]; and converting the 

immunosuppressive TME to a immunostimulatory one 

is an effective treatment strategy [33, 34]. In this study, 

we developed a novel molecular classification for 

glioma patients based on FARGs. Not only the OS and 

PFS outcomes of glioma patients are significantly 

 

 
 

Figure 8. COL1A2 promotes the proliferation, migration, and invasion of GBM cells in vitro. (A–C) Differential expression of 
COL1A2 at transcriptional (A) and protein levels (B, C) between different GBM cell lines. (D–F) The efficiency of COL1A2 knock-down plasmid 
at transcriptional (D) and protein levels (E, F) was verified in U87 cells. (G–I) The efficiency of the COL1A2 overexpression plasmid at 
transcriptional (G) and protein levels (H, I) was verified in U251 cells. In (A–I), data are presented as the mean ± SD. X-axis: four different cell 
lines. Y-axis: expression level of genes. (J–Q) The proliferation activity of U251 and U87 cells were detected by colony formation assay (J–M), 
CCK-8 assay (N, O), and EdU staining (P, Q). (R–U) The migration and invasion ability of U87 and U251 cells were detected by wound healing 
(R, S) and Transwell assays (T, U). The representative photographs were photographed under a microscope. *P<0.05, **P<0.01, ***P<0.001. 
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different between different subtypes, but also the 

characteristics of TME are significantly different 

between different subtypes. However, we did not 

further validate the properties of the new molecular 

classification in multiple glioma cohorts, making it 

difficult to effectively validate its clinical application 

value. In addition, a scoring system was constructed 

based on nine FARGs (SPP1, THBS4, ERBB2, ELK1, 

COL1A2, PTEN, CDC42, FLNC, and PDGFA). The 

expression levels of these FARGs differed between 

different WHO grades. PTEN regulates signaling 

pathways related to cell growth and survival [35, 36] 

and cell metabolism [37]. COL1A2 participates in 

collagen synthesis [38] but has been implicated in the 

immune response [39]. ELK1 is a transcription factor 

that activates target genes via some protein kinase/ 

regulatory kinase pathways [40, 41]. ERBB2 is a 

marker gene in breast cancer. SPP1 is known to be 

overexpressed in many malignant tumors including 

glioma [42–46] and regulates cell growth, proliferation, 

apoptosis, and migration [47]. THBS4 is a member of 

the thrombospondin protein family and plays important 

roles in wound healing and tissue repair [48–51], 

intracellular migration, adhesion, and proliferation  

[52–54]. FLNC is an action-binding filamin protein that 

regulates actin reorganization-dependent processes such 

as differentiation, migration, and proliferation of cells 

[55]. As a Rho family GTPase, CDC42 plays a key role 

in the activation of signaling cascades that regulate cell 

adhesion, cytoskeletal composition, proliferation, and 

migration and is therefore important for the malignant 

transformation of tumors [56]. In this study, COL1A2 

was screened from nine FARGs used to construct the 

scoring system using bioinformatics analysis methods 

for further research, but no corresponding studies were 

conducted on the other eight FARGs, which will be the 

focus of our future research. 

 

The clinical application value of the scoring system has 

been verified in TCGA, CGGA, and GSE16011 cohorts. 

The scoring system can not only effectively predict the 

prognosis outcome of glioma patients, but also can be 

used as an independent prognostic factor for glioma 

patients. TMB can predict the immunotherapeutic 

response of some types of tumors and has a close 

relationship with the scoring system. There are also 

significant differences in the distribution of mutation 

types of some classic genes between high and low-risk 

groups. Moreover, the TME between high and low-risk 

groups is also significantly different, which will directly 

affect the immunotherapeutic response of glioma 

patients. In addition to verifying the clinical application 

value of the scoring system in different glioma cohorts, 

we also found that the scoring system has an important 

clinical application value in the imvigor210 (mUC) 

cohort. Although we have conducted a comprehensive 

bioinformatics analysis of the scoring system, we have 

not conducted a comparative study on its clinical 

application value with other existing scoring systems, 

resulting in a lack of horizontal comparison. 

 

To further study the role of FARGs in the progression 

of GBM, COL1A2 was screened and further studied. 

The screening process of COL1A2 is simple, and if it. 

