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INTRODUCTION 
 

Lung cancer has the highest prevalence and mortality 

among all malignancies [1], with 2.1 million diagnosed 

cases yearly, resulting in 1.8 million deaths [2]. Lung 

cancer comprises non-small (NSCLC; > 85%) and small 

cell lung cancer (SCLC; < 15%) [3]. LUAD is the 

primary NSCLC type [4]. Surgical resection offers the 

most efficient treatment option for LUAD patients at the 

early stage [5]. Furthermore, several therapies, 

including chemotherapy, targeted therapy, radiotherapy, 

and immunotherapy, have significantly enhanced 

LUAD patient survival rates [6]. LUAD treatment has 

significantly improved, while the prognosis remains 

dismal, especially for advanced cases [7]. Immune 

checkpoint inhibitors (ICIs) for PD-1, PD-L1, and 

CTLA4 have changed the treatment mode in advanced 

NSCLC. However, immunotherapy efficiency is limited 

[8], and in some cases, it leads to more rapid tumor 

growth than the patients who did not receive immuno-

therapy [9]. In summary, there are still many challenges 

in treating LUAD, and we must further investigate 

prognostic and efficacy predictors. 

 

TME is the dynamic and highly heterogeneous 

environment in which cancerous cells interact with their 

surroundings, including immune cells, stromal cells, 

and blood vessels [10]. It has been demonstrated that 

CAFs are essential for TME [11–13]. CAFs can 

promote tumor occurrence and metastasis by promoting 

cancer cell proliferation, angiogenesis, ECM re-

modeling, and drug resistance [11, 14, 15]. CAFs in 

lung cancer upregulate MiR-21 to induce calumenin 

protein secretion, thereby increasing tumor aggressive-

ness [16]. Detailed studies of the CAFs-immune 

microenvironment interactions, especially the CAFs-

immune cell sophisticated mechanisms, may yield 

innovative approaches to target CAF-directed immuno-

therapy in the future [17]. The role of CAFs in LUAD 

has yet to be investigated. 
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ABSTRACT 
 

Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment (TME). CAFs can 
promote tumor occurrence and metastasis by promoting cancer cell proliferation, angiogenesis, extracellular 
matrix (ECM) remodeling, and drug resistance. Nevertheless, how CAFs are related to Lung adenocarcinoma (LUAD) 
has not yet been revealed, especially since the CAFs-related prediction model has yet to be established. We 
combined Single-cell RNA-sequencing (scRNA-seq) and Bulk-RNA data to develop a predictive model of 8 CAFs-
associated genes. Our model predicted LUAD prognosis and immunotherapy efficacy. TME, mutation landscape 
and drug sensitivity differences were also systematically analyzed between the LUAD patients of high- and low-risk. 
Moreover, the model prognostic performance was validated in four independent validation cohorts in the Gene 
expression omnibus (GEO) and the IMvigor210 immunotherapy cohort. 
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TME cannot be characterized at high resolution using 

current bulk omics analyses. scRNA-seq facilitates 

massively parallel characterization of multiple cells at 

the transcriptome level, compensating for the 

limitations of traditional bulk-omic to explore TME 

characteristics more deeply and comprehensively [18–

20]. Previous studies combining scRNA-seq and bulk 

RNA-seq successfully established prediction models 

to predict LUAD prognosis and immunotherapy 

efficacy based on B cells and natural killer (NK) cells 

[21, 22]. This study aims to analyze scRNA-seq data 

from 10 untreated primary LUAD cases 

systematically and identify 120 genes associated with 

CAFs. Finally, an 8-gene prognostic model was 

designated utilizing Lasso and stepwise multivariate 

COX regression on the above gene sets in The Cancer 

Genome Atlas (TCGA) database. TME, mutation 

landscape and drug sensitivity differences were 

systematically analyzed between the LUAD patients 

of high- and low-risk. Moreover, the model prognostic 

performance was validated in four independent 

validation cohorts in the GEO and the IMvigor210 

immunotherapy cohort. 

 

MATERIALS AND METHODS 
 

The scRNA-seq files of 10 LUAD patients were 

downloaded from https://codeocean.com/capsule/ 

8321305/tree/v1. The RNA sequencing profiles and 

clinical and mutation information of 517 LUAD 

patients were obtained from The Cancer Genome Atlas 

(TCGA; https://portal.gdc.cancer.gov/). The University 

of California, Santa Cruz, Xena browser (UCSC Xena; 

https://xenabrowser.net/) was also accessed to download 

LUAD patient survival data as a supplement. 

Additionally, GEO (http://www.ncbi.nlm.nih.gov/geo/) 

was assessed, and four microarray data, GSE31210 (n = 

246), GSE37745 (n = 196), GSE50081 (n = 181), and 

GSE72094 (n = 442), were downloaded. The LUAD 

patient Tumor Immune Dysfunction and Exclusion 

(TIDE) scores were downloaded by accessing 

http://tide.dfci.harvard.edu/. Immunophenoscore (IPS) 

data of LUAD patients were downloaded from the 

Cancer Immunome Atlas (TCIA) database 

(http://tcia.at/), which is positively related to cancer 

immunogenicity with the predictive ability of the cancer 

patient immunotherapy response [23]. The immuno-

therapeutic cohort (IMvigor210) was acquired according 

to the guideline at http://research-pub.gene.com/ 

IMvigor210CoreBiologies/ [24].  
 

