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INTRODUCTION 
 

Old age is a major risk factor for a number of diseases, 

including many types of cancer, cardiovascular and 

neurodegenerative diseases [1–3]. Hence, there has been 

growing interest in developing interventions that target 

the biological process of ageing, in order to extend 

lifespan and healthspan [4, 5]. Non-pharmacological 

interventions like dietary restriction and genetic 
interventions have been quite successful for extending 

the lifespan of model organisms [6–9]. However, 

genetic interventions are difficult to apply to humans, 

and arguably relatively few people would be willing to 

undergo dietary restriction in the long term. Hence, 

pharmacological interventions are currently the most 

promising type of anti-ageing intervention for extending 

human lifespan and healthspan, and this is current  

a very active research area in the biology of ageing  

[10–12]. 

 

A large number of compounds have been found by  
in vivo experiments to be able to prolong the lifespan 

of model organisms – in particular, the DrugAge 

database contains data on 1096 compounds that have 
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been shown to extend the lifespan of model organisms 

[13]. Intuitively, the analysis of such data can lead to 

the discovery of novel lifespan-extending compounds, 

as well as potentially a further understanding of  

the underlying mechanisms of the biology of ageing 

[14, 15]. 

 

However, it is not feasible to manually analyse the 

relatively large volumes of data in DrugAge or other 

databases describing how each compound interacts with 

the biology of an organism. Hence, a promising 

research direction consists of analysing the data in such 

databases using machine learning algorithms that 

highlight patterns in data, particularly classification 

algorithms, which learn predictive models from data 

[16]. Therefore, recently there has been growing interest 

on applying classification algorithms to the data in 

DrugAge [17–20], in order to learn models that predict 

which compounds are more likely to extend the lifespan 

of a given organism, which is also the overall goal of 

this work.  

 

In this context, we have prepared datasets with four 

different types of features describing the properties of 

chemical compounds (including drugs) or proteins 

interacting with those compounds, and trained 

classification models using supervised machine learning 

(ML) methods to predict whether or not a compound 

significantly extends the lifespan of C. elegans worms, 

based on data in DrugAge and other databases.  

 

The most widely used model organism for studying 

biological mechanisms of ageing is C. elegans. It has 

several characteristics that facilitate in vivo experiments 

and ageing research, such as being easy and inexpensive 

to maintain, having a short lifespan of about 3 weeks, 

being easy to observe and having fully sequenced genes 

that are in great part homologous to human genes [21]. 

In addition, of particular relevance to this work, they are 

the model organism with the largest amount of data in 

the DrugAge database (667 out of 1096 entries) [13]. 

 

The computational process of knowledge discovery goes 

from the collection and preparation of the data to the 

analysis of the patterns found by the ML algorithms. 

During the data preparation process, for datasets with a 

large number of features (also called variables), like our 

datasets, it is common to perform a pre-processing task 

of feature selection (FS), which involves analysing the 

relationships in the data to select the most relevant 

features (independent variables) for the task at hand. We 

focused on the task of FS in this study, more specifically 

on filter methods, which rank features based on their 
relationship to the classification task, i.e., how much 

they influence the value of the class (target) variable. 

Hence, we applied filter methods in a pre-processing 

phase and used the selected features to train a classifier 

using the well-known random forest classification 

algorithm [22]. The most accurate predictive models 

were then further analysed to identify the features most 

relevant for our classification task and to identify novel 

compounds which have a high probability of extending 

the lifespan of C. elegans, as estimated by those best 

models. 

 

The datasets used in our experiments were generated 

following a methodology which is broadly similar to the 

one used in the study by Barardo et al. [17]. In their 

study, the authors used Random Forest (RF) classifiers 

for the same prediction problem, also using C. elegans 

DrugAge data to obtain the instances (ageing-related 

compounds). That study, similarly to other related 

works [18, 19], uses a combination of GO terms and 

chemical descriptors of the compounds, applying ML 

techniques to the same problem of discovering 

compounds related to C. elegans’ longevity. 

 

The novel contributions of our study compared to the 

related work in [17–20] are as follows. First, we created 

datasets using four different types of predictive features, 

based on Gene Ontology (GO) terms, drug (compound)-

protein interactions, interactions between compounds 

and proteins encoded specifically by ageing-related 

genes, and physiology terms from a Phenotype Ontology 

for C. elegans. GO terms have been used as predictive 

features in [17, 18], but the other three types of features 

proposed here are new types of features for predicting a 

compound’s effect on the lifespan of an organism using 

machine learning, to the best of our knowledge. Note 

that we do not use chemical descriptors as features, an 

approach used in [17–20], which generated models with 

good predictive accuracy. We do not use chemical 

features because they represent very specific chemical 

information which is not very meaningful for bio-

gerontologists. For instance, the three most important 

molecular descriptors in the best model learned in [19] 

were ‘number of nitrogen atoms’, ‘total positive van der 

Waals surface area of atoms with a partial charge in the 

range of 0.10 to 0.15’, and ‘hydrophobic volume’; which 

do not shed light on the kind of biological process 

associated with a drug. Hence, instead of such chemical 

descriptors, we use only biologically interpretable 

features, representing potentially relevant information 

for biogerontologists. 

 

The second contribution of this study is the proposal and 

evaluation of an approach that automatically selects the 

best filter method for feature selection from a set of 5 

candidate filter methods, using the training data. Finally, 
as additional contributions, we also perform a biological 

analysis of the most important predictive features in the 

best (most accurate) classification models learned from 



www.aging-us.com 6075 AGING 

our datasets, and identify promising new compounds for 

extending C. elegans longevity, i.e., compounds that 

have not yet been associated with an increased lifespan 

of C. elegans, but are predicted to be by our best models, 

with a very high probability. 

 

RESULTS AND DISCUSSION 
 

As mentioned earlier, our experiments were performed 

on datasets created from data available in the DrugAge 

database and other sources (see Section 4.1). In these 

datasets, each instance (record) represents a compound 

(drug), which consists of a set of predictive features 

(variables) and a class label to be predicted. The class 

labels indicate whether or not a compound was found to 

significantly extend C. elegans’ lifespan, represented as 

a positive or negative class label, respectively. In 

essence, a compound is assigned a positive class if there 

is an entry in the DrugAge database [13] showing that 

the compound extended the average lifespan of C. 
elegans by at least 5% and the extension was statistically 

significant, whilst the list of negative-class compounds 

was obtained mainly from related work [17], consisting 

of compounds which do not satisfy the above criterion 

for the positive class (see Section 4.1 for a more precise 

definition of the negative class). 

