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INTRODUCTION 
 
Cataracts, which are the opacification of lenses in the eye, 
affect 95 million people worldwide and are the leading 
eye disease causing blindness in many countries [1]. Age 
is a major risk factor for cataracts, and with increasing 
aging, the burden of cataracts will grow. In addition to the 
vision loss caused by cataracts, there are many 
complications associated with cataracts, such as glaucoma 
[2], uveitis [3], and corneal endothelial decompensation 
[4]. Fortunately, this visual impairment is treatable, and 
the surgical results are often entirely satisfactory for most 
patients. Unfortunately, surgery is not accessible for all 

patients due to high expense and the risk of related risks 
and complications (such as posterior capsule opacification, 
uveitis, glaucoma [5]) especially in developing countries. 
Lens epithelial cells (LECs) have been identified as an 
essential biological component in the pathogenesis of 
noncongenital cataracts in animals and human beings [6]. 
Previous research has demonstrated that abnormal 
behaviors in LECs promote cataract development and 
complications after cataract surgery [7–10]. However, 
definite biochemical mechanisms underlying cataract 
formation have not been completely elucidated and, to 
date, there are no practical methods to prevent the 
occurrence of cataracts. Therefore, there is an urgent need 
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ABSTRACT 
 
Cataracts are the leading cause of blindness in the world. Age is a major risk factor for cataracts, and with 
increasing aging, the burden of cataracts will grow, but the exact details of cataractogenesis remain 
unclear. A recent study showed that microRNA-34a (MIR34A) is involved in the development of cataracts, 
but the underlying pathogenesis remains obscure. Here, our results of microRNA target prediction showed 
that hexokinase 1 (HK1) is one of the genes targeted by MIR34A. Based on this finding, we focused on the 
function of MIR34A and HK1 in the progress of cataracts, whereby the human lens epithelial cell line 
SRA01/04 and mouse lens were treated with MIR34A mimics and HK1 siRNA. We found that HK1 mRNA is a 
direct target of MIR34A, whereby the high expression of MIR34A in the cataract lens suppresses the 
expression of HK1. In vitro, the upregulation of MIR34A together with the downregulation of HK1 inhibits 
the proliferation, induces the apoptosis of SRA01/04 cells, and accelerates the opacification of mouse 
lenses via the HK1/caspase 3 signaling pathway. In summary, our study demonstrates that MIR34A 
modulates lens epithelial cell (LEC) apoptosis and cataract development through the HK1/caspase 3 signaling 
pathway. 
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to further clarify the pathophysiological mechanisms 
underlying abnormal changes in LECs in understanding 
this devastating disease and for developing prevention 
strategies and new treatments. 
 
MicroRNAs are small single-stranded noncoding RNA 
molecules that are widely expressed in different organisms 
and organs and involved in the post-transcriptional 
regulation of gene expression. MicroRNAs are reported 
to be involved in various pathophysiological processes, 
such as cell proliferation, apoptosis, and senescence [11]. 
Naturally, they participate in different diseases, for 
example, cancer [12], age-related disease [13, 14], and 
immune-related disease [15]. MicroRNA-34A (MIR34A) 
is reported to partake in a multitude of physiological 
and pathological processes, including age-related 
diseases, such as age-related vasculature alteration [16], 
degenerative Cardiovascular Conditions [17], Alzheimer's 
disease [18], age-related hearing loss [19], and so on. In 
our previous research, we found that MIR34A is most 
highly expressed in the epithelium of cataractous lenses 
[20]. However, whether MIR34A participates in 
cataractogenesis has not been fully addressed. 
 