Cancer-associated fibroblasts (CAFs) marker gene 

identification 
 

‘Seurat (version 4.2.0)’ R package was utilized to read 

and quality control scRNA-seq files. The primary 

steps were as follows: The function Read-10x was 

used to read the data, and the function 

‘CreatSeuratObject’ was used to create the object. 

Then, the data were merged, and low-quality cells 

were removed with nFeature > 10000 or < 500, 

nCount > 100000 or < 1000, mitochondrial gene > 

30%, and erythrocyte gene > 5%. Afterward, 

variance-stabilized UMI counts were normalized 

using the ‘SCTransform’ function [25]. SNN graphs 

and UMAP embeddings were constructed using the 

top 30 principal components. A canonical cell type 

marker score was used to identify the cell types in cell 

clusters. Markers were computed for each cell cluster 

using the ‘FindAllMarkers’ function with the 

following parameters: only.pos = T, min.pct = 0.25, 

logfc.threshold = 1. Thus, 120 marker genes related to 

CAFs were identified (Supplementary Table 1). The 

association was analyzed between individual cell 

subsets and 50 Hallmarkers by performing the R-

package ‘singleseqgset (version 1.1.0)’. The related 

gene expressions were also visualized using the 

‘FeaturePlot’ function in different cell subsets.  

 

Prognostic signature based on CAFs marker genes 

construction and validation 

 

The ‘survival (version 3.3-1)’ and ‘survivalminer 

(version 0.4.9)’ R packages were used to perform a 

univariate COX regression for CAFS-related genes, 

with 32 genes exhibiting significant effects on overall 

survival (OS). Thirteen genes were selected for the 

Cox regression model using the ‘glmnet (version 4.1-

4)’ R package and the minimum absolute contraction 

and LASSO method. Further gene screening was 

conducted using stepwise multiple COX regression 

for OS genes. Finally, a risk model was created based 

on eight gene mRNA expressions and their associated 

risk coefficients. Based on the median model score 

(4.842808), the TCGA patients were separated into 

high- and low-risk groups for each GEO-independent 

validation set. Kaplan-Meier was applied for the  

high-risk group survival analysis, and using the 

‘timeROC (version 0.4)’ R package, the area under 

the curve (AUC) was calculated. The R package 

‘regplot (version 1.1)’ was utilized for building the 

nomogram. Simultaneously, the model diagnostic 

capability was verified using four independent GEO 

datasets. 

 

Enrichment analysis of CAFs 

 

Besides converting the Gene ID into EntrezID, the 120 

CAFS-related gene expression levels of LUAD patients 
were extracted from the TCGA database. Gene Ontology 

(GO) [26] and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) [27] were employed for the risk 

https://codeocean.com/capsule/8321305/tree/v1
https://codeocean.com/capsule/8321305/tree/v1
https://portal.gdc.cancer.gov/
https://xenabrowser.net/
http://www.ncbi.nlm.nih.gov/geo/
http://tide.dfci.harvard.edu/
http://tcia.at/
http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
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groups using the ‘clusterProfiler (version 4.4.4)’ R 

package. 

 

Somatic mutations analysis  

 

The ‘maftools (version 2.12.05)’ R package was utilized 

to calculate and display the top 20 gene mutation 

landscape using TCGA database-tumor mutation data. 

The difference in tumor mutation burden (TMB) 

between the risk groups was illustrated as a violin plot. 

The Kaplan-Meier method revealed that high- and low-

TMB and risk scores impact survival outcomes. 

 

Estimate of tumor immune microenvironment  

 

The TCGA database immune-infiltrating files for all 

tumors were acquired using the TIMER2.0 database 

(http://timer.cistrome.org). Then, the Wilcoxon rank-

sum was applied to calculate the difference in immune 

cell infiltration between six algorithms, including 

TIMER [28], CIBERSORT [29], CIBERSORT-ABS 

[30], QUANTISEQ [31], MCPCOUNTER [32], 

XCELL [33], and EPIC [34]. The above process was 

implemented using the ‘limma v 3.52.4’ and ‘pheatmap 

(v 1.0.12)’ R packages. Next, immune checkpoint 

expression and major histocompatibility complex 

(MHC) gene were compared between the two risk 

patients using the same method. Supplementary Table 2 

depicts these genes. Other cancer-related gene sets, such 

as chemokines, growth factors and regulators, proteases 

and regulators, soluble or shed receptors or ligands, and 

interleukins, were also explored for differential 

expression between the two groups. Finally, the R 

package ‘estimate’ was conducted to further evaluate 

the LUAD patient immune microenvironment.  

 

Immunotherapy efficacy prediction 

 

The patient IPS was calculated to predict the 

immunotherapy response under various conditions. 

Next, the risk score ability was validated to predict the 

immunotherapy response in the IMvigor210 immuno-

therapy cohort. Finally, the risk group TIDE score was 

compared, revealing a positive correlation with the 

possibility of immune escape. 