 

The datasets have approximately the same instances 

(compounds) and class labels, but each dataset has a 

different set of binary predictive features, as graphically 

summarised in Figure 1. More precisely, the four types of 

features (datasets) are: (a) Protein interactors: in this type 

of dataset each feature represents a protein and takes the 

value 1 or 0 to indicate whether or not that protein 

interacts with the compound associated with the current 

instance; (b) Gene Ontology (GO) term annotations: in 

this type of dataset each feature represents a GO term 

[23] and takes the value 1 or 0 to indicate whether or not 

the compound associated with the current instance 

interacts with at least one protein that is annotated with 

that GO term; (c) Physiology phenotype annotations: in 

this type of dataset each feature represents a physiology

 

 
 

Figure 1. The four types of predictive features in the datasets created for this study. (A) Protein Interactors, (B) Gene Ontology 

Terms, (C) Phenotypes, (D) Ageing-related genes. 
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term from the WormBase Phenotype Ontology [24], and 

takes the value 1 or 0 to indicate whether or not the 

compound associated with the current instance interacts 

with at least one protein that is annotated with that 

physiology term from the Phenotype Ontology; and (d) 

Ageing-related genes: in this type of dataset each feature 

represents a gene in the GenAge [25] or the GenDR [26] 

database, and it takes the value 1 or 0 to indicate whether 

or not the compound associated with the current instance 

interacts with at least one protein encoded by a gene in 

GenAge or GenDR. 

 

Note that the first feature type, protein interactors, 

represents a ‘direct’ property of a compound (drug), 

whilst the latter three feature types represent ‘indirect’ 

properties of a compound, in the sense that they are 

associated to the protein interactors and, by extension, to 

the compounds. To the best of our knowledge, of these 

four feature types, only GO terms have been used for 

predicting lifespan-extension compounds with machine 

learning algorithms [17, 18], and the other three feature 

types are novel contributions in this context. 

 

As shown in Figure 1B, 1C, the GO term annotations 

and the physiology phenotype annotations datasets have 

features that are hierarchically related via a 

generalization-specialisation relationship. That is, if an 

instance (compound) takes the value 1 for a GO term or 

physiology phenotype feature, that instance will also 

take the value 1 for ancestors of that GO term or 

phenotype feature in the corresponding hierarchy, 

where the ancestors represent more general properties 

than their corresponding descendant features in the 

hierarchy. 

 

For each feature type, we created two versions of a 

dataset. In “version 1”, every compound-protein 

interaction stored on the STITCH database is used to 

create predictive features, regardless of that interaction’s 

confidence score in the STITCH database. In “version 2” 

of a dataset, only compound-protein interactions with a 

confidence score of at least 45% in STITCH are used to 

create predictive features – this confidence-score 

threshold was also used in [17], and it represents a 

roughly ‘medium’ degree of confidence. See Section 4.1 

for more details on the confidence-score threshold and 

dataset creation. Note that these two dataset versions 

represent different trade-offs between the quantity and 

the quality of the data available for training machine 

learning models, as follows. The version-1 datasets have 

more features, which provides more information for 

learning; but some of those features have a relatively 

low confidence score (the minimum confidence score for 
protein interactions in STITCH is 15%). The version-2 

datasets have less features, providing less information 

for learning, but that information is more reliable. 

Hence, to investigate this trade-off, we have performed 

experiments with both versions of the datasets, for each 

type of predictive feature. 

 

Table 1 shows the number of compounds (instances) 

and features (variables), as well as the class imbalance 

details, for each of the 8 datasets prepared for this study. 

The two dataset versions for each of the four feature 

types are denoted by the suffix “_1” or “_2” at the end 

of the datasets’ names. The class imbalance ratio is 

calculated by dividing the number of majority-class 

instances (compounds that are not associated with 

ageing, the negative class) by the number of minority 

class instances (ageing-related compounds, the positive 

class). The imbalance ratio represents how many 

instances of the majority class the dataset has for each 

instance of the minority class. 

 

Most of our datasets have a high number of features in 

comparison to the number of instances, which can 

hinder the performance of classification algorithms. 

Thus, we applied feature selection (FS) methods to each 

dataset in a data pre-processing phase, before using a 

classification algorithm to learn a predictive model from 

the data. 

 

We performed experiments comparing six different 

types of FS methods. Five of these are based on well-

established FS methods that follow the filter approach 

[27, 28], where a FS method measures the degree of 

association between each feature and the class variable 

and then selects the top-ranked features based on those 

measures – see Section 4.2 for details. The experiments 

also included ensemble versions of those filter methods, 

called filter ensembles, which combine the outputs of 

many runs of a filter method in a way that mitigates the 

problem of class imbalance in our datasets in order to 

improve robustness and predictive accuracy, as 

explained in Section 4.3. The sixth type of FS method is 

a novel FS approach proposed in this paper (Section 

4.5), called Auto-Filter, that automatically performs a 

data-driven selection of the best filter or filter ensemble 

method for the input data, from a set of pre-defined 

candidate filter methods (Section 4.2) or filter ensemble 

methods (Section 4.3). The Supplementary Material for 

this paper has the detailed results of this comparison of 

FS methods. 

 

The remainder of this Section is divided into three 

subsections. In Subsection 2.1 we discuss the predictive 

accuracy results for the experiments with all the created 

datasets. In Subsection 2.2 we interpret the biological 

meaning of the results for the best predictive 
(classification) models. In Subsection 2.3 we identify 

the most promising novel compounds for extending  

C. elegans’s lifespan, as predicted by the best models. 
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Table 1. Description of the datasets used in this study. 

Dataset name Compounds Features Class imb. ratio 

Interactors_1 1120 5607 3.42 (22.6% pos.) 

Interactors_2 1059 2563 3.46 (22.4% pos.) 

GOTerms_1 1120 7588 3.42 (22.6% pos.) 

GOTerms_2 1059 5572 3.46 (22.4% pos.) 

Phenotypes_1 1103 1258 3.38 (22.8% pos.) 

Phenotypes_2 910 1008 3.36 (22.9% pos.) 

GenAge_1 1042 346 3.34 (23% pos.) 

GenAge_2 719 139 3.46 (22.4% pos.) 