 

 
 

Figure 9. COL1A2 inhibits the effect of activated Jurkat cells on the viability of GBM cells in vitro. (A) Immunofluorescence 

staining of the nucleus, COL1A2, and CD8 in eight cases of GBM tissues. (B, C) Jurkat cells were stimulated by PMA and ionomycin, or by anti-
CD3 and anti-CD28 antibodies. After 24 hours of stimulation, the expression of CD8 and CD69 proteins were detected. (D, E) The viability of 
U87 (D) and U251 (E) cells were analyzed by measuring luciferase activity. ***P<0.001. 
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can be screened from multiple perspectives, it would 

make the screening process more convincing. COL1A2 

is upregulated in GBM tissue and promotes malignant 

progression of GBM cells, but its specific mechanism 

has not been thoroughly studied, which will be our 

future research focus. It has been suggested that the 

poor response to immunotherapy in glioma patients is 

attributable to immunosuppression in the brain [27], 

however, the specific mechanism is still unclear at 

present. COL1A2 was still taken as the research object. 

It was found that it may promote the infiltration of CD8 

T cells, but at the same time may inhibit the lethality of 

CD8 T cells on tumor cells. As for the specific role of 

COL1A2 in the tumor microenvironment of glioma and 

in the immunotherapy process, if further research can be 

made in this study, it would make this study more 

valuable in clinical application.  

 

In summary, we identified two distinct subtypes based on 

FARGs. More importantly, we established a scoring 

system with great clinical application value, which can not 

only effectively predict the prognosis outcome of glioma 

patients, but also predict the immunotherapy response for 

glioma patients. In addition, we screened COL1A2 and 

verified its involvement in the progression of GBM cells 

in vitro. It is expected that this study can contribute to the 

diagnosis and treatment of glioma patients. 

 

MATERIALS AND METHODS 
 

Data sources  

 

The flow diagram of our study was shown in Figure 1. 

RNA-seq data, somatic mutation data, and 

corresponding clinical annotation of glioma patients 

were downloaded from the TCGA database, CGGA 

database, GEO database, UCSC Xena portal, GlioVis 

website, and NIH website. Before comparing and 

analyzing the gene expression data from different 

platforms, we performed transcripts per kilobase million 

(TPM) values transformation and robust multichip 

averaging (RMA) values transformation on RNA-seq 

data and microarray data, respectively. Patients with 

incomplete clinical information (including OS, OS 

status, gender, age, and WHO grade) will not be 

included in the clinical correlation analysis. 

Demographics and clinical information of 1813 glioma 

patients are shown in Supplementary Table 1. Somatic 

mutation data were processed with the R package 

“maftools” [57]. The genomic identification algorithm 

of important targets in tumors is used to process CNV 

data [58]. We searched 199 FARGs from the Molecular 

Signatures Database and the details of these FARGs can 

be found in Supplementary Table 2. In addition, the 

IMvigor210 cohort treated with the PD-L1 inhibitor was 

also included in this study to confirm our findings. 

Acquisition of GBM tissue samples 

 

The current research was authorized by the Ethics 

Committee of The First People’s Hospital of Fuzhou 

City and informed consent was obtained from the 

patients. The surgical specimens of GBM patients were 

removed to liquid nitrogen immediately after surgical 

excision. 

 

Unsupervised consensus clustering based on FARGs 

 

Different glioma cohorts have different sequencing 

methods and gene annotation information. To facilitate 

follow-up analysis, we took the intersection of 199 

FARGs in three independent glioma cohorts and finally 

obtained 192 FARGs. A novel molecular classification 

was identified based on the 192 FARGs extracted from 

the TCGA cohort by unsupervised consensus clustering 

with 1000 iterations using the “ConsensusClusterPlus” 

package [59]. The optimal value of molecular 

classification should consider not only the rate of 

increase of the area under the cumulative distribution 

function (CDF) curves but also consider the correlation 

between different molecular classifications.  

 

Gene set variation analysis (GSVA) between 

different subtypes 

 

After downloading “c2.cp.kegg.v7.2.symbols” from the 

Molecular Signatures Database, GSVA between 

different subtypes was performed using the R package 

“GSVA” [60]. Differences in the relative activity of 

functional pathways between different subtypes were 

explored by using the R package “limma” [61].  