 

Prediction of chemotherapy response 

 

The LUAD chemotherapy response data were 

downloaded from the Genomics of Drug Sensitivity in 

Cancer database (GDSC, https://www.cancerrxgene.org) 

[35]. The R package ‘oncoPredict (version 0.2)’ was 

utilized to analyze the two-group sensitivity to various 
chemotherapy drugs. Additionally, R packages ‘ggplot2 

(version 3.4.0)’ and ‘ggpubr (version 0.5.0)’ were utilized 

to visualize the results. 

Data availability statement 

 

All data generated or analyzed during this study are 

included within this article. 

 

RESULTS 
 

Identification of CAFs marker genes 

 

We obtained single-cell sequencing data from 10 

surgically resected primary LAUDs (73,566 cells) 

without specific treatment [36]. After strict quality 

control (removing nFeature > 10,000 or 500, nCount > 

100,000 or 1,000, mitochondrial gene > 30%, and 

erythrocyte gene > 5%), 62115 high-quality cells were 

obtained. Figure 1E depicts the quality control results 

for each patient as a violin plot. The SCTransform 

algorithm identified 3,000 hypervariable genes and data 

homogenization and normalization. For the 3,000 genes 

mentioned above, 30 PCs were used to reduce 

dimensionality, yielding 29 cell clusters (Figure 1A). 

Subsequently, annotation with canonical cell markers 

(Figure 1D) yielded seven cell subsets, with the 19th 

cluster annotated as CAFs. However, the cell 

distribution existed between different patients, but there 

was no significant batch effect (Figure 1C). Analysis of 

seven cell subsets and 50 Hallmarkers revealed a 

significant positive correlation between CAFs and 

epithelial-mesenchymal transition (EMT), myogenesis, 

and Wnt/β-catenin signaling (Figure 1F). Ultimately, 

the ‘FindAllMarkers’ function yielded 120 CAFs-

related genes. 

 

Prognostic signature based on CAFs marker genes 

construction and validation 

 

Univariate COX regression analysis of 120 CAFs-

related genes in the TCGA database revealed that 32 

genes were significantly related to OS, with seven genes 

representing protective factors and 25 genes 

representing risk factors (Supplementary Figure 1A). 

These 32 genes were further analyzed using LassoCOX 

regression, and 13 were obtained according to the 

optimal λ value (logλ = -4). Then, the abovementioned 

13 genes were used for stepwise multivariable COX 

regression analysis. Finally, eight genes, TIMP1, TPM2, 

NR2F2, MFAP4, SOD3, CAV1, SERPINH1, and FMO2, 

were used to build a prognosis model. The ‘Featureplot’ 

function was applied to display these eight gene 

expressions in different cell subsets. Online TIMER 

(http://timer.comp-genomics.org) was accessed to 

investigate these eight abnormal gene expressions in 

pan-cancer (Supplementary Figure 1D, 1E). The final 

model combined with the coefficient of each gene is: 

Risk = (0.2403052*TIMP1 expression) + 

(0.1475574*TPM2 expression) + (0.2686883*NR2F2 

http://timer.cistrome.org/
https://www.cancerrxgene.org/
http://timer.comp-genomics.org/
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expression) + (-0.1635410*MFAP4 expression) + (-

0.1219534*SOD3 expression) + (0.2009316*CAV1 

expression) + (0.1449876*SERPINH1 expression) + (-

0.1816038*FMO2 expression). 

 

An increased risk score indicates an increase in the 

number of patients who have died, indicating a high risk 

and poor OS positive association. The high-risk group 

had significant TIMP1, TPM2, NR2F2, CAV1, and 

SERP1NH1 expressions, whereas the low-risk group 

had significant MFAP4, SOD3, and FMO2 expressions 

(Figure 2A). The Kaplan-Meier (K-M) survival curve 

demonstrated that high-risk patients had significantly 

lower OS (p < 0.001, Figure 2B), PFS (p = 0.012), and 

DSS (p < 0.001, Figure 2C, 2E). Despite this, the two 

groups did not differ significantly in DFS (p = 0.056). 

The ‘timeROC’ R package was employed to evaluate 

the model diagnostic efficacy and related clinical 

characteristics for survival outcomes, revealing that 

pathological stage (AUC = 0.705) and risk (AUC = 

0.688, Figure 2F) were the two indicators with good 

diagnostic efficiency. After 10-fold cross-validation, the 

model’s performance was evaluated, and its mean AUC 

values were 0.688, 0.680, and 0.646 over one, three, and 

five years, respectively. 