 

In each of these subsections, we first discuss the results 

for the experiments with the version-1 datasets (using 

all compound-protein interactions in STITCH to create 

the predictive features), and then discuss the results for 

the experiments with the version-2 datasets (using only 

more reliable compound-protein interactions to create 

the features). 

 

Predictive accuracy results 

 

All models discussed in this Section were created using 

the following experimental setup. The classification 

models were trained using a Random Forest (RF) 

algorithm, which is among the top-performing 

classification algorithms in general [29, 30] and is very 

popular in bioinformatics, and has also been used in 

previous studies for predicting lifespan-extension 

compounds [17–19]. The RF has the advantage of 

facilitating an indirect analysis of feature importance, 

which can be useful for detecting highly predictive 

features for a given classification problem, as shown 

later in Section 2.2. More specifically, we used the 

‘Balanced Random Forest’ method [31] to cope with the 

class-imbalance issue in our datasets (see Section 4.6 

for details). 

 

As the RF algorithm has an embedded feature 

selection process, it is considered to be robust against 

datasets with a large number of features (like our 

datasets), so it is possible that performing FS in a data 

pre-processing step would not have a positive impact 

on the predictive accuracy of the resulting RF 

classifier. Therefore, we compared the results of a RF 

classifier trained using the candidate filter methods 

selected in our study, including the proposed Auto-

Filter approach, against a Baseline RF classifier using 

all the original features, i.e. not performing any FS 

prior to training the classifier. 

 

The predictive accuracy of the learned Random Forest 

classifiers was measured by the popular Area Under the 

ROC curve (AUC) measure, using a standard 10-fold 

cross-validation procedure [32]. The AUC measure 

takes values in the range [0..1], where 0.5 is the 

expected score for randomly guessing the class labels 

and 1 would be the score of a perfect classifier. We 

report the median AUC results over the 10 test folds of 

the 10-fold cross-validation, since the median is more 

robust to outliers than the mean. 

 

The first set of experiments was conducted on the 

version-1 datasets, whose features are based on all 

compound-protein interactions stored in STITCH.  

Table 2 shows a comparison of the median AUC results 

for these experiments, between a baseline Random 

Forest (RF) model (i.e., a RF model where no feature 

selection was used prior to training the model) and the 

best RF model, obtained by training the model with the 

filter method that led to the highest AUC value on the 

training set. As mentioned earlier, the complete results 

from this comparison, including all filter results, is 

available at the Supplementary Materials file. 

 

After evaluating the classification models using the cross-

validation approach, we performed a statistical analysis 

to investigate whether the RF models trained with the 

features selected by the best filter method significantly 

outperforms the baseline RF model (with no feature 

selection in a pre-processing step), for each dataset. We 

applied a two-tailed Wilcoxon signed-rank test [33] (a 

non-parametric test that does not make assumptions 

about the data distribution) comparing the AUC results of 

each fold of the cross-validation process pairwise, 

meaning the same training and test folds were used for 

each pair of classifiers we compared. Note that this 

means that the sample size for the Wilcoxon signed-rank 

test is 10, corresponding to the results on the 10 test sets 

of the 10-fold cross-validation procedure. None of the 4 

comparisons yielded significant results (p-values 0.275, 

0.625, 0.921 and 0.275 for Interactors_1, GOTerms_1, 

Phenotypes_1 and GenAge_1 datasets respectively), 

meaning we could not reject the null hypothesis that the 

methods’ performances are statistically equivalent at the 

standard significance level of 5%. 
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Table 2. Results for version-1 datasets: median AUC of the baseline 
RF model vs best RF model.  

Dataset Baseline Best model (best filter) 

Interactors_1 0.717 0.801 (Auto-Filter Ensemble) 

GOTerms_1 0.767 0.818 (Auto-Filter Ensemble) 

Phenotypes_1 0.741 0.761 (Ensemble of Decision Stump Filters) 

GenAge_1 0.683 0.757 (Single Decision Stump Filter) 

 

However, considering that the difference between the 

median AUC results was relatively high in some cases 

in Table 2 (e.g., 8.4% for the Interactors_1 dataset), it is 

possible that the small sample size (10) used by the 

Wilcoxon signed-rank test had too much influence on 

the results of the statistical test, since the p-values 

computed by statistical significance tests are quite 

sensitive to the sample size, and lack of statistical 

significance does not mean lack of biological relevance 

[34–38]. Thus, we also calculated a measure of the 

‘effect size’ for the differences of AUC values between 

each pair of methods in Table 2, which is a measure 

much less sensitive to sample size and is thus more 

suitable for identifying differences that are relevant in 

practice [34, 39], particularly when using a small 

sample size. 

 

More precisely, we calculated the popular Cohen’s d 

measure of effect size [34] for each dataset, as an 

approach for investigating the difference between the 

AUC values of the Baseline RF and the RF trained 

with the features selected by the best filter method, for 

each dataset (feature type). The effect sizes are usually 

classified into small (0.2 ≤ d < 0.5), medium  

(0.5 ≤ d < 0.8) and large (d ≥ 0.8), reflecting how 

apparent the difference between the groups is (with  

d < 0.2 indicating an irrelevant or negligible effect). 

 

For our comparisons of the results in Table 2, we found 

d = 0.593 for the Interactors_1 dataset (medium effect), 

d = 0.272 for the GOTerms_1 dataset (small effect), and 

d = 0.499 (borderline small, nearly medium effect) for 

the GenAge_1 dataset, which indicate a relevant 

difference in AUC values for these three datasets. Only 

the Phenotypes_1 dataset had d = 0.005, which indicates 

that the differences in the AUC values of the two 

approaches are negligible. 

 

The second set of experiments was conducted on the 

version-2 datasets, created using only compound-

protein interactions with a confidence score (in 

STITCH) above or equal to the threshold of 45%, 

representing a roughly ‘medium’ degree of confidence. 

Table 3 shows a comparison of the median AUC results 

for these experiments. 