Hexokinase (HK) plays an essential role in the catalytic 
process of glucose metabolism as the only rate-limiting 
enzyme in glycolysis. Therefore, sufficient expression of 
HK is necessary for cells to carry out routine 
physiological functions. Abnormal HK expression leads 
to the development of numerous diseases, with previous 
studies showing that HK is upregulated in many different 
types of tumors [21, 22]. It is widely accepted that HK has 
four isomers, whereby only Hexokinase 1 (HK1) and 
Hexokinase 2 (HK2) are expressed in the human lens, 
accounting for 71% and 29%, respectively [23]. It is 
known that the lens is an avascular organ, and its nutrition 
originates from aqueous humor. In addition, the lens is 
in an oxygen-deficient environment [24, 25] and, 
accordingly, most ATP in the lens is produced by 
anaerobic glycolysis, with only a small proportion derived 
from aerobic respiration [26]. This means HK1 and HK2 
may play essential roles in the physiological function of 
the human lens. In this study, we used microRNA target 
prediction software, which showed the presence of a 
binding site for MIR34A on HK1 but not on HK2. 
Therefore, we further investigated whether MIR34A 
participates in human LEC energy metabolism via HK1. 
 
RESULTS  
 
MIR34A is overexpressed in cataract, inhibiting 
proliferation and inducing apoptosis of SRA01/04 
cells 
 
Our previous chip data showed MIR34A is highly 
expressed in age-rated cataracts compared to transparent 

lenses [20]. This result indicates MIR34A might be 
involved in the process of cataract development. To verify 
this hypothesis, we used MIR34A mimics to upregulate 
the expression of MIR34A, then reverse transcription- 
real-time polymerase chain reaction (RT-qPCR) analysis 
was performed to detect the expression of MIR34A. After 
treatment with MIR34A mimics, MIR34A expression was 
significantly increased (Figure 1A). We then used a cell 
counting kit-8 assay (CCK-8) assay to evaluate the 
proliferation of SRA01/04 cells. The results show that 
MIR34A overexpression significantly reduced SRA01/04 
cell proliferation at 48, 96, and 120 h (Figure 1B). To 
analyze the effects of MIR34A on the apoptosis of 
SRA01/04 cells, two independent techniques of flow 
cytometry and terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) assay were used. The 
results of both showed that the upregulation in MIR34A 
expression significantly increased the apoptotic rate as 
determined by flow cytometry (Figure 1C) as well as 
observed according to the number of TUNEL-positive 
SRA01/04 cells (Figure 1D). These results suggest that 
miR-34a is overexpressed in cataracts, inhibiting 
proliferation and inducing apoptosis of SRA01/04 cells. 
 
MIR34A directly targets and represses the expression 
of HK1 
 
MiRWalk was used to investigate the potential mRNAs 
targeted by MIR34A and find potential binding genes. 
The results indicated that MIR34A may bind to 
hexokinase 1 (HK1).  TargetScan was then used to 
analyze the HK1 for MIR34A binding sites. We found 
positions 2730-2737 bp matched a single recognition 
sequence (Figure 2A) identified in the 3′untranslated 
region (3′UTR) of HK1. To verify that HK1 is directly 
bound by MIR34A, we constructed a luciferase reporter 
gene of HK1 consisting of a seed target for MIR34A in 
the 3′UTR and the Renilla luciferase gene in the plasmid 
psiCHECK. When MIR34A and HK1 3′UTR WT were 
co-transfected into 293T cells, Renilla luciferase gene 
expression significantly decreased (Figure 2B). However, 
this suppression effect disappeared when the seed sites 
were mutated. These results suggest that MIR34A can 
directly bind to HK1, inhibiting its expression. 
 
To further verify our luciferase reporter results and 
investigate whether MIR34A could regulate the 
expression of HK1, we characterized the expression of 
HK1 when the expression of MIR34A was upregulated in 
SRA01/04 cells. Our data suggest that overexpression of 
MIR34A, significantly suppressed the expression of HK1 
at 48, 96, and 120 h after treatment with MIR34A mimics 
based on the levels of both mRNA (Figure 2C) and 
protein (Figure 2D). These results indicate that HK1 is 
involved in the pathological development of cataracts and 
that this is regulated by the direct binding of MIR34A. 



www.aging-us.com 6333 AGING 

Downregulation in HK1 expression suppresses the 
proliferation and induces the apoptosis of SRA01/04 
cells 
 
