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INTRODUCTION 
 

Acute myeloid leukemia (AML) is a cancerous 

condition that affects the hematopoietic system and is 

characterized by abnormal proliferation, hindered 

differentiation, and diminished apoptosis of stem cells 

[1–4]. The pathogenesis of AML is rooted in molecular 

genetics and cytogenetic alterations, which also have an 
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ABSTRACT 
 

Background: Acute myeloid leukemia (AML) is a common hematologic malignancy with a generally unfavorable 
prognosis. Cuprotosis as a new form of programmed cell death has been shown to play an important role in 
tumorigenesis and progression; However, the relationship between cuprotosis and the prognosis of AML 
patients remains unclear. 
Methods: Transcriptomic and genomics data, along with clinical information, were obtained from the TCGA and 
GEO databases. Especially, unsupervised clustering and machining learning were used to identify molecular 
subtypes and cuprotosis-related risk scores respectively. Kaplan-Meier analysis, univariate and multivariate Cox 
regression, and Receiver Operator Characteristic curve (ROC) were performed to assess the prognosis based on 
cuprotosis‐related genes (CRGs). Moreover, multiple algorithms were used to evaluate immunological 
heterogeneity among patients with different risk scores. For in vitro analysis, the expression of genes involved 
in CRGs was detected by Quantitative Reverse Transcription Polymerase (qRT-PCR) in AML patients. 
Results: Transcriptomic and genome data indicated the immense heterogeneity in the CRGs landscape of 
normal and tumor samples. Cuprotosis subtype A and cuprotosis regulatory subtype B in the genomics map and 
biological characteristics were significantly different from the other groups. Furthermore, these two subtypes 
had lower risk scores and longer survival times compared to other groups. Cox analyses indicated that risk score 
was an independent prognostic factor for AML patients. In addition, our risk score could be an indicator of 
survival outcomes in immunotherapy datasets. 
Conclusions: Our study demonstrates the potential of CRGs in guiding the prognosis, treatment, and 
immunological characteristics of AML patients. 
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impact on the prognosis and treatment of the disease 

[5, 6]. Despite recent advancements in immunotherapy, 

there are notable variations in the prognosis of 

individual patients, and current prognostic classification 

systems appear inadequate in providing precise 

assessments for diverse individuals [7]. Consequently, it 

is imperative to identify new biomarkers that can 

accurately predict patient prognosis. 

 

Programmed cell death (PCD) is a natural biological 

process that plays a crucial role in maintaining the 

stability of an organism. There are several recognized 

forms of cell death, including apoptosis, pyroptosis, 

necrosis, ferroptosis, and cuprotosis [8, 9]. Cuprotosis is 

another way of PCD induced by metal ions after 

ferroptosis, discovered by Tsvetkov and his colleagues 

in 2022 [10]. As a cofactor for essential enzymes, 

copper ions maintain a low concentration and maintain 

a dynamic balance [11], and play an important role in 

the homeostasis of cells, the accumulation and 

imbalance of intracellular copper ions will be toxic to 

cells and even induce cell death [12]. The study found 

that cuprotosis is caused by an excess of intracellular 

copper transported to mitochondria via ion carriers and 

directly bound to lipid-acylated components of  

the tricarboxylic acid cycle during mitochondrial 

respiration, resulting in the aggregation of lipid-acylated 

proteins and loss of iron-sulfur cluster proteins, which 

induces proteotoxic stress and ultimately leads to cell 

death [10, 13]. Cuprotosis, as a newly discovered form 

of PCD, holds potential in the diagnosis and treatment 

of tumors [14], however, the relationship between 

cuprotosis-related genes and AML (non-M3) prognosis 

is unclear and is an area of ongoing research. 