 

Next, four independent GEO datasets verified the 

model’s validity and stability. In GSE37745, the high-

risk patient had a worse prognosis (p < 0.001, Figure 

3A), with AUC values of 0.554, 0.616, and 0.631 at 

one-, three-, and five-year, respectively (Figure 3B). In 

GSE72094, the low-risk patient OS was significantly 

prolonged (p < 0.001, Figure 3C), with AUC values of 

0.664, 0.709, and 0.638 at one-, three-, and five-year, 

respectively (Figure 3D). In GSE50081, high-risk 

patients had poor OS (p = 0.01, Figure 3E), with AUC 

values of 0.649, 0.572, and 0.584 at one-, three-, and 

five-year, respectively (Figure 3F). In GSE31210, the 

high-risk patient had poor OS (p = 0.016, Figure 3G) 

and AUC values of 0.876, 0.649, and 0.600 with the 

one-, three-, and five-year, respectively (Figure 3H). In 

conclusion, high-risk patients had poor long-term 

survival outcomes in validation and training sets. 

Furthermore, our model has a good prediction 

efficiency for the patient survival outcome. 

 

The model diagnostic and prognostic ability 

combined with clinical features 

 

Univariate COX regression was applied in the TCGA 

database by five clinical features, including age, gender, 

stage, tumor site, and smoking status. Besides the model 

risk score, OS risk factors revealed stage (p < 0.001, HR 

= 1.763, 95% CI = 1.441–1.942) with risk score (p < 

0.001, HR = 2.787, 95% CI = 2.091–3.713, Figure 4A). 

Meanwhile, Multivariate COX regression findings 

 

 
 

Figure 1. Visualization of scRNA-seq data from 10 LUAD patients. (A) The U-MAP algorithm identified 29 cell subsets. (B) Seven cell 

types were identified based on marker genes. (C) UMAP plot of 62,115 cells, colored by patients. (D) Marker genes for different cell subsets. 
(E) Quality control results. (F) Association between cell subsets and Hallmarkers. 
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Figure 2. The prediction model of CAFs-related genes was established in the TCGA database. (A) Distribution of risk scores and OS 

status. 8 gene expressions were involved in the model construction in the high- and low-risk groups. Kaplan-Meier curve illustrated the 
differences between high- and low-risk groups for (B) OS, (C) PFS, (D) DFS, and (E) DSS. (F) ROC curves for risk scores and clinical 
characteristics. (G) ROC curves for one-, three-, and five-year OS of risk scores in the TCGA database. 
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Figure 3. Validation of the model using four independent GEO database cohorts. In the GSE37745 cohort, (A) Kaplan-Meier curves 

depict the prognosis for the high- and low-risk groups, and (B) the AUC values at one-, three-, and five-year. In the GSE72094 cohort,  
(C) Kaplan-Meier curves show the prognosis of the high- and low-risk groups, and (D) the AUC values at one-, three-, and five-year. In the 
GSE50081 cohort, (E) K-M curves display the prognosis for the high- and low-risk groups, and (F) the AUC values at one-, three-, and five-year. 
In the GSE31210 cohort, (G) Kaplan-Meier curves depict the prognosis of the high- and low-risk groups, and (H) the AUC values at one-,  
three-, and five-year. 
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Figure 4. Establishment and validation of nomograms, risk score differences between different clinical characteristics.  
(A) Univariate COX regression analysis. (B) Multivariate COX regression analysis. (C) Nomogram constructed using risk score and clinical 
characteristics. (D) Calibration curve of the nomogram. (E) Risk score differences between different clinical characteristics. The K-M analysis 
curves for the patients stratified by (F) risk score and stage, (G) risk score and K-Ras mutation status, (H) risk score, and smoking level. 
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revealed that the OS risk factors were age (p = 0.024, 

HR = 1.019, 95% CI = 1.002–1.035), stage (p < 0.001, 

HR = 1.587, 95% CI = 1.360–1.853), and risk score (p 

< 0.001, HR = 2.526, 95% CI = 1.876–3.402, Figure 

4B). The model risk score was a survival outcome risk 

factor in both COX analyses. Next, the constructed 

nomogram revealed that a patient’s gender, age, risk 

score, and pathology stage are as follows: male, 60 

years old, low risk, and stage III. Then, the patient’s 

total score was 144, and the one-, three-, and five-year 

survival rates were 0.876, 0.581, and 0.327, respectively 

(Figure 4C). The calibration curve exhibited a high 

correlation between predicted and actual values, 

revealing good predictive nomogram performance 

(Figure 4D). Figure 4E demonstrates that patients with a 

later pathological stage had a higher risk score, partly 

explaining the poor prognosis of the high-risk patient. 

Risk scores did not differ significantly between patients 

aged 65 years and those aged more than or less than 65 

years (p = 0.44) and between EGFR mutation and non-

mutation groups (p = 0.15). Patients with a K-RAS 

mutation exhibited a higher risk score (p = 0.043), as 

did patients with a higher smoking score (p = 0.0098). 

Next, patients were stratified using the statistically 

significant clinical characteristics and risk scores 

described above. High-risk + stage III−IV exhibited a 

poor prognosis, while low-risk + stage I−II exhibited 

the best prognosis (Figure 4F). Meanwhile, the K-RAS 

mutation + high-risk group had poor survival prognosis 

than the low-risk and K-RAS non-mutation groups 

(Figure 4G). Finally, the high-risk + high-smoking 

score patients also have a poor survival prognosis 

(Figure 4H). 