To determine whether HK1 affects the proliferation and 
apoptosis of SRA01/04 cells, HKI was silenced using 

siRNA HK1. Following transfection of siRNA HK1, the 
expression of HK1 of SRA01/04 cells was significantly 
decreased as determined at both the mRNA (Figure 3A) 
and protein (Figure 3B) levels. The CCK-8 assay was 
used to quantify SRA01/04 cell proliferation, and the 
results show significantly reduced cell proliferation at 

 

 
 

Figure 1. MIR34A is overexpressed in cataracts, inhibiting proliferation and inducing apoptosis of SRA01/04 cells. (A) RT-qPCR 
analysis was performed to detect the expression of MIR34A after MIR34A mimics were transfected into SRA01/04 cells. (B) SRA01/04 cells 
were performed as A, the viability of cells was assessed at 48 h, 96 h, and 120 h by CCK-8 after transfected. (C) SRA01/04 cells were 
performed as A, and the cell apoptosis was assessed at 96 h, 120 h, and 144 h by flow cytometry. (D) SRA01/04 cells were performed as A, 
the TUNEL assay was performed to detect the apoptosis at 120 h. Scale bars: 100 μm. *P < 0.05; **P < 0.01; ***P < 0.001. 
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48, 96, and 120 h after siRNA HK1 transfection (Figure 
3C). Flow cytometry was used to measure the apoptotic 
rate, and the results show the apoptotic rate was 
significantly increased in SRA01/04 cells transfected 
with siRNA HK1 compared with the NC siRNA group 

(Figure 3D). In addition, an increase in TUNEL-
positive cells was observed after the downregulation of 
HK1 (Figure 3E). All these results indicate that 
downregulating the expression of HK1 suppresses the 
proliferation of SRA01/04 cells and induces apoptosis. 

 

 
 

Figure 2. MIR34A directly targets and represses the expression of HK1. (A) A Bioinformatics-based target analysis showed that HK1 
is a potential target of MIR34A. (B) The 293T cells were transfected with MIR34A and HK1 3’UTR WT co-transfected into 293T cells. 
Luciferase reporter assay showed that the luciferase activity of HK1 3′UTR-WT significantly decreased with MIR34A mimic transfection, 
compared to that of the NC mimic or HK1 3′UTR-mutant group. (C) RT-qPCR analysis was performed to detect the expression of HK1 after 
MIR34A mimics were transfected into SRA01/04 cells at 48 h, 96 h, and 120 h. (D) SRA01/04 cells were performed as C, and the expression 
of HK1 was detected by western blot. *P < 0.05; ***P < 0.001. 
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Mir34a modulates the opacification of the lens via 
the regulation of Hk1 expression 
 
To evaluate whether Mir34a plays a crucial role in the 
pathological development of cataracts via regulating 

the expression of HK1, we cultured the mouse lens 
in vitro with or without Mir34a mimics, siHk1, or Hk1 
inhibitor (deoxyglucose). As illustrated in Figure 4A, 
the lens explant showed more severe opacification 
after co-culturing with Mir34a, siHk1, and 

 

 
 

Figure 3. Downregulation in HK1 expression suppresses the proliferation and induces the apoptosis of SRA01/04 cells.  
(A) SRA01/04 cells were transfected with siRNA HK1, and the effect of siHK1 on HK1 expression in mRNA level was detected by RT-qPCR 
assay. (B) SRA01/04 cells were performed as A, and the effect of siHK1 on HK1 expression at the protein level was analyzed by western blot. 
(C) SRA01/04 cells were performed as A, the viability of cells was assessed at 48 h, 96 h, and 120 h by CCK-8 after transfected. (D) SRA01/04 
cells were performed as A, cell apoptosis was assessed at 96 h, 120 h, and 144 h and was detected by flow cytometry. (E) SRA01/04 cells 
were performed as A, cell apoptosis at 120 h by TUNEL assay. Scale bars: 100 μm. *P < 0.05; ***P < 0.001. 
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deoxyglucose than the control group (NC group) 
separately. Additionally, Hk1 expression on the lens 
epithelium was detected by immunofluorescence. The 
results show that Hk1 expression on the lens epithelium 
decreased after the lens explant was co-cultured with 
Mir34a mimics and siHk1, and no noticeable Hk1 
changes were observed after the lens explant was co-
cultured with deoxyglucose (Figure 4B). TUNEL assay 