 

In this study, we downloaded gene expression data from 

The Cancer Genome Atlas (TCGA) database for the 

AML cohort and matched clinical data, and we 

determined the prognostic value of CRGs for AML. In 

addition, we also delved into the impact of CRGs on the 

immune microenvironment of AML patients. Our 

findings indicate that the CRGs have the potential to 

provide an effective and precise prediction of the 

prognosis for AML patients. Importantly, these findings 

also offer novel insights into the immunotherapy of 

AML. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The TCGA-LAML dataset was downloaded from the 

TGCA database, and GSE37642 (GSE37642-GPL96, 

GSE37642-GPL570) and GSE12417 (GSE12417-

GPL96, and GSE12417-GPL570) were downloaded 

from the GEO database. Mutation data and copy 

number variation (CNV) data were also downloaded 

from TCGA database. We used the “sva” package to 

eliminate the batch effect in RNA-seq and microarray, 

Finally, we annotated 11,1917 protein-coding mRNA in 

the meta dataset. We excluded incomplete survival 

information, non-whole bone marrow sequencing, M3, 

and repeated sequencing samples. Finally, 116 patients 

were included in the TCGA cohort, 539 patients in the 

GSE37642 cohort, and 233 patients in the GSE12417 

cohort. Cuprotosis‐related genes (CRGs) were collected 

from previous references. The expression data were 

log2 transformed and normalized. The Gene MANIA 

database was used to construct protein-protein 

interactions (PPI) network. 

 

Unsupervised consensus clustering 

 

In the meta-cohort (combined TCGA dataset and GEO 

dataset), based on prognostic CRGs, we used un-

supervised consistent clustering (“ConsensusClusterPlus” 

package) to divide all patients and principal component 

analysis (PCA) was used to determine whether each 

subtype was relatively independent of the others. 

Importantly, 1000 repetitions were performed, pltem = 

0.8, to verify the stability of the subtype in unsupervised 

consistent clustering. 

 

Functional enrichment analysis  

 

Gene set variation analysis (GSVA) was used to 

evaluate differences in biological pathways between 

subtypes, using c2.cp.kegg.v7.0.symbol as a reference 

gene set, FDR < 0.05 was the threshold. Moreover, we 

used the “limma” package to analyze the differential 

expression genes (DEGs) between different subtypes, 

next, we used “clusterProfiler” package for functional 

enrichment based on DEGs, P-value < 0.05 and q-value 

< 0.05 was the threshold. 

 

Tumor immune microenvironment 

 

Overall, following the pipeline in previous studies, we 

used eight algorithms (TIMER, CIBERSORT, 

QUANTISEQ, MCP-counter, XCELL, EPIC, ssGSEA, 

and ESTIMATE) to estimate the abundances of immune 

cells for each sample in TCGA and GEO dataset. 

 

Response to targeted drugs 

 

Relevant references have confirmed the important role 

of the cell cycle, PI3K/mTOR pathway, and Wnt 

pathway in the progression of AML. Hence, we used 

the “pRRophetic” package to calculate the half maximal 
inhibitory concentration (IC50) of different targeted 

drugs, including CGP.60474 (cell cycle), JW.7.52.1 

(PI3K/mTOR), and CHIR.99021 (Wnt). 
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Table 1. Primer sequences. 

Gene Primer sequences (5′–3′) 

β-actin-F CACCCTGAAGTACCCCATCG 

β-actin-R GATAGCACAGCCTGGATAGCA  

LIPT1-F TGGATGTGCAGGCTACCAAA 

LIPT1-R CGGCCGATCTTAGAAGCTGT 

DBT-F ACCTGAAGTAGCCATTGGGG 

DBT-R AGCGTGACATTGTAGCACCA 

DLST-F CTGCCTGGGGTCTCCTTATG 

DLST-R AAACGCTGGGGTTTTGACTG 

 

Machine learning-derived risk cuprotosis-related 

risk score 

 