In this set of experiments the combined use of RF and 

filter methods also outperformed the baseline RF 

algorithm in all cases, but the difference in performance 

was smaller. As with the previous set of experiments, we 

used the two-tailed Wilcoxon signed-rank test, followed 

by Cohen’s d measure of effect size, to compare the 

performances of the best RF model (with the best filter) 

to the baseline RF model, for each dataset. None of the 

Wilcoxon test results were significant (p-values 0.921, 

0.921, 0.322 and 0.284 for the Interactors_2, 

GOTerms_2, Phenotypes_2 and GenAge_2 datasets, 

respectively), so the null hypothesis that the AUC results 

between the two models is equivalent cannot be rejected 

at the standard significance level of 5%. Regarding the 

effect size analysis, the only dataset where a small effect 

was detected was GenAge_2 (d = 0.451). The others did 

not have significant effects (d = 0.018, d = 0.019 and d = 

0.0071 for Interactors_2, GOTerms_2 and Phenotypes_2 

datasets, respectively). 

 

These statistical results are not unexpected, considering 

that the median AUC values of the best RF models (with 

the best filters) are closer to the baseline RF model in 

this set of experiments with the version-2 datasets, by 

comparison with the results for the version-1 datasets. 

Note that the confidence-score threshold applied during 

the creation of the version-2 datasets filters out less 

reliable features, which simultaneously strengthens the 

use of the baseline RF algorithm and reduces the 

positive impact of applying filters to the dataset in a 

preprocessing step. Nevertheless, over all four datasets 

in Table 3, the ensemble filter methods consistently 

achieved a marginally better predictive accuracy. 

 

Next, we discuss the effect of the type of feature on the 

predictive accuracy of the classifiers for each dataset 

version. 

 

Across all RF classifiers for the version-1 datasets, the 

best and second best classifiers (with the highest median 

AUC values) were the RF classifies trained with the 

features selected by the Auto-Filter approach for the 

GOTerms_1 and the Interactors_1 datasets, respectively. 

In the experiments with the version-2 datasets, we again 

see that the best and second best models were produced 
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Table 3. Results for version-2 datasets: Median AUC of the baseline RF model vs 
best RF model. 

Dataset Baseline Best model (best filter) 

Interactors_2 0.747 0.752 (Information Gain, Ensemble Filter) 

GOTerms_2 0.765 0.772 (Decision Stump, Ensemble Filter) 

Phenotypes_2 0.716 0.718 (Information Gain, Ensemble Filter) 

GenAge_2 0.701 0.72 (Asymmetric Optimal Prediction, Ensemble Filter) 

 

with the GOTerms_2 and Interactors_2 datasets, 

respectively. 

 

In addition, for both versions of the datasets, the feature 

type leading to the smallest AUC value was GenAge. 

This seems at first glance surprising, since this is the 

only feature type that directly represents background 

knowledge on ageing. However, the lower performance 

of this feature type can be explained by the fact that its 

number of features is much smaller than the number of 

features for the other feature types (i.e. it provides much 

less information for learning), as shown in Table 1. 

 

Although at first glance the version-1 datasets led to 

higher AUC values than the version-2 datasets 

(comparing the results in Tables 2, 3), the comparison 

of the AUC values for these two dataset versions is 

complicated by the fact that they represent different 

trade-offs between the quantity and the quality of the 

data (predictive features), as mentioned earlier. Even 

though we used cross-validation to compute AUC 

values, and cross-validation is a very well-established 

methodology for measuring generalisation performance, 

the cross-validation procedure still has a limitation, as 

follows. When there is some noise in the entire dataset, 

the same kind of noise will in general be present in both 

the training and the testing sets. Hence, during cross-

validation, the model learned from the training set can 

incorporate some relatively spurious patterns capturing 

some noise in the training set, and those patterns could 

broadly hold on the test set, so that learning those 

patterns could artificially somewhat increase the 

apparent predictive accuracy (AUC value) on the test 

set. In the case of our experiments, the version-1 

datasets in principle have indeed somewhat more noise 

than the version-2 datasets, since some feature values in 

the former are less reliable. 

 

Hence, as a stricter evaluation of the predictive 

performance (generalisation ability) of the best models 

learned from the version-1 and version-2 datasets, we 

also evaluate those best models in an “external” 

validation dataset, which is completely independent 

from the dataset used for cross-validation. Since we used 

all compounds with data for C. elegans in DrugAge for 

performing the cross-validation experiments, we have to 

use, as an external validation dataset, compounds with 

data for another species in DrugAge. We chose  

D. melanogaster as the model organism for this external 

validation dataset because it is the second most common 

model organism on DrugAge, after C. elegans. 

Naturally, this is not ideal because the effects of a 

compound on longevity can vary significantly between 

organisms. Thus, any conclusion from this additional 

experiment is predicated on the major assumption that a 

compound’s effect on D. melanogaster’s lifespan would 

be broadly similar to its effect on C. elegans’ lifespan. 

 

For evaluation on the external D. melanogaster dataset, 

we selected four models in total, the two best models 

for each version of the C. elegans datasets – i.e., the 

models trained with protein interactors and GO terms, 

with their best filter method, for each dataset version. 

Hence, we used those four models, trained using  

C. elegans data, to predict the class label of 300 

instances in the corresponding D. melanogaster 

datasets, as external validation datasets. Each of the four 

D. melanogaster datasets was created using the same 

features used by the corresponding best model for  

C. elegans dataset and using the class labels defined by 

the data for D. melanogaster on DrugAge. 

 

For the version-1 datasets, with more features but less 

reliable features overall, the Interactors_1 model learned 

from C. elegans data had 0.551 median AUC on the  

D. melanogaster dataset (down from 0.801 on the  

C. elegans dataset), and the GOTerms_1 model had 

0.523 (down from 0.818). For the version-2 datasets, 

with less features but more reliable features overall, the 

Interactors_2 model learned from C. elegans data had 

0.642 median AUC on D. melanogaster data (down 

from 0.752 on C. elegans data), and the GOTerms_2 

model had 0.672 (down from 0.772). 

 

In summary, when using the best models trained on  

C. elegans data to classify D. melanogaster data (as a 

more challenging evaluation of generalisation ability), 

the reduction of accuracy we observed in the two best 

models learned from version-1 datasets was between 

25% and 30%, while the reduction for the two best 

models learned from version-2 datasets was about 10%. 

Although a substantially reduced predictive performance 
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was of course expected in these tests, considering the 

issue of using a different model organism in the external 

validation dataset, the much larger performance drop for 

the two best models learned from version-1 datasets 

(with more data but overall less reliable data) can be 

considered an indicator of overfitting of those models to 

the datasets they were trained on. Hence, the two best 

models learned from version-2 datasets (with less data 

but overall more reliable data) had better generalisation 

ability on the external validation datasets. These results 

also show the importance of using an external validation 

dataset, as a more challenging measure of generalisation 

ability, by comparison with cross-validation. 