 

Enrichment analysis 

 

GO analysis indicated the significance of the 120 CAFs-

related genes enrichment in ECM organization and 

structural constituent besides the collagen-containing 

ECM and other pathways (Figure 5A). Moreover, 

KEGG analysis indicated that these genes significantly 

correlate with protein digestion and absorption, ECM-

receptor interaction, complement and coagulation 

cascades, and other pathways (Figure 5B), indicating 

the CAF importance in ECM remodeling, consistent 

with former studies [13–15]. KEGG and GO analyses 

were also conducted to explore functional differences 

between the risk groups. According to Gene Set 

Enrichment Analysis (GSEA) analysis, the significant 

high-risk group enrichment in DNA replication, mitotic 

nuclear division, and other pathways (Figure 5C) 

indicates its significant correlation with cell replication 

pathways. Meanwhile, the significant low-risk group 
enrichment in the B cell receptor (BCR) and immuno-

globulin complex pathways (Figure 5E) indicates its 

significant enrichment in immune-related pathways. 

GSEA analysis also indicated the significant enrichment 

of cell cycle, ECM receptor interaction, and focal 

adhesion pathway in the high-risk group (Figure 5D). 

Meanwhile, the low-risk group enrichment appeared in 

allograft rejection, asthma, and autoimmune thyroid 

disorder pathway (Figure 5F).  

 

Somatic mutation analysis 

 

TMB is a quantitative biomarker that reflects the total 

tumor cell mutation count, the total count of somatic 

gene coding errors, base substitution, gene insertion, or 

deletion errors detected per million bases [37]. Higher 

TMB levels correlated with longer OS after 

immunotherapy across multiple cancers. Figure 6A, 6B 

depict a waterfall map of the top 20 genes mutation 

landscape with the highest mutation frequency. The 

high-risk patients exhibited increased TMB levels (p = 

6.1e-05), suggesting their further benefit from the 

immunotherapy (Figure 6C). Meanwhile, Figure 6D 

depicts that the risk score positively correlates with the 

TMB level (R = 0.2, p = 5.9e-06). The median TMB 

level was utilized as the boundary to divide TMB into 

high and low groups. According to the K-M curve, the 

high TMB group has a better survival prognosis than 

the low TMB group (Figure 6E). When combined with 

the risk model, the low TMB+ high-risk group has the 

worst survival prognosis (Figure 6F).  

 

Tumor immune microenvironment estimate  

 

The immune cell composition and abundance in the 

TME strongly influenced tumor progression and 

immunotherapy effusiveness. A heat map demonstrates 

the immune cells with significant differences (p < 0.05, 

Figure 7A). Overall, the low-risk group had a 

significant abundance of immune cell infiltration, 

including T and B cells, in the TIMER and XCELL 

algorithms. Next, the common risk group immune 

checkpoint gene expressions were assessed 

(Supplementary Table 2). Twenty genes displayed 

significant differences, with 15 upregulated in the low-

risk group and 5 upregulated in the high-risk group 

(Figure 7B). The differential expression of common 

MHC molecules was also analyzed (Supplementary 

Table 2). Interestingly, all 15 results with significant 

differences were high in the low-risk group (Figure 7B).  

 

Moreover, the other tumor-related gene differential 

expression was analyzed (Figure 7C). The low-risk 

group had higher immune and estimate scores through 

the ‘estimate’ algorithm, but the stromal score did not 

differ significantly (Figure 7D). Supplementary Table 3 
provides ‘estimate’ score details for each LUAD patient 

in the TCGA data. Moreover, tumor purity was reduced 

in the low-risk group (Figure 7F). The risk score and 
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tumor purity exhibited a significant positive association 

(Figure 7G). In summary, the low-risk group had 

greater immune infiltration and upregulation of immune 

checkpoint-related and MHC genes. 

Immunotherapy efficacy prediction 

 

LUAD patient IPS was downloaded from the TCIA 

database to assess the immunotherapy response, 

 

 
 

Figure 5. Enrichment analysis. (A) GO and (B) KEGG enrichment analysis of 120 CAFs-related genes. Gene Set Enrichment Analysis (GSEA) 

analysis for patients in the (C, D) high- and (E, F) low-risk groups.  
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Figure 6. Mutation analysis between the high- and low-risk groups. The mutational landscapes of the (A) high- and (B) low-risk 
groups. (C) TMB level comparison between high- and low-risk groups. (D) Correlation between risk score and TMB. (E) K-M curves for high 
and low TMB levels. (F) K-M curves for the patients stratified by risk score and TMB. 
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Figure 7. Tumor microenvironment (TME) analysis. (A) The heatmap displays the differences in the number of immune cells among the 
eight algorithms. Differential expression of (B) immune checkpoint-related genes, (C) MHC-related genes, and other (D) Tumor-related gene 
sets between high- and low-risk groups. (E) Estimate score differences between the high- and low-risk groups. (F) Tumor purity differences 
between the high- and low-risk groups. (G) Correlation between risk-score and tumor purity. 
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indicating the higher IPS of the low-risk patients 

regardless of whether CTLA-4 and PD1 were expressed 

or not and further benefit from immunotherapy (Figure 

8A–8D). Moreover, the complete response (CR) + 

partial response (PR) group risk score was decreased 

than the stable disease (SD) + progression disease (PD) 

group (Figure 8E), revealing the strongest diagnostic 

power of neoantigen (AUC = 0.778), followed by TMB 

(AUC = 0.718). The risk score also showed a certain 

predictive power (AUC = 0.578, Figure 8F). K-M 

analysis demonstrated that the high-risk patients had 

poor survival outcomes in the IMvigor210 

immunotherapy cohort (Figure 8G). The low-risk 

patients had higher TIDE scores, indicating a high 

susceptibility to immune escape (Figure 8H). Our study 

discovered immunotherapy benefits for low-risk 

patients besides better long-term survival after 

immunotherapy. 