We performed our previous workflow to construct a 

consensus prognosis model for AML patients. Firstly, 

we constructed 55 combination of machine learning 

algorithms based on nine algorithms, including LASSO, 

GBM, Survival-SVM, SuperPC, ridge regression, 

plsRcox, CoxBoost, StepCox, and Enet [15]. We used 

models that can perform variable filtering as the pre-

model. Subsequently, we used the GSE37642 as the 

training set to construct signatures in prognostic DEGs 

matrix based on different cuprotosis subtypes. We 

selected the best consensus prognostic model based on 

the mean C-index of the three cohorts (GSE37642, 

TCGA-LAML and GSE12417). Risk score was 

calculated for each patient based on the expression of 

each candidate variable and the coefficients in the final 

model. ROC curve was used to evaluate the predictive 

performance of risk score for OS. The prognostic 

difference was analyzed by Kaplan-Meier analysis and 

log-rank test. In addition, we downloaded the IMvigor-

210 cohort, and GSE78220 cohort from the previous 

references to generate a risk score and verify the effect 

of the risk score in the immunotherapy cohort. 

 

Quantitative real-time polymerase chain reaction 

 

Peripheral blood samples were collected from AML 

patients (12 cases) and healthy volunteers (11 cases) from 

Puyang Oilfield General Hospital. Patient RNA was 

extracted by Trizol reagent (Invitrogen, Carlsbad, CA, 

USA) according to the manufacturer’s protocol and 

cDNA was synthesized by reverse transcription kits 

(TAKARA, Japan). QRT-PCR was performed using a 

Step One Plus qRT-PCR machine (Applied Biosystems, 

Waltham MA, USA). All primers were provided by 

Suzhou Jinweizhi Biotechnology Co., Ltd (Jiangsu, 

China). The primer sequences as shown in Table 1. 

 

Statistical analysis and software 

 

The statistical analyses were conducted in the R software 

(version 4.1.2). Specific statistical methods have been 

mentioned in the bioinformatics methods above. ***, **, *, 

ns refers to p < 0.001, < 0.01, < 0.05, and not significant, 

respectively. The Microsoft Office PowerPoint software 

is used to generate images for this article. 

 

RESULTS 
 

Genetic variation and expression of cuprotosis-

related regulatory genes in AML 

 

We first explored the landscape of 12 annotated CRGs 

in meta cohorts. The location of the 12 CRGs in the 

chromosomes was shown (Figure 1A). We further 

compared the expression of these 12 CRGs in different 

risk categories (ELN 2017 risk category) of AML. 

Among AML patients in different risk categories, we 

found differences in DLD, LIAS, FDX1, ATP7A, and 

PDHD in the ELN 2017 risk category (Figure 1B). 

Furthermore, we compared the expression of 12 CRGs 

between normal and AML samples, and the results 

showed the expression of 11 CRGs (except for PDHB) 

was significantly different in normal and AML patients 

(Figure 1C, 1D). In detail, the expression of genes 

LIPT1, DBT, and DLST were significantly higher in 

AML patients. We also found CNV amplification in 

FDX1, DLAT, ATP7B, DBT, DLST and LIPT1 among 

these 12 CRGs, while mainly showed loss in other 

CRGs (Figure 1E). We also found DLD mutations with 

a frequency of only 1% (Figure 1F). The above results 

showed the expression difference maybe not be caused 

by somatic mutations, but by CNV. 

 

Analysis of the characteristics of different cuprotosis 

subtypes 

 

We investigated the relationships between the 12 CRGs, 

and the network showed that all 12 CRGs were 

associated (Figure 2A). Multiple data sets were 

normalized to increase the sample size (Supplementary 

Figure 1). In the network of survival and correlation 

analysis, the results showed that 12 CRGs were still 
highly associated (Figure 2B). In addition, we 

investigated the prognostic value of 12 CRGs, we 

carried out Kaplan-Meier analysis of each CRGs, and 
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the results showed that 11 CRGs had statistical 

significance on the overall survival (Supplementary 

Figure 2). Then, we divided AML patients into 3 subtypes, 

called cuprotosis subtypes A (n = 158), B (n = 426),  

and C (n = 304) (Figure 2C). The above various 

subtypes were demonstrated by PCA to be independent 

of one another over the whole gene expression spectrum 

(Figure 2D). Patients with subtype A had the best 

 