 

Immune-related analysis between different subtypes 

 

Different types of cell components in tumor tissues can 

be estimated by calculating TME-related scores using 

the R package “ESTIMATE” [62]. The content of 

different types of immune cells was reckoned using 

MCPCOUNTER, CIBERSORT, and QUANTISEQ 

algorithms [63, 64]. Enrichment scores of 29 immune 

signatures were determined by using a single sample 

gene set enrichment analysis (ssGSEA), which to some 

extent represents the immune activity within the tumor. 

[65]. The analyzed immune checkpoint proteins (ICPs) 

were selected from a previous study [66]. The above 

immune-related characteristics were analyzed in 

different subtypes. 

 

Construction of a scoring system and verification of 

its prognostic value 

 

We screened 175 FARGs with prognostic significance 

from 192 FARGs using uni-Cox regression analysis. 
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175 FARGs were further screened by lasso algorithm 

and multi-Cox regression analysis, and nine FARGs 

were finally obtained to construct a scoring system: risk 

score = sum (gene expression × coefficient). High and 

low-risk groups were classified according to the median 

value of the risk score. The prognostic value of the 

scoring system was evaluated by using Kaplan–Meier 

(K–M) survival curves (R package “survminer”), 

receiver operating characteristic (ROC) curves (R 

package “survivalROC”), uni- and multi-Cox regression 

analysis (R package “survival” and “forestplot”). The 

different distribution of different clinicopathological 

characteristics between high and low-risk groups was 

analyzed by R package “limma”. 

 

Genomic variation analysis between high and low-

risk groups 

 

The mutation type and frequency of genes between high 

and low-risk groups were analyzed by the R packages 

“maftool” [57] and “GenVisR” [67]. The relationship 

between TMB, as a marker for the therapeutic efficacy 

of anti-PD-1 antibodies in other cancers [32, 68], and 

risk score was also analyzed by R package “ggpubr”. As 

genomic alterations can impact tumor immunity and 

immune infiltration patterns [69, 70], we compared 

amplifications and deletions between high and low-risk 

groups and visualized the results as circle graphs using 

the R package “RCircos” [71]. 

 

Immune-related analysis of risk score 

 

At present, only a sub-fraction of patients achieved long-

lasting clinical benefits from ICBs treatment. To 

effectively predict the response of tumor patients to ICBs, 

the TIDE algorithm was developed mainly to model two 

primary mechanisms of tumor immune evasion: inducing 

the dysfunction of cytotoxic T lymphocytes (CTLs) in 

tumors and preventing the infiltration of CTLs in tumor 

tissues [72]. T cell dysfunction was identified by 

measuring the interaction between each gene and the 

infiltration level of CTL to influence patient survival. The 

TIDE algorithm explored the association between gene 

expression data and markers of T cell dysfunction. 

Tumor samples that were highly positively correlated 

with markers of T cell dysfunction were identified as 

non-responders and otherwise as responders. Finally, the 

TIDE algorithm and an unsupervised subclass mapping 

method [73] were used together to forecast the response 

of glioma patients to anti–PD-1 and anti–CTLA-4 

immunotherapy.  

 

Cell culture, transfection, and activation 

 

Normal human astrocytes (NHA) and GBM cell lines 

(U251, LN229, U118, and U87) were obtained from the 

Shanghai Institute of Biosciences and Cell Resources 

Center. Jurkat cells were purchased from The Global 

Bioresource Center. Except that Jurkat cells were cultured 

with RPMI-1640 medium (Gibco, USA), other cell lines 

were cultured with MEM (Gibco, USA) or DMEM 

(Gibco, USA). 50 IU/ml penicillin, 50 μg/ml 

streptomycin, and fetal bovine serum (FBS, Gibco, USA) 

were added to the culture medium. The COL1A2 

knockdown and overexpression plasmids were 

constructed by the Sheweisi Biotechnology Company 

(Tianjin, China). U6-MCS-SV40 polyA-CMV-EGFP-

SV40-NeoR was used to construct COL1A2 

overexpression plasmid, and its three target sequences are 

shCOL1A2-1, 5’-GGTGTAAGCGGTGGTGGTTAT-3’, 

shCOL1A2-2, 5’-GCACTATGGATGCTATCAAAG-3’ 

and shCOL1A2-3, 5’-GCAACAGCAGGTTCACTT 

ACA-3’ respectively. CMV-MCS-EF1a-ZsGreen1-SV40-

Neomycin was used to construct COL1A2 overexpression 

plasmid, and its upstream and downstream primers are 

“AGCTGGCTAGCGTTCTCGAGGCCACCATGCTCA

GCTTTGTGGATACGC” and “GTCTTTTTATTGCC 

GGGTACCTTATTTGAAACAGACTGGGCCAATG” 