 

Analysis of feature importance in the best predictive 

models 

 

Supervised machine learning models, in addition to 

being tools for predicting target variables, reflect 

patterns in the data used to train them. Interpreting a 

classification model, by identifying how its predictions 

are made, can help the user both check the internal 

consistency and biological validity of the decisions 

made by the algorithm and find interesting patterns that 

may spark new research directions. 

 

Random Forest models are ensembles of decision trees. 

Although a single decision tree can be directly 

interpreted (if it is not too large), directly interpreting 

each random tree in the forest is not feasible, due to the 

large number of trees. As an alternative, we can 

calculate a feature importance measure, which allows 

the user to see which features are considered most 

important for classification across all trees in the forest. 

 

In this Subsection we analyse the top features of our 

most successful predictive model for each of the two 

dataset versions, where both models were trained with 

the GO Terms feature set: the model for the 

GOTerms_1 dataset and the model for the GOTerm_2 

dataset. 

 

For this feature importance analysis, we trained new 

models using the entire datasets (no training and test set 

division), to ensure the analysis would consider all data 

available. The Balanced Random Forest method was 

used again to deal with class imbalance, in order to 

avoid a bias in favour of the majority class in the 

predictions. 

 

The metric of feature importance used in this analysis 

was the Gini Importance Measure (GIM). The GIM is 

the average reduction in Gini Index over all nodes in the 
decision tree which use that feature for branching, over 

all decision trees in the forest [40, 41]. The main 

drawback of this metric in general is a bias in favour of 

features with many possible values. However, this 

drawback does not occur in our case as all predictive 

features are binary. The GO terms selected in this 

analysis are essentially the features that are most 

relevant for discriminating between positive-class 

(lifespan-extending) and negative-class (non-lifespan-

extending) compounds, for these models. 

 

Table 4 shows the top 10 features based on GIM for the 

GOTerm_1 model. In this Table, the last column shows 

the proportion of positive-class instances (i.e., lifespan-

extending compounds) among the instances which take 

the value ‘1’ for the feature – i.e., among all compounds 

annotated with the corresponding GO term. For 

example, for the first row in Table 4, there are 17 

compounds annotated with the GO term ‘Respiratory 

chain complex II assembly’, out of which 15 (88.2%) 

are positive-class compounds. Note that there are two 

complementary ways for a feature to be one of the most 

relevant features: the feature can be a strong predictor of 

the positive class (i.e., the positive-class proportion is 

very high) or a strong predictor of the negative class 

(i.e., the positive-class proportion is very low). Only 

two features in Table 4 are associated with the negative-

class – i.e., compounds taking the value ‘1’ for such 

features are in general negative-class compounds (their 

positive-class proportion is 0). Note that the features in 

Table 4 include only the Molecular Function and 

Biological Process categories of GO terms, excluding 

Cellular Component GO terms, because we found that 

the selected top features in this latter category were 

redundant with respect to one of the top Molecular 

Function terms. 

 

The GO term features (in Table 4) associated with 

longevity drugs reflect processes commonly associated 

with aging and those more often targeted in longevity 

pharmacology. The mitochondrial respiratory chain 

complex is the top GO term, reflecting that this complex 

has been associated with aging and is often targeted in 

longevity pharmacology [15]. Other GO terms, like porin 

activity, are also likely related to mitochondria. 

Therefore, as expected, our results largely include 

processes previously associated with aging. In addition, 

we found terms (e.g., “G protein-coupled GABA receptor 

activity” and “Gamma-aminobutyric acid signalling 

pathway”) associated with the negative class; that is, 

terms predictive that a drug will not extend lifespan. 

 

For the model trained with the version-2 dataset, we 

excluded both molecular function and cellular component 

GO Terms of the top features analysis, as they were too 

broad to add valuable insight in this analysis. Thus,  
Table 5 shows the top 10 biological process GO Terms 

with the highest GIM, from the best Random Forest 

model trained with the GOTerms_2 dataset. 
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Table 4. The most important features in the RF classifiers trained with the GOTerms_1 dataset and feature 
selection performed using the Auto-Filter approach. 

GO term Type Name 
Positive class 

proportion 

GO:0034552 Biological process Respiratory chain complex II assembly 88.2% (15/17) 

GO:0034553 Biological process Mitochondrial respiratory chain complex II assembly 88.2% (15/17) 

GO:0015689 Biological process Molybdate ion transport 80% (8/10) 

GO:0015098 Molecular function Molybdate ion transmembrane transporter activity 80% (8/10) 

GO:0004965 Molecular function G protein-coupled GABA receptor activity 0% (0/29) 

GO:0007214 Biological process Gamma-aminobutyric acid signalling pathway 0% (0/29) 

GO:0015288 Molecular function Porin activity 81% (13/16) 

GO:0005052 Molecular function Peroxisome matrix targeting signal-1 binding 80% (12/15) 

GO:0016560 Biological process Protein import into peroxisome matrix, docking 80% (12/15) 

GO:0015098 Molecular function Molybdate ion transmembrane transporter activity 80% (8/10) 

 

Table 5. The most important biological process GO terms in the RF classifiers trained with 
the GOTerms_2 dataset and feature selection performed using the decision stump 
ensemble approach. 

GO term Name Positive class proportion 

GO:0051246 Regulation of protein metabolic process 40.8% (127/311) 

GO:0071868 Cellular response to monoamine stimulus 11.7% (46/393) 

GO:1903350 Response to dopamine 40.8% (127/311) 

GO:0006749 Glutathione metabolic process 59.3% (70/118) 

GO:0009636 Response to toxic substance 45.5% (106/233) 

GO:0071870 Cellular response to catecholamine stimulus 11.7% (46/393) 

GO:0006950 Response to stress 25.3% (191/755) 

GO:0006091 Generation of precursor metabolites and energy 53.0% (80/151) 

GO:0000003 Reproduction 26.3% (174/662) 

GO:0046395 Carboxylic acid catabolic process 48.4% (92/190) 

 

The main GO term associated with the positive class 

(lifespan extension) is ‘Glutathione metabolic process’ 

– almost 60% of the compounds interacting with a 

protein annotated with this GO term belong to the 

positive class. The glutathione metabolic process is  

a complex and tightly regulated system that plays  

an important role in maintaining cellular redox 

homeostasis, detoxification, and immune function [42]. 