was then used to characterize apoptosis in cells of the 
lens epithelium, which showed that TUNEL-positive 
cells of the lens epithelium increased after co-culture 
with either Mir34a mimics, siHk1, or deoxyglucose 
compared to the control group (Figure 4C). These 
results indicate that Hk1 modulates the apoptotic rate of 
cells in the lens epithelium and lens opacification via 
targeting of Hk1. 

 

 
 

Figure 4. Mir34a modulates the opacification of the lens via the regulation of Hk1 expression. (A) The lens explant of the 
mouse was co-cultured with Mir34a, siHk1, or deoxyglucose, then the opacification of the lens was observed. (B) Lens explants of the 
mouse were performed as A, and Hk1 expression on lens epithelium was detected by immunofluorescence. Scale bars: 20 μm. (C) Lens 
explants of the mouse were performed as A, and the apoptosis of lens epithelium was detected by TUNEL. Scale bars: 20 μm. ***P < 0.001. 



www.aging-us.com 6337 AGING 

MIR34A modulates LECs apoptosis and cataract 
development through the HK1/caspase 3 signaling 
pathway 
 
Previous research has shown that caspase 3 is involved 
in HK1-associated cell apoptosis [27, 28]. Therefore, to 

determine whether MIR34A modulates LEC apoptosis 
and cataracts through the HK1/caspase 3 signaling 
pathway, we detected the expression of caspase 3 with 
or without MIR34A mimics or siHK1. The results show 
an increase in caspase 3 after treatment with MIR34A 
mimics (Figure 5A) and transfection of siHK1 (Figure 5B) 

 

 
 

Figure 5. MIR34A modulates LECs apoptosis and cataract development through the HK1/caspase 3 signaling pathway.  
(A) SRA01/04 cells were transfected with MIR34A mimic and the expression of active caspase 3 at 120 h was detected by 
immunofluorescence. Scale bars: 100 μm. (B) SRA01/04 cells were transfected with siHK1 and the expression of active caspase 3 at 120 h 
was detected by immunofluorescence. Scale bars: 100 μm. (C) Lens explants of mice were co-cultured with Mir34a, siHk1, or deoxyglucose, 
and the expression of active caspase 3 of lens epithelium was detected by immunofluorescence. Scale bars: 20 μm. 



www.aging-us.com 6338 AGING 

into SRA 01/04. Additionally, we detected caspase 3 in 
the lens epithelium of the lens explant. We found 
caspase 3 to be highly expressed in the lens epithelium 
of the lens explant after co-culturing with either Mir34a 
mimics, siHk1, or deoxyglucose compared to the 
control group (Figure 5C). All these findings indicate 
that MIR34A modulates LEC apoptosis and cataract 
development through the HK1/caspase 3 signaling 
pathway. 
 
DISCUSSION 
 
The exact pathogenesis of cataracts, namely in the 
opacification of the lens, remains unclear. It has been 
verified that the miR-34 family plays significant roles 
in many aspects, including in proliferation, 
apoptosis/cell survival, and senescence/aging by 
regulating the expression of target genes; however, 
its biological effects on LEC apoptosis and cataracts 
remain unclear. HK1, as the rate-limiting enzyme in 
glucose metabolism, which plays a crucial role in 
ATP production in the lens, was identified as one of 
the putative mRNA targets of MIR34A. However, its 
biological effects on the apoptosis of LECs and 
cataracts remain unclear. Specifically, our results 
from cultured cells and mouse lenses reveal that 
MIR34A modulates the HK1/caspase 3 signaling 
pathway and has a crucial role in LEC apoptosis and 
cataracts. 
 