respectively. Lipofectamine 3000 (Thermo Fisher, 

L3000075, USA) was used to transfect plasmids when the 

cell adhesion density reached about 80%. Two methods 

were used to activate Jurkat cells. Method 1: Jurkat cells 

(1 × 106/ml) were stimulated by adding 20 ng/ml phorbol 

12-myristate 13-acetate (PMA, Acmec, P33390-1mg) and 

500 ng/ml ionomycin (70-CS0002, MultiSciences, 

China). Method 2: Jurkat cells were stimulated by adding 

5μg/ml of anti-CD3 antibody (17617-1-AP, Proteintech, 

China), which was coated in a 6-well plate with the 

5μg/ml of anti-CD28 antibody (65099-1-Ig, Proteintech). 

The expression of CD8 protein was used to detect whether 

Jurkat cells were activated, and the expression of CD69 

protein was used to detect whether Jurkat cells 

proliferated. Jurkat and GBM cells were co-cultured 

(Jurkat: GBM cells = 1:1) in 96-well plates with a total 

volume of 200 μl. 

 

RT-qPCR and Western blotting 

 

The primer sequences of COL1A2 and GAPDH (internal 

reference gene) purchased from Ribobio (Guangzhou, 

China) are as follows: COL1A2 F primer: 5’-

GGCCCTCAAGGTTTCCAAGG-3’, R primer: 5’-CA 

CCCTGTGGTCCAACAACTC-3’; GAPDH F primer: 

5’-TGTGGGCATCAATGGATTTGG-3’, R primer: 5’-

ACACCATGTATTCCGGGTCAAT-3’. The primary 

antibodies include anti-COL1A2 (Servicebio, GB13022-

2, 1:3000 dilution), anti-CD8 (Proteintech, 66868-1-Ig, 

1:4000 dilution), anti-CD69 (Proteintech, 10803-1-AP, 

1:1500 dilution) and anti-β tubulin (Proteintech, 11224-1-
AP, 1:8000 dilution). The secondary antibodies included 

goat anti-rabbit IgG (Abcam, ab6721 1:5000 dilution) and 

goat anti-mouse IgG (Abcam, ab6789 1:10000 dilution). 
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The extraction and detection methods of protein and total 

RNA in different cell lines were completely consistent 

with those described in our previous study [74]. Here, we 

will describe the extraction steps of tissue protein in 

detail. First, the tissues were weighed and sheared into 

2ml EP tubes. RIPA and PMSF were mixed in a ratio of 

100:1 to prepare tissue lysates. 1ml of lysate was added to 

every 50mg of sheared tissue and homogenized with a 

homogenizer, and then lysed on ice for 30 minutes. 

Finally, the mixture of lysate and tissue was centrifuged 

with a low-temperature high-speed centrifuge at 4° C and 

12000 rpm for 10 minutes. The subsequent steps are the 

same as the extraction of cellular proteins. Both RT-qPCR 

and western blotting assays were repeated three times. 

 

Immunohistochemical and immunofluorescence 

staining 

 

First, eight pairs of GBM and adjacent tissues were 

fixed with 10% formalin for seven days, and then these 

tissues were embedded with paraffin and sectioned. 

After dewaxing and dehydration, the tissue sections 

were treated with 3% hydrogen peroxide for 10 

minutes. Subsequently, the tissue sections were blocked 

with 5% BSA and then incubated overnight with a 

primary antibody against COL1A2 (Servicebio, 

GB13022-2, 1:1000 dilution) at 4° C. Then the tissue 

sections were treated with the corresponding secondary 

antibodies at room temperature for one hour. Finally, 

DAB staining, target molecule detection, and 

hematoxylin re-staining were carried out in turn. For 

immunofluorescence staining, tissue sections were 

immune-stained overnight with primary antibodies 

against COL1A2 (Servicebio, GB13022-2, 1:1000 

dilution) and CD8 (Proteintech, 1:400) at 4° C, and then 

incubated with fluorochrome-conjugated antibodies. 

DAPI was added as a nuclear counterstain.  

 

Cell proliferation assay 

 

Cells were seeded into 6-well plates at 1000 cells/well 

and cultured for about 15 days. It was predicted that 

the cells would proliferate for about 5-7 generations. 