Note that most of the other GO terms in Table 5 have a 

positive-class proportion smaller than 50%. However, 

recall that the ‘baseline’ positive-class proportion, 

considering all compounds in the full dataset, is just 

about 22% (Table 1, last column). In this context, GO 

terms with a positive-class proportion in Table 5 in the 

range 40%-50% can also be considered to be associated 

with the positive class, in the sense that proteins 

interactors annotated with such GO terms lead to a 

major increase the corresponding probability that a 

compound is predicted to belong to the positive class. 

Hence, the GO term ‘Response to toxic substance’ (with 

a positive-class proportion of about 45%) also fits our 

current knowledge of longevity assurance mechanisms 

involving detoxification processes, which interestingly 

include anti-oxidant enzymes like glutathione [43]. 

These processes fit current knowledge of pathways 

related to aging in model organisms related to oxidative 

stress, in particular in invertebrate models [44]. They 

also reflect a long-term trend in the anti-aging field, and 

more recently in longevity biotech, employing 

protective antioxidant compounds [12]. 

 

Identifying the most promising novel compounds for 

lifespan extension 

 

In this Subsection we identify the compounds, from a 

list of ~1300 unlabelled compounds from DrugBank 

(ignoring compounds that are isomers of compounds on 

DrugAge), with the highest probability of being 

classified as members of the life-extension class 

(positive class) by the best classifier from each of the 
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two dataset versions, where both best models were 

trained with GO term features. We then calculated how 

many of these compounds have a large majority of 

positive-class “neighbours” in our DrugAge dataset, 

using this as a criterion for selecting the most promising 

novel compounds. Therefore, the compounds selected in 

this analysis represent potentially novel compounds for 

extending C. elegans’ lifespan, although whether or not 

they really have this effect needs to be validated by 

proper biological experiments, of course, which is left 

for future research. 

 

The datasets of unlabelled compounds were created 

using the DrugBank database (version 5.0, downloaded 

in June 2022) [45], an online database of drugs and drug 

targets. The 10 top most promising compounds for the 

GOTerms_1 model are listed in Table 6. 

 

As a secondary criterion for selecting promising novel 

compounds, we measured the similarity of each of the 

top DrugBank compounds to the compounds in our 

original dataset. This allowed us to determine how often 

their ‘neighbours’ (i.e., the most similar compounds in 

our dataset regarding their feature values in the dataset) 

are labelled as lifespan-extension compounds (positive-

class). We used the Jaccard coefficient [46] to calculate 

the similarity between compounds – a measure of 

similarity between binary sets that only considers 

positive matches (ignoring matches of ‘0’ values), 

widely used in biology studies. 

 

This criterion was chosen because, intuitively, the 

DrugBank compounds with many positive-class 

neighbours in our dataset, in addition to having a high 

probability of positive-class prediction by our best 

classification models, are the best choices for possible 

novel compounds for longevity research. Thus, we set 

a cut-out point of at least 80% positive-class 

neighbours, from the 20 most similar compounds in 

our original datasets, as our second selection criterion 

in this analysis. Based on this we selected four 

compounds to focus on, out of all compounds in  

Table 6: NADH (16/20 positive-class neighbours), 

Potassium hydrogen DL-aspartate (17/20), Ferric 

cation (17/20) and Streptomycin (17/20). The other 

compounds in Table 6 did not reach our threshold of 

80% positive-class neighbours and, although still 

relevant as possible novel compounds, will not be 

discussed in detail. 

 

The top predicted new longevity compound in Table 6 

is NADH, the reduced form of NAD+, which is 

involved in metabolism and redox reactions. There has 
been significant interest into NAD+ and aging, 

including into NAD+ enhancers as a potential therapy 

[15, 47]. 

Interestingly, Potassium hydrogen DL-aspartate has 

not, to our knowledge, been studied in the context of 

longevity; but has been shown in cells to inhibit 

damage and apoptosis from oxidative stress [48], and 

thus may be interesting to study in the context of 

longevity. Sun et al. [48] suggests that L-aspartic acid 

potassium salt protects from apoptosis and damage. 

This compound is chiral, meaning that there are two 

mirror images (isomers) of that same compound 

available. This means that in an environment where 

there are chiral targets (e.g., proteins) or other chiral 

molecules, this can affect properties that the molecule 

may have. Our best classifier from the version-1 

datasets suggests that Potassium hydrogen DR-

aspartate (a mixture of both isomers) may have a role 

to play in longevity, supported by this data on 

L-aspartic acid potassium salt (a single isomer of the 

same compound). 

 

Ferric cation also, to our knowledge, has not been 

studied in the context of aging, although it is interesting 

to note that iron metabolism has been associated with 

aging [49]. 

 

Also noteworthy, Streptomycin is an antibiotic often 

used in C. elegans culture. If Streptomycin were to 

extend lifespan in worms then it could be a potential 

source of bias in longevity studies, hence further studies 

are warranted. 

 

Importantly, the results in Table 6 refer to the models 

created with our GOTerms_1 dataset, which by design 

includes some data from low-confidence compound-

protein interactions (i.e., interactions for which there is 

relatively little evidence on the STITCH database). 

Therefore, this should be taken into account when 

interpreting these results. 

 

Table 7 shows the top-12 compounds for the same 

analysis, done using the best classifier for the version-2 

datasets, i.e. the classifier trained with the GOTerms_2 

dataset. Recall that this classifier was trained with more 

reliable data and obtained much better generalisation 

performance on an external validation dataset than the 

best classifier for the version-1 datasets. The dataset of 

unlabelled compounds has the same instances from 

DrugBank described earlier. 

 

Based on the Nearest Neighbour analysis to determine 

the most promising novel compounds for lifespan 

extension (at least 80% positive-class nearest 

neighbours out of the 20 most similar compounds in the 

original dataset), we selected three compounds from 
Table 7: NADH (16/20), which also appears in Table 6, 

Nitroprusside (16/20) and Flavin adenine dinucleotide 

(16/20). 
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Table 6. The 10 compounds with highest positive-class prediction probability, from the 
GOTerms_1 dataset classifier. 