Increasing miRNAs have been identified to be 
aberrantly expressed in the process of disease 
development, and miRNAs are potential therapeutic 
targets for diseases, including cataracts [29, 30]. 
Previous studies have shown that MIR34A is involved 
in various diseases, including myocardial infarction 
[31], senescence [32], tuberous sclerosis complex [33], 
and hepatocellular carcinoma [34]. Additionally, 
MIR34A is abnormally expressed in some age-related 
diseases, such as age-associated heart failure [35], 
atherosclerosis [36], and posterior capsule opacification 
[37]. Chien et al. [38] demonstrated that MIR34A plays 
a crucial role in lens senescence. Consistent with a 
previous study, our results showed overexpression of 
MIR34A in the LECs of cataracts [20]. Additionally, we 
found that overexpression of Mir34a accelerated the 
opacification of the mouse lens. Han et al. [37] found 
MIR34A can inhibit the epithelial–mesenchymal 
transition of LECs via regulating Notch1 to inhibit the 
occurrence of posterior capsule opacification. Feng 
et al. [39] demonstrated MIR34A might be an inhibitor 
in posterior capsule opacification via regulating human 
LEC proliferation and migration by targeting c-Met. 
Additionally, Li et al. [40] found MIR34A promotes the 
apoptosis of human lens epithelial cells by 
downregulating Bcl-2 and SIRT1. 

As an essential enzyme responsible for the first step of 
glycolysis, HKs are involved in many diseases and are 
controlled by miRNAs. Most previous research points 
to a relationship between HK2 and miRNAs, but little is 
known about the interaction between HK1 and 
miRNAs. Chen et al. [41] found that long noncoding 
RNA PVT1 increased the expression of HK2 by its 
competitive endogenous RNA activity against miR-143 
in gallbladder cancer. Ren et al. found [42] 
circDENND4C silence suppresses glycolysis by 
downregulating the expression of HK2 via targeting 
miR-200 under hypoxia. Lin et al. [43] demonstrated 
that taurine regulates cell growth, metastasis, and 
glycolysis through the miR-455-3p/HK2 pathway in 
hepatocellular carcinoma patients. Recently, Zhou et al. 
[44] demonstrated that MIR34A could inhibit the 
development of hepatocellular carcinoma by regulating 
HK1 expression. Consistent with the previous study, 
our results show MIR34A inhibits HK1 expression by 
binding to the 3′UTR of HK1. Additionally, we found 
that overexpression of MIR34A inhibited the 
proliferation and induced the apoptosis of SRA01/04 
cells via HK1 targeting. Moreover, we found that 
overexpressing Mir34a accelerated the opacification of 
the mouse lens via the regulation of Hk1 expression. 
 
Apoptosis plays a vital role in cataract formation, both 
in vitro and in vivo. Research has shown that treatment 
of lenses with stress factors induces LEC apoptosis and 
leads to eventual noncongenital cataracts [45, 46]. HKs 
and apoptosis are closely related. Chu et al. [47] showed 
HK2 could increase the levels of Bcl-2 and decrease the 
levels of apoptosis in retinal oxidative stress injury. 
Additionally, Behar et al. [48] found that selectively 
detaching HK2 by Comp-1 (a small allosteric molecule) 
can reduce glycolysis and trigger apoptosis in cancer 
cells without affecting the expression of HK1 in normal 
cells. However, the observations of Sen et al. [28] 
suggest that dissociating HK1 from the mitochondria 
can induce apoptosis in human immunodeficiency 
virus-1 infected peripheral blood mononuclear cells. 
Consistent with the previous study, our results showed 
downregulation in the expression of HK1 significantly 
induced apoptosis in LECs. Moreover, we found that 
downregulated Hk1 accelerated the opacification of the 
lenses of mice. 
 