 

Prediction of chemotherapy response 
 

Further analysis determined whether IC50 levels differed 

between the LUAD patient risk groups. We selected 20 

LUAD-related chemotherapy drugs with significant 

differences in drug sensitivity, revealing that the low-

risk group had high sensitivity to the following 17 

drugs: Gemcitabine, 5-Fluorouracil, Epirubicin, 

Savolitinib, AZD6738, Alisertib, AZD1332, I-BET-

762, Ulixertinib, Trametinib, Cisplatin, Cediranib, 

Talazoparib, BI−2536, Crizotinib, Cytarabine, and 

Dasatinib (Figure 9A). In contrast, three drugs 

(Axitinib, ABT737, and AZD8055) demonstrated 

higher sensitivity in high-risk patients (Figure 9B). The 

above results indicate that our model shows promising 

potential in distinguishing the sensitivity of LUAD 

patients to chemotherapy drugs, thereby providing new 

avenues for future treatment strategies in LUAD. 

However, further validation through clinical trials and 

animal experiments is necessary to confirm the 

accuracy of our drug sensitivity predictions. 

 

DISCUSSION 
 

Lung cancer has the highest prevalence and mortality 

among all malignancies [1, 2]. LUAD, a primary 

subtype of lung cancer, has a five-year OS of less than 

20% [38]. Immunotherapy has improved LUAD 

patient prognosis to a certain extent, but with some 

challenges, such as poor response and resistance [8, 9, 

39]. Thus, a model that can predict LUAD prognosis 

and immunotherapy efficacy must be established. 

CAFs are the most important component of TME [11–

15]. They can promote immunosuppressed TME by 

secreting cytokines, growth factors, chemokines, 

exosomes, and other methods, allowing tumors to 

escape the immune system [17]. Nevertheless, how 

CAFs are related to LUAD has been unrevealed, 

especially since the CAFs-related prediction model 

has yet to be established. 

 

Our study constructed an eight-gene prognostic model 

based on CAFs-associated genes in combination with 

scRNA-Seq and bulkRNA-seq, demonstrating good 

prognostic and diagnostic capabilities in the TCGA 

database and four independent GEO validation 

cohorts. The high-risk group patient LUAD had a poor 

prognosis associated with a later pathological stage. 

Concurrently, eight genes involved in the model 

construction were also associated with LUAD patho-

genesis or prognosis. The glycoprotein tissue inhibitor 

of metalloproteinase -1 (TIMP-1) primarily affects 

fibroblasts and keratinocytes proliferation and 

participates in ECM turnover [40, 41]. The interaction 

between TIMP1 and CD63 can promote LUAD 

progression [42], and TIMP1 overexpression was 

correlated to poor LUAD prognosis [42, 43]. TPM2 is 

an actin filament-binding protein whose primary 

function is stabilizing and integrating actin filaments 

[44, 45]. TPM2 overexpression in LUAD may inhibit 

tumor proliferation and invasiveness, resulting in a 

better prognosis for patients [46]. Nuclear receptor 

subfamily 2 group F member 2 (NR2F2) is a nuclear 

orphan receptor primarily involved in tumor progres-

sion, stem cell differentiation, energy metabolism, and 

other processes [47, 48]. NR2F2-related signaling 

pathway can promote platinum resistance in lung cancer 

with brain metastasis via high glutathione (GLH) 

consumption [49]. The ECM protein Microfibrillar-

associated protein 4 (MFAP4) locates primarily in the 

vascular wall ECM. It is involved in tissue repair and 

angiogenesis [50, 51]. miR147b can regulate MFAP4 to 

promote LUAD progression [52]. Superoxide dismutase 

3 (SOD3), a secreted antioxidant enzyme [53], primarily 

functions to maintain REDOX homeostasis in tissues 

[54]. LUAD has lower SOD3 expression than normal 

tissues, and patients with elevated SOD3 expression 

have a poor prognosis [55]. Caveolin-1 (CAV1) is a 

membrane protein predominantly involved in ECM 

remodeling, cell migration, cancer signaling, and 

endocytosis [56]. CAV1-derived peptides can inhibit 

idiopathic pulmonary fibrosis (IPF) progression [57], 

while CAV1 overexpression can promote lung cancer 

progression and increase radiotherapy resistance [56]. 