DrugBank code Compound  Predicted probability of positive class 

DB00157 NADH 96.8% 

DB01992 Coenzyme A 94.8% 

DB00131 Adenosine phosphate 92.8% 

DB15998 Potassium hydrogen DL-aspartate 92.2% 

DB00171 ATP 92% 

DB00115 Cyanocobalamin 91.6% 

DB04137 Guanosine-5’-Triphosphate 91.6% 

DB13949 Ferric cation 91.4% 

DB01082 Streptomycin 91.2% 

DB14577 Calcium cation 90.4% 

 

Table 7. The 12 compounds with highest positive-class prediction probability, from 
the GOTerms_2 dataset classifier. 

DrugBank code Compound  Predicted probability of positive class 

DB01992 Coenzyme A 98.40% 

DB04854 Febuxostat 97.93% 

DB01685 Topiroxostat 97.93% 

DB00157 NADH 95.00% 

DB15412 LB-100 93.13% 

DB08822 Azilsartan medoxomil 93.13% 

DB11191 Cobamamide 89.60% 

DB17293 Hiltonol 89.20% 

DB00905 Bimatoprost 88.44% 

DB07187 CP-744809 88.44% 

DB00325 Nitroprusside 88.40% 

DB03147 Flavin adenine dinucleotide 87.40% 

 

Nitroprusside is an antihypertensive medication which, 

as recorded in the DrugBank database, is an agonist of 

NPR1 (atrial natriuretic peptide receptor 1), which is a 

receptor for peptides which are vasoactive hormones 

playing a key role in cardiovascular homeostasis. 

NPR1’s Biological Process GO term annotations in 

UniProt include, among others: “regulation of blood 

pressure”, “regulation of vascular permeability”, 

“negative regulation of angiogenesis” and “negative 

regulation of cell growth”. To our knowledge, 

nitroprusside has not been studied in the context of aging 

or longevity. One recent study, however, found two 

antihypertensive medications to extend longevity in C. 

elegans [50]. Furthermore, in recent in vivo experiments 

with Npr1 knockout mice, Npr1+/– mice has exhibited 

vascular aging [51]. As recorded in DrugBank, Flavin 

adenine dinucleotide (FAD) is a coenzyme form of 

vitamin B2 used in clinical conditions associated with 

vitamin B2 deficiency. FAD is a redox-active coenzyme 

that has also not, to our knowledge, been studied in the 

context of aging, although it extended lifespan in an 

frataxin deficiency model in C. elegans [52]. In addition, 

Vitamin B2 is essential for C. elegans growth [53]. FAD 

has 86 targets recorded in DrugBank, indicating the 

complexity of its effects on metabolism. Disorders of 

FAD metabolism are reviewed in [54]. In experiments 

with male Wistar rats and spontaneously hypertensive 

rats (SHRs) treated with FAD for 8 weeks, FAD 

ameliorated vascular remodelling in SHRs, and was 

suggested as a new potential treatment for hypertension 

and vascular remodelling [55]. 

 

CONCLUSIONS 
 

We created datasets for predicting whether or not a 

compound extends the lifespan of C. elegans, using 

data from the DrugAge database to assign a positive or 

negative class label to each compound, depending on 

whether or not the compound is recorded in DrugAge 

as significantly extending C. elegans’ lifespan by at 
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least 5%. The datasets use four different types of 

predictive features, based on compound-protein 

interactions, interactions between compounds and 

proteins encoded specifically by ageing-related genes, 

and two types of terms annotated for proteins targeted 

by the compounds, namely Gene Ontology (GO) terms 

and physiology terms from the WormBase’s 

Phenotype Ontology. For each of these four feature 

types, we created two versions of a dataset. The 

version-1 datasets were created using all compound-

protein interactions from the STITCH database to 

create features, a very inclusive approach. The 

version-2 datasets were created using only the 

compound-protein interactions in STITCH which have 

at least a roughly ‘medium’ degree of confidence, a 

stricter approach. Hence, version-1 datasets have more 

features but less reliable features, whilst version-2 

datasets have less features but more reliable features; 

i.e., these datasets represent different trade-offs in the 

quantity and quality of data available for machine 

learning algorithms. 

 

To analyse these datasets we used a combination of 

feature selection methods in a data pre-processing phase 

and the well-established random forest algorithm for 

learning a predictive model from the selected features. 

In terms of predictive power of the different types of 

features, in the experiments with both versions of 

datasets, the best model (regarding predictive 

performance) was learned using GO terms as predictive 

features. We also evaluated those two best models using 

GO terms as features (one for each dataset version) on 

an external validation dataset with D. melanogaster 

data. This experiment was a more challenging 

evaluation of the generalisation ability of the predictive 

models, since they were learned from C. elegans data 

and used to classify data from a different species. 

Hence, predictive performance was of course expected 

to decrease, but the observed decrease was much 

smaller for the best model learned from the version-2 

dataset than for the best model learned from the 

version-1 dataset. Hence, the version-2 dataset of GO 

terms as features showed better generalisation ability on 

external validation data; i.e., in this experiment having 

higher quality data was more beneficial than having a 

larger quantity of data. 

 

In addition, we used a feature importance measure to 

identity the most relevant features in the best random 

forest model for each dataset version. Among those top-

ranked features, there are several GO terms that are 

known to be associated with the ageing process, 

particularly involving the mitochondrial respiratory 
chain complex and longevity assurance mechanisms 

like detoxification and glutathione, which are often 

targets for longevity drugs. 

Furthermore, we identified the most promising novel 

compounds for extending C. elegans based on the 

predictions of the best learned random forest models – 

i.e., compounds from the DrugBank database (not 

included in the data used to train the classifiers) that 

were predicted with a very high probability to be 

positive class (extending lifespan) compounds. 

 

In the experiments with version-1 datasets, the most 

promising novel compounds (which have not been 

investigated in the context of ageing yet, to the best of 

our knowledge) included Potassium hydrogen DR-

aspartate and streptomycin. Potassium hydrogen DR-

aspartate is a mixture of two isomers, and the hypothesis 

of its potential pro-longevity effect in C. elegans is 

supported by the data for a single isomer of that 

compound (L-aspartic acid potassium salt). Streptomycin 

is an antibiotic often used in C. elegans culture, and so, if 

further research confirms that this compound really 

extends the lifespan of C. elegans in vivo, this would 

show an important source of currently undetected bias in 

longevity experiments with C. elegans. 
 