The family of caspases plays a crucial role in apoptosis; 
among all the family members, activated caspase 3 is 
the most abundant executioner caspase [49]. Many 
studies have identified that the activity of caspase 3 is 
regulated by HKs [28, 50, 51]. In retinal epithelial cells 
of retinal oxidative stress injury, HK2 knockdown can 
induce apoptosis via an increase in cleaved caspase 3 
[47]. In small pulmonary arteries, reduced expression  
of HK2 enhanced the expression of caspase 3 [51].  
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In human immunodeficiency, virus-1 infected 
macrophages, dissociation of HK1 from mitochondria 
in viral protein R transduced U937 also activated 
caspase 3/7 activity [28]. According to the previous 
study, a reduction of 50% in HK1 is severe enough to 
decrease the inner mitochondrial membrane (IMM) 
potential, and disrupt the IMM potential and 
mitochondrial integrity. Furtherly, a reduction of 50% 
in HK1 accelerated TNF-induced apoptosis by Bcl-2/ 
Bax signal pathway [52, 53]. Additionally, when HK2 
drops to 50% in the mitochondria of cardiomyocytes, 
caspase 9 and caspase 3 are activated, then leading to 
apoptosis [54]. In our research, we found that after 
reducing HK1 expression to less than 50% by MIR34A 
or siHK1, the activity of caspase 3 was increased in 
SRA01/04 cells and the LECs of mouse lenses. The 
reason why HK1 decreased by 50% was enough to 
cause cataracts and apoptosis might be that IMM 
potential and mitochondrial integrity were destroyed in 
LECs. Additionally, the overexpression of Mir34a and 
Hk1 downregulation could inhibit proliferation and 
induce apoptosis in LECs. Overall, these results reveal 
that the MIR34A–HK1/caspase 3 signaling pathway 
plays a vital role in cataract formation. 
 
However, there are several limitations to our study. 
First, we only performed in vitro experiments in LECs. 
In vivo, experiments should be performed in mice to 
verify the role of MIR-34A and HK1 in cataracts. Many 
questions remain to be answered in mice, including 
whether the expression of HK1 is abnormal in the LECs 
of mice and whether regulating the expression of 
MIR34A and HK1 can prevent cataracts. Second, 
although two isomers (HK1 and HK2) are expressed in 
the human lens, we only detected the function of HK1 
in LECs. Thus, whether HK2 is involved in cataracts 
requires further exploration. Third, in our whole study, 
we did not directly detect the enzyme activity of HK1 
but only detected its expression at the mRNA level and 
protein level. To verify that decreased HK1 activity 
leads to LECs apoptosis, HK1 activity should be 
detected. Fourthly, to demonstrate that the caspase 3 
signaling pathway plays a vital role in cataract 
formation, we should disrupt the expression of active 
caspase 3 and then observe the opacification of the lens. 
These questions will be further studied in our future 
studies. 
 
In summary, despite the abovementioned limitations, 
our results demonstrate, for the first time, the HK1 
mRNA is a direct target of MIR34A, whereby the high 
expression of MIR34A in the cataracts lens suppresses 
the expression of HK1. In vitro, the upregulation of 
MIR34A together with the downregulation of HK1 
inhibits the proliferation, induces the apoptosis of 
SRA01/04 cells, and accelerates the opacification of 

mouse lenses via the HK1/caspase 3 signaling pathway. 
These findings provide a new perspective for research 
into the mechanisms underlying cataracts and provide a 
new direction for future studies of the molecular 
mechanisms of pathogenesis of cataracts. 
 
MATERIALS AND METHODS 
 
Study approval and material preparation  
 
The animals were maintained and treated in accordance 
with the ARVO Statement for the Use of Animals in 
Ophthalmic and Vision Research, and the present study 
was approved by the animal ethics committee of 
Zhongshan Ophthalmic Center, Sun Yat-sen University 
(Guangzhou, China; approval no. ID:2020136). The 
mice were housed in cages (one rat/cage) maintained in 
standard conditions (room temperature 23 ± 2°C; 
relative humidity 60 ± 10%; 12 h light/dark cycle) and 
were fed a standard laboratory diet with ad libitum 
access to water. 
 