 
 

Figure 1. Expression and variation profiles of 12 cuprotosis-related genes in AML patients. (A) Location of CNV of 12 Cuprotosis 

genes on chromosomes. (B) Expression of 12 cuprotosis-related genes in AML patients with different risk stratification. (C) Heat map of 
cuprotosis-related genes in AML patients and normal population. (D) Difference in the expression level of cuprotosis-related genes 
between normal and tumour samples. (E) CNV frequency of Cuprotosis genes, the copy number amplification, green dot; the copy number 
deletion, red dot. (F) Mutation frequency of 12 cuprotosis-related genes in 130 samples. (*P < 0.05, **P < 0.01, ***P < 0.001). 
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survival compared to other subtypes, according to a 

Kaplan-Meier analysis (Figure 2E). We further analyzed 

the expression of 12 CRGs in the three subtypes and all 

12 CRGs were significantly differentially expressed in 

three cuprotosis subtypes (Figure 2F). 

To investigate the immunological characteristics of the 

three cuprotosis subtypes, we analyzed the relationship 

between the aforementioned cuprotosis subtypes and 

immune cells. The results revealed significant 

differences among the three subtypes in the level of 

 

 
 

Figure 2. Cuprotosis modification patterns identified with K-means clustering based on cuprotosis genes. (A) PPI network 

showing the interactions of the 12 cuprotosis-related genes. (B) The interactions of the 12 cuprotosis-related genes in meta cohort. (C) 
Heat map of unsupervised clustering analysis. (D) PCA of different cuprotosis subtypes. (E) Kaplan-Meier analysis of overall survival for 
different cuprotosis subtypes. (F) Box plot of cuprotosis-related gene expression in different cuprotosis subtypes in AML patients (*P < 0.05, 
**P < 0.01, ***P < 0.001). 
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infiltration of most immune cells, with high expression 

of activated B cells, CD4+ T cells, CD8+ T cells, 

dendritic cells, natural killer cells, γδ T cells, 

neutrophils and type II helper T cells in subtype A 

(Figure 3A). In addition, the three subtypes of the 

immune system displayed notable differences in antigen 

presentation, cytokine receptors, inflammatory 

response, and T cell activation and suppression (Figure 

3B). Additionally, we explored the differences in 

immune checkpoints among the subtypes and found that 

there were differences among most immune checkpoints 

(Figure 3C), with significantly increased expression of 

 

 
 

Figure 3. Immunological and biological characteristics of different cuprotosis subtypes. (A) Expression of immune-infiltrating 

cells in different cuprotosis subtypes. (B) Relationship between immune cell subsets of different cuprotosis subtypes and immune related 
functions. (C) Expression of immune checkpoints of different cuprotosis subtypes. (D) Box plots of the expression of different human 
leukocyte antigens in the three cuprotosis subtypes. (E) Analysis of differences in TME scores for three cuprotosis subtypes. (F) IC50 of 
three targeted drugs in different subtypes. (*P < 0.05, **P < 0.01, ***P < 0.001). 
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CD160, CD200, and CD27 in subtype A. Importantly, 

we discovered differences among the subtypes in most 

human leukocyte antigen class I-related gene (Figure 

3D). According to the ESTIMATE algorithm-based 

results, there were disparities in the tumour micro-

environment (TME) scores between the three subtypes, 

with subtype A score lower on both the immune and 

stromal scores (Figure 3E). Relevant references have 

confirmed the important role of the cell cycle, 

PI3K/mTOR pathway, and Wnt pathway in the 

progression of AML. It’s interesting to note that 

different subtypes respond differently to specific 

medications (Figure 3F). Specifically, subtype A was 

more sensitive to CHIR.99021, subtype B to JW.7.52.1, 

and subtype C to CGP.60474. 