The culture medium was changed every three days, 

and the colony formation was closely observed. Cell 

culture was stopped when the number of cells in a 

single colony approached 50. The colonies were fixed 

with 4% ice-precooled paraformaldehyde for about 20 

minutes, then stained with 0.1% crystal violet for 

about 20 minutes.  

 

The Cell Counting Kit-8 (CCK-8, Beyotime, Shanghai, 

China) was employed to assay cell proliferation activity. 
Cells were seeded into 96-well plates at 2000 cells/well. 

Adding 10ul CCK-8 reagent to each well and 

continuing to culture in the incubator for two hours, the 

absorbance of cells was measured at 450nm every 24 

hours for 5 consecutive days. 

 

2 × 104 cells were seeded into each well of the 24-well 

plate and cultured until the cell adhesion concentration 

reached about 75%. BeyoClick™ EdU Cell 

Proliferation Kit (Beyotime, Shanghai, China) was used 

to measure cell proliferation activity according to the 

manufacturer’s instructions. The nuclei of all cells with 

blue fluorescence and the positive cells with red 

fluorescence were photographed by fluorescence 

microscopy, and the results were analyzed by ImageJ 

software.  

 

Cell migration and invasion assay 

 

When the adhesion concentration of U251 and U87 

cells in the six-well plates reached 85-90%, the tip of 

a 200μl sterile spear cuts through the cell layer at the 

bottom of the plate to form an artificial wound. After 

washing the non-adherent cells with phosphate-

buffered saline (PBS), the adherent cells were further 

cultured in a serum-free medium. At 0 and 24 hours, 

wound closure was photographed using an inverted 

Leica microscope. 

 

Transwell chambers (Corning, USA) were utilized to 

assay the invasion and migration of GBM cell lines. 

First, the Matrigel (Corning, 356234, USA) with a 

concentration of 500 μg/ml was used to cover the 

upper chambers. 200μl serum-free medium and 600μl 

medium containing 10% FBS were added to the upper 

chamber and the lower chamber, respectively, and 

8×104 transfected cells were seeded in the upper 

chamber. After 24 hours of incubation at 37° C and 

5% CO2 for 24 hours, the non-invasive cells on the 

upper chambers were removed with a microcell 

scraper. The following operations were carried out  

at room temperature. The cells at the bottom of the 

upper chamber were fixed with 4% ice-precooled 

formaldehyde (Solarbio, P1110, China) for 30 minutes 

and then washed twice with PBS, and then the 

chambers were placed in 0.1% crystal violet (Solarbio, 

G1075, China) for 20 minutes. Finally, the chambers 

were washed with PBS, dried, and photographed with 

a microscope (Leica Microsystems, D-35578). In 

addition, we also performed the migration assay in the 

same way as the invasion assay, except that the upper 

chamber was not covered with Matrigel. Both invasion 

and migration assays were repeated three times. 

 

Tumor cell viability assay 

 
In light of the instructions offered by the manufacturer, 

the lentivirus expressing luciferase designed by 

Sheweisi Biotechnology Company (Tianjin, China) 
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was transfected into U251 and U87 cells and screened 

with neomycin. Then COL1A2 knockdown and 

overexpression plasmids were transfected into cells 

stably expressing luciferase, respectively. When these 

cells grew to about 90%, they have inoculated with 

Jurkat cells in a ratio of 1:1 to 96 well plates with a 

white and clear bottom (total 1.0×104 cells/ml). Co-

cultured cells were taken at different time points (8, 

16, 24, 36, 48 h), the supernatant was discarded, 

washed with PBS, cell lysate was added, and then  

D-luciferin potassium salt (D1009, UElandy, China) 

was added. After the above operations are completed, 

the fluorescence intensity is detected using a 

multifunctional microplate reader. The experiment was 

repeated three times. 

 

Statistical analyses 
 

Spearman and Pearson analysis methods were used to 

determine correlations between different grouping 

variables. The unpaired Student’s t-test and Mann–

Whitney U-test were used to analyzing normally and 

non-normally distributed data, respectively. The 

Wilcoxon rank-sum test was used to compare two groups 

or categories; for more than two groups or categories, the 

Kruskal–Wallis test was used. Survival was assessed by 

K–M analysis with the log-rank test. Cox regression 

analyses were carried out to evaluate the prognostic value 

and stability of the risk prediction model. ROC curves 

were used to assess the prognostic value of 1-, 3-, and 5-

year OS. TIIC infiltration level was analyzed using three 

algorithms (CIBERSORT, QUANTISEQ, and 

MCPCOUNTER). All statistical tests were two-sided and 

P<0.05 was considered statistically significant. 