Eight-week-old mice were intraperitoneally injected 
with the pentobarbital and euthanized by cervical 
vertebra dislocation. After enucleation, lenses were 
extracted from the globes using a posterior approach, 
washed with PBS, and then placed in a 12-well plate. 
Each well contained 3 mL of prewarmed bicarbonate-
based medium 199 (Gibco) supplemented with 
penicillin (100 U/mL) and streptomycin (100 U/mL). 
Lens explants were cultured for 24 h and damaged and 
contaminated lenses were excluded. These were treated 
with 50 nM MiR34a agomir (Guangzhou RiboBio Co., 
Ltd., China), 50 nM siHk1 (Guangzhou RiboBio Co., 
Ltd., China), or 20 mM deoxyglucose (Beyotime 
Biotechnology, China). Photography, TUNEL, and 
immunofluorescence for caspase 3 and Hk1 were 
performed after the lens explant was treated for 96 h. 
 
Lens opacity was evaluated by the severity of whole 
lens opacity after the MiR34a agomir, siHk1, or 
deoxyglucose treatment for 96 h. For the severity of 
whole lens opacity, lens images were captured with an 
Olympus D5100 camera (Nikon, Tokyo, Japan). The 
lens images were converted into 8-bid grayscale images 
and analyzed using the open-source software ImageJ 
[55]. Distributions of pixel intensities were plotted into 
a histogram, where an increase in the intensity value 
corresponded to the increased opacity of the lens.  
 
Cell culture and transfection  
 
Both the human lens epithelial cell line SRA01/04 (kind 
gifts from Xuhua Tan) and 293T cells (American Type 
Culture Collection, Manassas, VA, USA) were incubated 
at 37°C in a humidified incubator containing 5% CO2. 
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Table 1. List of primer sequences used for qPCR. 

Gene Sequences (5′–3′) 

HK1 
Forward: TATTCCCGGCGTTTCCACAA 

Reverse: GAAGTCACCATTCTCGGTCCC 

GAPDH 
Forward: TGACTTCAACAGCGACACCCA 

Reverse: CACCCTGTTGCTGTAGCCAAA 

U6 
Forward: GCTTCGGCAGCACATATACTAAAAT 

Reverse: CGCTTCACGAATTTGCGTGTCAT 

Hsa-MIR34A-5p 
Forward: TGGCAGTGTCTTAGCTGGTTGT 

Reverse: ACGGATGTCAACGTCACACT 
 
The 293T cells and SRA01/04 cells were, respectively, 
cultured in low- and high-glucose Dulbecco’s 
modified Eagle’s medium (DMEM; Gibco® 
Invitrogen; Thermo Fisher Scientific, Inc.), which 
contained 10% FBS, 100 U/mL penicillin, and 100 
U/mL streptomycin. 
 
The potential binding sites for MIR34A within the 3′-
untranslated region (UTR) of human HK1 were cloned 
into the dual-luciferase vector psiCHECK2 (Promega 
Corporation, Madison, WI, USA), and the construct was 
named psiCHECK-HK1. A mutant 3′-UTR fragment of 
HK1 with mutations in MIR34A seed binding sites was 
generated, which was named psiCHECK-HK1 mut. 
MIR34A mimics, small interfering (si)HK1, and 
negative control were synthesized by Guangzhou Ruibo 
Biological Co., Ltd. (Guangzhou, China). Plasmid and 
microRNA mimics were co-transfected using 
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, USA) 
and RNAiMAX (Invitrogen, Carlsbad, CA, USA), 
respectively. 
 
RT-qPCR 
 
Total RNA was extracted using TRIzol reagent 
(CW0580S, CoWin Biosciences, China) according to 
the manufacturer’s instructions. The HiScript II Q RT 
SuperMix for qPCR (R223-01, Vazyme, China), 
miRNA cDNA synthesis kit (CW2141S, Cowin 
Biosciences, China), and miRNA qPCR assay kit 
(CW2142S, Cowin Biosciences, China) were used for 
qPCR. The primer sequences and their targets are 
detailed in Table 1. The 2−ΔΔCT method was used to 
calculate the relative expression levels of genes. 
 