 

Moreover, we further analyzed the biological functions of 

different cuprotosis subtypes using GSVA. Enrichment 

analysis revealed that expression of subtype B was 

upregulated in the majority of metabolic pathways, 

including gluconeogenesis, pyruvate metabolism, amino 

acid metabolism, etc. (Supplementary Figure 3A). 

Contrarily, subtype A is mainly enriched in the porphyrin 

and chlorophyll metabolism and cytokinesis pathways 

(Supplementary Figure 3B), and differences in these 

pathways may be the reason why subtype A has a higher 

prognosis for survival when compared to other subtypes. 

Importantly, almost pathways were enriched in nutrient 

metabolism and circulation pathways, which was 

consistent with previous references on the intracellular 

mechanism of action of CRGs [13]. 

 

Characterization and identification of cuprotosis-

regulatory subtypes 

 

We identified 525 common DEGs between each other, 

and the above genes were enriched in cell cycle and 

metabolic pathways (Supplementary Figure 3C). 

Similarly, all samples were divided into 2 subtypes by 

unsupervised cluster analysis performed by DEGs, 

cuprotosis regulatory subtype A (n = 492) and B (n = 

394) (Supplementary Figure 3D), and survival analysis 

of the two regulatory subtypes showed that regulatory 

subtype B had a better median survival time than 

regulatory subtype A (Supplementary Figure 3E). 

Subsequently, we analyzed the expression of 12 CRGs 

in two regulatory subtypes. In detail, the results showed 

that FDX1, LIAS, DLD, DLAT, PDHA1, PDHB, 

ATP7A, and ATP7B were significantly different 

(Supplementary Figure 3F). 

 

Construction and validation of a risk score and 

prognostic model 

 

The above construction of different subtypes provides 

some reference value for the prognosis of AML, but 

the above two kinds of subtypes only represented 

population. However, the absence of some clinical 

characteristics and individual assessments may result 

in clinical practice not being available. We calculated 

the C-index in all cohorts and selected the 

LASSO+Cox (stepwise) algorithm as the final model 

(Figure 4A). In detail, redundant genes were removed 

by LASSO regression, and 11 regulators were 

screened and the coefficients of each regulator were 

calculated by Cox regression (stepwise) analysis 

(Figure 4B). Next, the AML sample was divided into 

low-risk and high-risk groups based on risk scores, and 

patient fatalities increased as risk scores rose (Figure 

4C). We further analyzed the expression of 11 

regulators in high-risk and low-risk groups of patients 

in different datasets revealed that the expression of 

AKR1B1, ID1, SPINT2, and CYB5A was higher in 

high-risk patients (Figure 5A). Patients in the high-risk 

category in various data sets all had significantly 

shorter OS than those in the low-risk group (p < 0.05), 

according to Kaplan-Meier analysis, which was used 

to examine the impact of different subtypes on 

prognosis. The AUC value for the TCGA cohort at 1, 

3, and 5 years were: 0.634, 0.708 and 0.683, and the 

AUC value for the GES37642 at 1, 3, and 5 years 

were: 0.723, 0.760 and 0.751. For GSE12741 cohort, 

the AUC value at 1 and 3 years were: 0.738 and 0.738 

(Figure 5B). In addition, we again performed 

univariate and multivariate Cox regression analysis on 

important clinical features (FAB subtype; age; gender; 

ELN2017 risk category [16]; leukocytes; platelets; 

bone marrow blasts; runx1-runx1t1 fusion; runx1 

mutation) and risk scores to determine whether they 

were independent prognostic factors for OS, and the 

results showed that risk score was an independent 

prognostic factor (Figure 5C). 
 