 

Availability of data and materials 
 

The Cancer Genome Atlas (TCGA) database: 

https://portal.gdc.cancer.gov/. Chinese Glioma Genome 

Atlas (CGGA) database: http://www.cgga.org.cn/. Gene 

Expression Omnibus (GEO) databse: https://www.ncbi. 

nlm.nih.gov/geo/. National Human Genome Research 

Institute Home (NIH): https://www.genome.gov/. Data 

Visualization Tools for Brain Tumor Datasets (GlioVis): 

http://gliovis.bioinfo.cnio.es/. Molecular Signatures 

Database: https://www.gsea-msigdb.org/gsea/index.jsp. 

Gene Expression Profiling Interactive Analysis (GEPIA) 

database: http://gepia.cancer-pku.cn/detail.php. Tumor 

Immune Dysfunction and Exclusion (TIDE): 

http://tide.dfci.harvard.edu/. IMvigor210 cohort: 

http://research-pub.gene.com/IMvigor210CoreBiologies).  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Validation of prognostic value of the scoring system in CGGA and GSE16011 cohorts. (A, B) Kaplan-

Meier curves of the risk score for the OS of glioma patients between the high and low-risk groups. (C, D) ROC curves verified the accuracy of 
the risk score in predicting the OS for glioma patients. (E) The distributions of five clinicopathological characteristics and nine FARGs between 
high and low-risk groups in the CGGA cohort. (F) Univariate and multivariate Cox regression analysis of risk score and five clinicopathological 
characteristics in the CGGA cohort. (G) The distributions of five clinicopathological characteristics and nine FARGs between high and low-risk 
groups in the GSE16011 cohort. (H) Univariate and multivariate Cox regression analysis of risk score and five clinicopathological 
characteristics in the GSE16011 cohort. *P<0.05, **P<0.01, ***P<0.001.  
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Supplementary Figure 2. Prognostic analysis of the scoring system in TCGA, CGGA, and GSE16011 cohorts. (A, B) K-M curves of 

the risk score in predicting the OS of LGG and GBM patients between the high and low-risk groups in the TCGA cohort. (C, D) ROC curves 
verified the accuracy of the risk score in predicting the OS for LGG and GBM patients in the TCGA cohort. (E, F) K-M curves of the risk score in 
predicting the OS of LGG and GBM patients between the high and low-risk groups in the CGGA cohort. (G, H) ROC curves verified the accuracy 
of the risk score in predicting the OS for LGG and GBM patients in the CGGA cohort. (I, J) K-M curves of the risk score in predicting the OS of 
LGG and GBM patients between the high and low-risk groups in the GSE16011 cohort. (K, L) ROC curves verified the accuracy of the risk score 
in predicting the OS for LGG and GBM patients in the GSE16011 cohort. 
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Supplementary Figure 3. Prognostic analysis of risk score in glioma patients with IDH mutation or wildtype in the TCGA 
cohort. (A, B) K-M survival curves of the risk score in predicting the OS for glioma patients with IDH mutation or wildtype between the high 

and low-risk groups. (C, D) ROC curves verified the accuracy of the risk score in predicting the OS for glioma patients with IDH mutation or 
wildtype. (E, F) Univariate and multivariate-Cox regression analysis of risk score, 1p19q status, grade, gender, and age. (G, H) K-M survival 
curves of the risk score in predicting the PFS for glioma patients with IDH mutation or wildtype between the high and low-risk groups. (I, J) 
ROC curves verified the accuracy of the risk score in predicting the PFS for glioma patients with IDH mutation or wildtype. (K, L) Univariate 
and multivariate-Cox regression analysis of risk score, 1p19q status, grade, gender, and age. 
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Supplementary Figure 4. Prognostic analysis of risk score in glioma patients with IDH mutation or wildtype in CGGA and 
GSE16011 cohorts. (A, B) K-M survival curves of the risk score in predicting the OS for glioma patients with IDH mutation or wildtype 
between the high- and low-risk groups in the CGGA cohort. (C, D) ROC curves verified the accuracy of the risk score in predicting the OS for 
glioma patients with IDH mutation or wildtype in the CGGA cohort. (E, F) Univariate and multivariate-Cox regression analysis of risk score, 
1p19q status, grade, gender, and age. (G, H) K-M survival curves of the risk score in predicting the OS for glioma patients with IDH mutation 
or wildtype between the high- and low-risk groups in the GSE16011 cohort. (I, J) ROC curves verified the accuracy of the risk score in 
predicting the OS for glioma patients with IDH mutation or wildtype in the GSE16011 cohort. (K, L) Univariate and multivariate-Cox regression 
analysis of risk score, 1p19q status, grade, gender, and age in the GSE16011 cohort. 