The Serpin peptidase inhibitor clade H member 1 

(SERPINH1) gene is a member of the serine proteinase 

inhibitor serpin superfamily [58]. SERPINH1 is highly 

expressed in IPF and lung cancer patients, suggesting 

that it may be involved in both disease pathogenesis 

[59]. Flavin Containing Dimethylaniline Mono-
oxygenase 2 (FMO2) gene is primarily present in 

mammalian lung tissues; its abundance in LUAD tissue 

is lower than in normal tissue [60].  
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Figure 8. (A–D) IPS score differences. Validation of the model's ability to predict immunotherapy response in the IMvigor210 cohort, (E) 
Comparison of the risk score differences between CR + PR and SD + PD groups, (F) ROC curve illustrated the ability of TMB, Neoantigen, and 
risk-score to predict the efficacy of immunotherapy, (G) survival prognosis of high- and low-risk groups. (H) TIDE score differences in the 
TCGA database. 
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Figure 9. A drug sensitivity analysis. (A) Drugs with higher sensitivity in the low-risk group. (B) Drugs with higher sensitivity in the high-
risk group. 



www.aging-us.com 6788 AGING 

Next, enrichment analyses were conducted to explore the 

biological roles of CAFs involved in LUAD. scRNA-seq 

analysis between CAFs cell subsets and 50 Hallmarkers 

revealed a positive correlation between CAFs and EMT 

and Wnt/β-catenin signaling. EMT is a cellular program 

that can promote tumorigenesis, metastatic tumor ability, 

and tumor resistance to anti-tumor therapy by reshaping 

cell-cell and cell-ECM interactions [61]. Wnt/β-catenin 

signaling is essential for embryonic development and 

tissue homeostasis. Abnormal WNT/β-catenin pathway 

activation is closely related to tumor progression and poor 

prognosis [62, 63]. Wnt/β-catenin signaling activation can 

regulate disease progression and metastasis in LUAD 

[64]. The enrichment analysis of 120 CAFs-related genes 

revealed a significant enrichment of these genes in ECM 

organization, protein digestion and absorption, and other 

ECM-related pathways. The enrichment analysis revealed 

significant enrichment in DNA replication and cell cycle 

pathways in the high-risk group, which may result in 

abnormal cell cycle regulation and DNA replication, 

leading to a poor prognosis. Meanwhile, the low-risk 

group had significant enrichment in immune-related 

pathways, such as the B cell receptor (BCR) signaling 

pathway, allograft rejection, and abundant immune cell 

infiltration, indicating a better prognosis.  

 

The EGFR mutation group has higher risk scores. EGFR 

mutations are a common type of NSCLC mutation that 

affect approximately 40% to 55% of Asian LUAD 

patients [1, 65]. Although LUAD patients with EGFR 

mutations exhibited sensitivity to tyrosine kinase inhibitor 

(TKI) treatment, their overall prognosis was poor due to 

the tendency to develop drug resistance later in treatment 

[66, 67]. Patients with PD-L1 overexpression and EGFR 

mutations have a decreased immunotherapy response rate, 

possibly due to lower tumor-infiltrating T-cell activity in 

patients with EGFR mutations [68]. This is consistent 

with our IMvigor210 cohort study, where the low-risk 

group had better PD-1 therapy response and prognosis. 

 

Afterward, the mutational landscape of the risk groups 

revealed a higher TP53 gene mutation frequency in the 

high-risk group (54% vs 38%). Patients with low TP53 

mutation burden exhibited immune cell infiltration and 

were more probably to profit from immune checkpoint 

inhibitors (ICIs) therapy [69, 70]. In addition to TBM’s 

significant positive relation to the risk score and 

mutation-associated neoantigens (MANA), it was 

overexpressed in the high-risk group and involved in the 

CD8+T process of recognizing tumor cells during 

immunotherapy [37, 71]. It is assumed that high TMB-

level patients exhibit more sensitivity to immuno-

therapy. However, TMB also has certain shortcomings 
in predicting the efficacy of immunotherapy. A study 

finding did not predict PFS, complete pathologic 

remission (CRP), and main pathological response 

(MPR) in stage IIIA NSCLC patients treated with 

immunotherapy [72]. Multiple factors, such as tumor 

antigens, lymphocyte infiltration, and antigen-

presenting cells (APCs), influence tumor immuno-

therapy response [71]. It is a complex and dynamic 

process that needs comprehensive evaluation. 

 

The TME difference was systematically analyzed 

between the two groups to explore whether the risk 

score can anticipate the immunotherapy response. Six 

different algorithms were employed to assess the 

differences in immune cell infiltration between the two 

groups, revealing a greater immune cell abundance in 

the low-risk patients. According to the TME evaluated 

by the ‘ESTIMATE’ algorithm, the high immune and 

estimate scores indicated the high immune cell 

infiltration that makes the tumor less likely to undergo 

immune escape, explaining this group’s better prognosis 

consisting of our enrichment analysis, thereby revealing 

its significant enrichment in immune-related pathways. 

In contrast, the high-risk group had higher tumor purity. 

Moreover, patients with high immune cell infiltration 

are more probably to profit from immunotherapy [73].  

 

Furthermore, the relationship between risk score and 

immune-related genes revealed significant immune 

checkpoint-related gene abundance in the low-risk group. 