To predict the cuprotosis model more accurately at the 

individual level, we first compared the risk scores of 

different cuprotosis subtypes and cuprotosis 

regulatory subtypes and found that cuprotosis subtype 

A and cuprotosis regulatory subtype B had lower risk 

scores (Supplementary Figure 4A, 4B), which also 

corresponded to the better prognostic survival 

described above. Moreover, we used a Sankey 

diagram to display the association between cuprotosis 

subtypes, cuprotosis regulatory subtypes, risk score 

groups, and prognosis. The results revealed that the 

majority of the subtypes with bad prognoses were 

significantly linked to high risk and low survival 

(Supplementary Figure 4C). Finally, we further 

explored the composition of immune cells, and the 

results revealed that the high-risk score group 
exhibited more Tregs cells, fibroblasts, endothelial 

cells, and other multiple cell infiltrates (Sup-

plementary Figure 4D, 4E). 
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Validation of the risk score in immunotherapy 

cohorts 

 

Due to the lack of information on therapeutic agents for 

AML patients, we selected immunotherapy cohorts 

(GSE78220 cohort and IMvigor cohort) as validation sets 

to predict the response to immunotherapy. In the 

GSE78220 cohort (anti-PD-L1), we discovered that the 

low-risk score group had a significantly longer median 

survival time compared to the high-risk group, while in the 

IMvigor cohort we found that the survival time and 

response to treatment was better in the high-risk score 

group than in the low-risk score group after treating PD-1 

treatment (Figure 6A, 6B). Overall, our risk score model 

can, to some extent, guide the treatment of tumors in anti-

PD-1 or anti-PD-L1. It’s interesting to note that prognostic 

markers for immunotherapy varied based on the various 

blocking sites. Finally, we analyzed somatic mutations 

 

 
 

Figure 4. Characterization of different cuprotosis-regulatory subtypes. (A) The C-indexes of 55 machine-learning algorithm 

combinations in the three cohorts. (B) LASSO coefficient profiles and cross-validation for tuning the parameter selection in the LASSO 
analysis. (C) Risk Score and Survival Status. 
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between different risk score subtypes and showed that the 

frequency of mutations in the KIT gene was higher in the 

low-risk group, while the frequency of RUNX1 and 

TP53 mutations was higher in the high-risk group, and 

these two genes have been included in AML treatment 

guidelines as molecules with poorer prognosis, but the 

somatic mutation frequencies were not significantly 

different between the two groups (Figure 6C, 6D). 

Validation of cuprotosis-related genes in peripheral 

blood 

 

Considering that DBT, DLST, LIPT1 plays a key role in 

the cuprotosis-related pathways. Hence, we used qRT-

PCR to assess three CRGs in blood samples from 12 

AML patients and paired normal patients, the average age 

of the experimental group was 57.67 ± 14.55-years-old, 

 

 
 

Figure 5. Validation of risk scores in different cohorts. (A) Heat map of 11 prognostic model genes expressed in different risk score 

groups in the TCGA and GEO cohorts. (B) Kaplan-Meier analysis and time-dependent ROC curve analysis for different risk score groups in 
the TCGA cohort. (C) Forest plots of independent prognostic factors for univariate and multifactorial Cox analysis in three cohorts. 
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with a male proportion of 50.00%. The age of the 

control group was 58.75 ± 10.20-years-old, with a male 

proportion of 50.00%. There was no statistical 

difference between the two groups (P < 0.05). The 

results showed that the expression of genes DBT, 

DLST, LIPT1 was significantly higher in AML patients 

than in normal patients (Supplementary Figure 5). 

Data availability 

 

Publicly available data sets were analyzed in this study. 

This data can be found here: Publicly available data  

sets can be obtained from the TCGA (https://portal. 

gdc.cancer.gov/), GEO (https://www.ncbi.nlm.nih. 

gov/gds/). 

 

 
 

Figure 6. Validation of risk scores in different immunotherapy cohorts. (A) Kaplan-Meier analysis of different risk scores and 

response to drugs in the GSE78220 cohort. (B) Kaplan-Meier analysis of different risk scores and response to drugs in the IMvigor-210 
cohort. (C, D) Frequency of somatic mutations in different risk score groups. 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
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Code availability 

 

The code that supports the findings of this study is 

available from the corresponding author upon request. 