Cell viability assay 
 
The SRA01/04 cells were seeded into 96-well cell 
culture plates and incubated overnight to allow 
attachment. After the indicated treatments, cell viability 
was detected using the Cell Counting Kit-8 assay 

(KGA317, KeyGEN BioTECH, China) according to the 
manufacturer’s instructions. 
 
Flow cytometry and TUNEL assay  
 
Flow cytometry was used to characterize the apoptosis 
of SRA01/04 cells cultured in the presence of MIR34A 
mimic, siHK1, and their negative control at different 
time points of 96, 120, and 144 h. Apoptosis was tested 
with annexin V–fluorescein isothiocyanate/propidium 
iodide staining using an apoptosis detection kit (AP101-
100-kit, MULTI SCIENCES, China). The detailed 
procedures were performed according to the 
manufacturer’s instructions, and the samples were 
analyzed by flow cytometry (NovoCyte 2060R, ACEA 
Biosciences, Inc., USA). 
 
Cells were seeded into 96-well cell culture plates. After 
transfection for 120 h, the cells were fixed with 4% 
paraformaldehyde and permeabilized with 0.1% Triton 
X-100. A terminal deoxynucleotidyl transferase dUTP 
nick end labeling (TUNEL) assay was then conducted 
based on the manufacturer’s instructions (Beyotime 
Biotechnology, China). 
 
Dual-luciferase reporter assay  
 
Cells from line 293T were plated in 24-well plates  
for co-transfection of either psiCHECK-HK1 or 
psiCHECK-HK1 mut in the presence of MIR34A or the 
mimic control. At 48 h after transfection, a Tecan Safire 
Microplate Reader II (Tecan Group, Ltd., Mannedorf), 
Dual-Glo luciferase assay system (Promega Corporation, 
Switzerland) was used to detect fluorescence and 
Renilla luciferase activity. 
 
Western blot  
 
Cell lysates were harvested in a complete lysis buffer 
(Beyotime, Shanghai, China). The cell sample proteins 
were separated by SDS-PAGE (Beyotime Biotechnology, 
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P0012A) and electroblotted to a polyvinylidene 
difluoride membrane (PVDF; Millipore, IPVH00010) 
as previously described [56]. For all cases, the protein 
blot was blocked for one hour at room temperature 
with a blocking solution (5% nonfat dried milk) and 
tris-buffered saline and Tween 20. The membranes 
were incubated at 4°C overnight with dilutions of 
antibodies against HK1 (19662-1-ap, 1:500, Proteintech, 
USA) or GAPDH (TA-08, 1:2000, ZSGB-Bio, China). 
Following incubation with the corresponding secondary 
antibodies, enhanced chemiluminescence (RJ239676, 
Thermo Fisher Scientific, Inc., USA) was used for 
visualization. 
 
Immunofluorescence analysis 
 
Immunofluorescence analysis was performed on the 
SRA01/04 cells as previously described [57]. Cell 
samples were fixed and then incubated at 4°C 
overnight with anti-active caspase 3 (Asp175) 
antibody (#9661; 1:400; Cell Signaling Technology, 
Inc., Danvers, MA, USA) or HK1 (#2024; 1:200; Cell 
Signaling Technology, Inc., Danvers, MA, USA). 
Subsequently, Alexa Fluor 647-labeled goat anti-rabbit 
IgG (Beyotime Biotechnology, China) was added,  
and the nuclei were stained with 4′,6-diamidino-2-
phenylindole (Polysciences, 09224-10). The cells were 
observed using fluorescence microscopy. 
 
Statistical analysis 
 
Experiments were conducted three times with 
independent biological and technical replicates. One-
way analysis of variance was used to analyze and 
compare the differences between groups. Data are 
expressed as the mean ± standard deviation from at least 
three independent experiments. A p-value of less than 
0.05 was considered to indicate a statistically significant 
difference. 
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