Meanwhile, all MHC molecules were significantly 

overexpressed in the low-risk group. T cells must 

recognize tumor antigens in MHC presence to generate 

anti-tumor immune responses. The immune checkpoint-

related genes and the MHC gene overexpression were 

correlated to better immunotherapy response [74]. The 

TME analysis suggests the increased immunotherapy 

benefit for the low-risk group. 

 

Subsequently, we utilized IPS [23] and TIDE [75] 

scores to predict immunotherapy response in the risk 

groups. We observed the performance of risk scores in 

immunotherapy cohorts (IMvigor210) treated with anti-

PD-L1. Moreover, the IPS score correlates positively 

with immunotherapy efficacy [23]. We discovered that 

immunotherapy benefits patients in the low-risk group 

with higher IPS scores regardless of CTLA4 and PD1 

expression. The CR + PR group patients had lower risk 

scores after IMvigor210 immunotherapy, indicating 

high immunotherapy sensitivity. Our risk score also had 

some predictive power for immunotherapy response 

(AUC = 0.578). In the IMvigor210 cohort, the high-risk 

group prognosis was poor, demonstrating the model 

accuracy and consistency for the LUAD patient 

prognosis prediction, consistent with the TCGA and 

GEO database results.  
 

In contrast, the low-risk patients had a lower TIDE score 

and were more likely to have an immune escape. Despite 
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having a lower TMB level and a higher TIDE score, the 

immune infiltration degree was higher, more immune-

related pathways were enriched, and more immune-

related genes were highly expressed. Finally, they had a 

better prognosis and immunotherapy effects. Therefore, 

higher immune cell infiltration level patients in LUAD are 

more likely to benefit from immunotherapy. A previous 

study revealed that the immune cell infiltration level was 

more predictive than the TMB level [21]. 

 

We also examined the drug susceptibility differences 

between the risk groups to better guide the risk score 

clinical practice. We revealed that the low-risk group 

had higher sensitivity to 17 drugs: Gemcitabine, 5-

Fluorouracil, Epirubicin, Savolitinib, AZD6738, 

Alisertib, AZD1332, I-BET-762, Ulixertinib, Trametinib, 

Cisplatin, Cediranib, Talazoparib, BI-2536, Crizotinib, 

Cytarabine, and Dasatinib (Figure 9A). In contrast, three 

drugs (Axitinib, ABT737, and AZD8055) had higher 

sensitivity in high-risk patients. 
 

We combined scRNA-seq and Bulk-RNA data to develop 

a predictive model of 8 CAFs-associated genes. Our 

model predicted LUAD prognosis and immunotherapy 

efficacy. The low-risk group patients had better survival 

prognoses and immunotherapy sensitivity. We also 

conducted enrichment, drug susceptibility, and mutational 

landscape analyses. We still have some drawbacks. Our 

analysis is a public database-dependent, and we need to 

conduct more in vivo and in vitro experiments. Some 

issues must be discussed in greater depth. In the future, 

we must continue to conduct in-depth study series to 

investigate the role of CAFs in LUAD more 

systematically and comprehensively and to provide 

innovative insights to treat LUAD precisely. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. (A) Genes with a significant impression on OS in univariate regression analysis. (B, C) Lasso regression analysis. 
(D) Distribution of eight CAFs-related genes involved in model construction in scRNA-seq. (E) Eight gene expressions were involved in model 
construction in the pan-cancer dataset. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3. 

 

Supplementary Table 1. Details of the 120 CAFs-associated genes in scRNA-seq. 

 

Supplementary Table 2. 
Information on 51 immune 
checkpoint-related genes and 
23 MHC-related genes. 

Checkpoints MHC 

PD-L1 HLA-E 

PD1 HLA-DPB2 

TIM3 HLA-C 

CTLA4 HLA-J 

B7-H4 HLA-DQB1 

B7-H3 HLA-DQB2 

BTLA HLA-DQA1 

VISTA HLA-A 

IDO1 HLA-DMA 

PSGL-1 HLA-DOB 

LAG3 HLA-DRB1 

PD-L2 HLA-H 

OX40 HLA-B 

IDO2 HLA-DRB5 

TNFRSF8 HLA-DOA 

CD27 HLA-DPB1 

ICOS HLA-DRA 

TNFRSF18 HLA-DRB6 

TIGIT HLA-L 

TNFRSF9 HLA-F 

TNFRSF14 HLA-G 

TNFRSF4 HLA-DMB 

CD28 HLA-DPA1 

LGALS9  

CD70  

CD80  

LGALS9  

CD70  

CD80  

TNFSF15  

NRP1  

BTNL2  

HHLA2  

ICOSLG  

CD40  

TNFSF9  

TNFSF14  

CD86  
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KIR3DL1  

CD200  

ADORA2A  

TNFRSF25  

CD244  

CD48  

LAIR1  

CD40LG  

TMIGD2  

CD200R1  

TNFSF18  

CD44  

CD160  

 

Supplementary Table 3. ‘Estimate’ score for each LUAD patient in TCGA data. 

 