 

DISCUSSION 
 

In recent years, technological advancements in 

detection, such as next-generation sequencing, have 

enabled the development of novel and effective 

treatments for acute myeloid leukemia (AML), 

including immunotherapy and molecularly targeted 

drug therapy. However, as one of the common 

malignant tumors in the blood system [17], despite 

these advances, AML remains a major challenge for 

healthcare systems, with its high heterogeneity resulting 

in low 5-year survival rates, particularly for young 

patients (35%) [18], and even poorer prognosis for 

elderly patients aged 65–74 years [19]. Given these 

challenges, identifying new prognosis-related genes and 

developing innovative prognostic models are crucial for 

the stratification of treatment and prognosis of AML 

patients. 

 

In recent years, the discovery of cuprotosis as a metal-

dependent mode of cell death has garnered significant 

attention in the field of cancer research [10]. This study 

analyzed the genetic and clinical characteristics of Acute 

Myeloid Leukemia (AML) patients in the TCGA and 

GEO datasets, and found that 11 out of the 12 candidate 

risk genes (CRGs) were differentially expressed between 

normal patients and AML patients. Further investigation 

into the prognostic implications of the expression of the 

11 genes revealed a correlation between high expression 

levels of ATP7B, DBT, FDX1, PDHA1, and PDHB and 

poor prognosis in AML patients. The ATP7B gene, 

located on human chromosome 13, encodes the 

production of the copper-transporting P-type ATPase 

[20]. Elevated expression levels of ATP7B have been 

shown to negatively impact chemotherapeutic efficacy in 

various solid tumors [21–24]. FDX1, a mitochondrial 

metabolic gene, has a crucial role in various processes, 

including amino acid and sugar metabolism. Abnormal 

expression of FDX1 can significantly alter cellular 

behavior, though its specific impact on tumors has yet to 

be fully understood [25]. The PDHB gene is a key 

component involved in gluconeogenesis, and previous 

studies have demonstrated that high expression levels in 

lung cancer patients are associated with reduced overall 

survival [26], which is consistent with our findings. The 

abnormal expression of the other genes analyzed in this 

study also holds prognostic significance for AML 

patients. 

 

In our analysis, we classified patients into three distinct 

cuprotosis subtypes based on the expression levels of 

the 12 CRGs. Cluster analysis revealed significant 

differences in the characteristics, biological behavior, 

TME immune cell infiltration, and patient prognosis 

among the subtypes. It was observed that the prognosis 

of subtype A was more favorable compared to the other 

two subtypes. Further analysis indicated that subtype A 

exhibited higher cytolytic activity (CYT) and 

infiltration of multiple immune cells, including 

activated B cells, CD4+ T cells, CD8+ T cells, and 

natural killer cells. CYT serves as a measure of 

inflammation and previous studies have shown that high 

CYT levels in tumors are associated with better overall 

survival rates [27]. Another study has previously 

suggested that immune cells CYT could serve as an 

indicator for the efficacy of immune checkpoint 

inhibitor therapy in prostate cancer patients. 

Furthermore, this study determined a correlation 

between immune cell CYT and overall immune 

function, with a notable increase in the proportion of 

CD8+ T cells in the group with high CYT expression as 

compared to the group with low CYT expression [28]. 

This result aligns with our findings. 

 

We employed a comprehensive analysis, utilizing 55 

combinations of machine learning algorithms to build 

models in various datasets, and differentiated high-risk 

and low-risk subtypes based on the results of these 

models. Our findings indicate that there are significant 

differences between the two subtypes, which were 

validated in multiple cohorts, including cuprotosis 

subtypes and cuprotosis regulatory subtypes, and in 

certain solid tumors. The lower risk scores for both 

cuprotosis subtype A and cuprotosis regulatory subtype 

B may also account for the better prognosis in these two 

groups. In addition, after incorporating more important 

clinical characteristics, univariate and multifactor COX 

regression analyses still showed that our risk score 

model could be used as an independent factor for 

prognosis, fully illustrating the stability of the model. 