www.aging-us.com 6250 AGING 

 
 

Supplementary Figure 5. Relationship between risk score and immune signatures and TME-related scores. (A, B) Analysis of the 

difference in enrichment score of immune signatures and TME-related scores between high and low-risk score groups in the CGGA (A) and 
GSE16011 (B) cohorts. (C–E) Scatter plots of the correlations between four types of TME-related scores and risk score in the TCGA (E), CGGA 
(C), and GSE16011 (D) cohorts. The blue lines represent the correlation and the black dots represent the glioma samples. *P<0.05, **P<0.01, 
***P<0.001.  
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Supplementary Figure 6. The association between risk score and immune cells in the TCGA, CGGA, and GSE16011 cohorts.  
(A–C) Correlation between risk score and immune cells. A negative correlation is marked with blue and a positive correlation is marked with 
red. (D, E) Differences in the infiltration level of immune cells between high and low-risk groups in the CGGA and GSE16011 cohorts. *P<0.05, 
**P<0.01, ***P<0.001.  
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Supplementary Figure 7. The association between risk score and ICPs in the TCGA, CGGA, and GSE16011 cohorts.  
(A–C) Correlation between risk score and ICPs. A negative correlation is marked with blue and a positive correlation is marked 
with red. *P<0.05. (D, E) Differences in the relative expression level of six well-known ICPs between high and low-risk groups.  
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Supplementary Figure 8. Differential response to immunotherapy between high and low-risk groups in the CGGA and 
GSE16011 cohorts. (A) The difference in risk score between two immunotherapy response groups in the CGGA cohort. (B) The proportion 

of responders and non-responders to immunotherapy between high and low-risk groups in the CGGA cohort. (C) Subgroup map of predicted 
response to ICB therapy in the two risk groups in the CGGA cohort. (D) The difference in risk score between two immunotherapy response 
groups in the GSE16011 cohort. (E) The proportion of responders and non-responders to immunotherapy between high and low-risk groups 
in the GSE16011 cohort. (F) Subgroup map of predicted response to ICB therapy in the two risk groups in the GSE16011 cohort. In (A, D), the 
upper and lower lines of the boxes indicate the interquartile range of values, and the lines in the boxes represent the median value, and the 
black dots show outliers. 
 

  



www.aging-us.com 6254 AGING 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–7. 

 

Supplementary Table 1. Demographics and clinical information of 
glioma patients in TCGA, CGGA and GSE16011 cohorts. 

Variables 
TCGA cohort CGGA cohort GSE16011 cohort 

total (n=607) total (n=965) total (n=241) 

OS Status    

Alive 408 358 23 

Dead 199 607 218 

Gender    

Female 259 398 81 

Male 348 567 160 

Age    

>40 372 561 174 

<=40 235 403 67 

NA 0 1 0 

Grade    

II 222 270 20 

III 240 322 80 

IV 145 373 141 

IDH    

Mutant 386 498 74 

Wildtype 213 418 118 

NA 8 49 49 

1p19q    

Codel 153 199 43 

Non-codel 450 695 97 

NA 4 71 101 

 

Supplementary Table 2. 199 focal adhesion-related genes. 

 
Supplementary Table 3. Difference in the enrichment of KEGG pathways between FARG1 and FARG2 subtypes. 

 
Supplementary Table 4. Difference in the content of immune cells between different subtypes. 

 
Supplementary Table 5. The result of univariate Cox regression analysis of 192 FARGs. 

 
Supplementary Table 6. Calculation of AUC value under ROC curves. 

 
Supplementary Table 7. Differences in functional pathways between high and low risk groups. 

 