Additionally, our analysis of the biological behavior of 

the different risk subtypes revealed that the high-risk 

score group exhibited higher infiltration of Tregs cells, 

endothelial cells, and macrophages. This observation 

may be associated with a poor prognosis. As a type of 

immunosuppressive cells, high expression of Tregs cells 

has been shown to result in the escape of tumor cells 

[29, 30]. Studies have reported that the expression of 

Tregs cells is higher in acute myeloid leukemia (AML) 

patients compared to healthy individuals [31], and that 

Tregs contribute to immune escape through the 

suppression of anti-leukemia treatment [32]. Macro-

phages, as a component of immune cells, play a crucial 

role in the inflammatory and tumor microenvironment 
[33], and are often implicated in the establishment of  

a microenvironment that is favorable to tumor 

progression through various mechanisms [34]. Tumor-
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associated macrophages promote tumorigenesis and 

progression by expressing pro-inflammatory cytokines 

in an inappropriate manner through disrupted inflam-

matory signaling pathways [35], and this inflammatory 

state also contributes to the progression of chronic 

lymphocytic leukemia (CLL) and the extramedullary 

infiltration of T acute lymphocytic leukemia (T-ALL) 

[36, 37]. Importantly, immunotherapy is a widely 

researched area in cancer treatment and is gaining 

prominence for improving the cure rate and long-term 

survival of patients. This includes therapies such as PD-

1 antibody and chimeric antigen receptor T cell therapy 

[38–41]. Our risk score model demonstrated significant 

differences across the groups receiving PD-1 or PD-L1 

therapy, implying that our model holds potential in 

guiding the application of immunotherapy. 

 

There are some limitations to our research. We only 

utilized public databases for initial exploration and did 

not examine real-world data, there may be differences in 

geography, skin color, age, and other aspects. 

Additionally, we lack sufficient information about 

immunotherapy for AML patients, which will be the 

focus of our future efforts. 

 

In conclusion, as a preliminary study of cuprotosis  

in AML, we demonstrated the relationship between 

cuprotosis-related genes, cuprotosis subtypes and 

prognosis of AML patients. Our study well 

demonstrates the prognostic value of cuprotosis in 

AML patients and will inform new AML therapeutic 

targets. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Normalization of multiple cohorts. (A, C) Data characteristics before normalization of the five cohorts. 

(B, D) Data characteristics after normalization of the five cohorts. 
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Supplementary Figure 2. Kaplan-Meier analysis of 11 cuprotosis-related genes. 
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Supplementary Figure 3. Characterization of different cuprotosis-regulatory subtypes. (A) Heat map showing KEGG enrichment 

analysis of cuprotosis subtypes A and B. (B) Heat map showing KEGG enrichment analysis of cuprotosis subtypes B and C. (C) Functional 
enrichment analysis of DEGs. (D) Heat map of unsupervised clustering analysis. (E) Kaplan-Meier analysis of overall survival curves for 
different cuprotosis-regulatory subtypes. (F) Box plot of cuprotosis-related genes expression in different cuprotosis-regulatory subtypes 
(*P < 0.05, **P < 0.01, ***P < 0.001). 
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Supplementary Figure 4. TME characteristics of risk score and their relevance with molecular subtypes. (A) Risk scores for 

different cuprotosis subtypes. (B) Risk scores for different cuprotosis-regulatory subtypes. (C) The relevance in cuprotosis subtypes, 
cuprotosis-regulatory subtypes, risk score, and survival status. (D) Heat map showing the relationship between different risk score groups 
and immune cells. (E) Bubble plots showing the relationship between different risk score groups and immune cells. 
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Supplementary Figure 5. Expression of three cuprotosis-related genes in clinical samples. (A) Expression of DBT gene in normal 

human and AML patients. (B) Expression of DLST gene in normal human and AML patients. (C) Expression of LIPT1 gene in normal human 
and AML patients. 