In the experiments with version-2 datasets, some of the 

most promising novel compounds include nitroprusside, 

flavin adenine nucleotide and NADH. Nitroprusside, 

which is a powerful vasodilator used to treat 

hypertension, is an agonist for Npr1, a gene implicated 

in vascular aging in mice. Flavin adenine dinucleotide is 

a coenzyme form of vitamin B2, which is one of the 

vitamins essential for C. elegans growth. In addition, 

NADH, the reduced form of NAD+, is involved in 

metabolism and redox reactions, and it was among the 

most promising novel compounds for extending  

C. elegans lifespan in the experiments with both the 

version-1 and version-2 datasets. 

 

Future research will involve lab experiments with  

C. elegans in order to try to confirm these 

computational predictions. 
 

MATERIALS AND METHODS 
 

Dataset preparation 

 

We created four types of datasets, all consisting of 

instances representing chemical compounds (or drugs), 

and all with the same definition of positive and 

negative class labels, but different types of predictive 

features (variables). In all datasets, the positive-class 

instances consist of drugs or compounds whose 

administration led to a statistically significant average 

increase of at least 5% of C. elegans’ lifespan, as 
recorded in the DrugAge database (Build 4) [13]. The 

DrugAge database collects information of potentially 

life-extending compounds, based on publications 
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reporting wet-lab experimental results (Website: 

genomics.senescence.info/drugs). 

 

The list of negative-class instances (i.e., compounds 

found to have no significant positive impact on  

C. elegans’ lifespan) was taken mainly from the 

Supplementary Material provided in a previous study 

[17] that created a similar dataset, with two extensions, 

as follows. First, some compounds were included in 

DrugAge for having lifespan-increasing effects on other 

organisms, but their impact on C. elegans’ lifespan was 

negative, so these compounds were used as negative-

class instances. Second, some of the negative-class 

instances from the list in [17] were updated as positive-

class based on more recent information in DrugAge,  

as the previous list was based on information from 6 

years ago. 

 

As mentioned earlier, we used four types of predictive 

features (each generating two datasets), namely features 

based on Gene Ontology (GO) terms, drug (compound)-

protein interactions, interactions between compounds and 

proteins encoded specifically by ageing-related genes, 

and physiology terms from a Phenotype Ontology for  

C. elegans. Thus, all predictive features in our datasets 

are related to the proteins that interact with each 

compound, namely: the protein interactors themselves, 

the GO term annotations and the Physiology Phenotypes 

associated with those interacting proteins, and whether 

the protein interactors of a compound are coded by an 

ageing-related gene. Notably, two of the three most 

related works [17–19] (applying machine learning to 

DrugAge data) also use GO term features, namely  

[17, 18], but none of those three works used protein 

interactors, phenotypes or ageing-related genes as 

predictive features. 

 

Our source of protein-compound interaction was the 

STITCH database (version 5.0, downloaded in 11-2021. 

Website: http://stitch.embl.de/) [56], a database of 

interactions between chemicals and proteins. We 

discarded all compounds that either were not found on 

STITCH or did not have any information of protein 

interactions stored there. In particular, we removed 

from our initial list of compounds (instances) all the 

entries for plant extracts that are not used commercially 

as drugs, since there is no entry in STITCH for such 

extracts. This filtering process caused our sample size to 

be reduced by about 25% compared to the original 

dataset in [17], arguably making the prediction problem 

more difficult. However, this was necessary for the 

types of predictive feature used in our datasets, as they 

are all based on protein interactors, and to compensate 
for the dataset reduction we got the benefit of creating 

datasets where all features are biologically interpretable, 

as mentioned earlier. After this instance (compound) 

filtering process, we obtained an initial dataset with 

1120 instances, 253 (22.6%) of which refer to lifespan-

extending (positive-class) compounds in C. elegans, 

with the remaining 867 (77.4%) being negative-class 

compounds. With this initial set of instances, we created 

in total eight datasets, as follows. 

 

We created two dataset versions for each of the four 

feature types, based on the degree of confidence of the 

compound-protein interactions used as a basis for 

creating the predictive features in our datasets. The 

STITCH database sets a score value for each of its 

chemical-protein interactions, which is based on the 

amount of evidence available for that interaction. 

According to the database documentation, this score can 

be interpreted as a confidence indicator for how likely 

an interaction is to be true. In our case, we created a 

first set of datasets (version-1 datasets) where we did 

not set a minimum confidence-score threshold, so that 

every compound-protein interaction in STITCH was 

used to create predictive features for our datasets. Note 

that, as STITCH stores interactions with at least 15% 

confidence score, that is the effective minimum 

confidence-score threshold for the version-1 datasets. 

Then, we created a second set of datasets (version-2 

datasets) using the same confidence-score threshold 

used in [17], 45% minimum confidence. The version-2 

datasets have fewer features (less data for learning), but 

with the trade-off that their data is more reliable, by 

comparison with the more inclusive version-1 datasets. 

 

After the initial creation of each dataset, we applied a 

simple frequency-threshold filter to remove features 

with fewer than 10 instances with a ‘1’ value in the 

training set (all features in our datasets are binary, with 

‘1’ indicating the presence of the feature). This 

frequency-threshold filter was applied to reduce the risk 

of overfitting, and it was applied at the start of the data 

pre-processing phase, i.e. before applying the feature 

selection filters. In addition, if the application of this 

frequency-threshold filter results in an instance having 

all its features taking the value ‘0’ (rather than ‘1’), that 

instance is also removed from the dataset. As a result, 

the final number of instances in each dataset (before 

running feature selection methods and the random forest 

algorithm) is given in Table 1. 

 

Protein interactors dataset 

 

For this dataset, we created binary features that indicate 

whether or not a protein interacts with the current 

instance (compound). A similar dataset was used in 

[57]. The created version-1 dataset initially had 9880 
unique protein interactors obtained from the STITCH 

database (version 5.0), which were reduced to 5607 

predictive features, after applying the aforementioned 

http://stitch.embl.de/
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simple frequency-threshold filter to avoid overfitting. 

For the version-2 of this dataset, the number of protein 

interactors was reduced from 7374 to 2563. The number 

of interactors associated with a given compound varies 

greatly, reaching over 1000 interactors for some well-

known compounds. 

 

Gene ontology dataset 

 

Expanding on the information from the previous dataset, 

we used the Gene Ontology (GO) terms [23, 58] 

associated with each of the protein interactors as binary 

features in a second type of dataset. There are three types 

of GO terms, reflecting different types of information 

about a protein’s functions, namely: biological process, 

molecular function and cellular component. All 3 GO 

term categories were used as predictive features in the 

dataset, for the sake of completeness. 

 

Each binary feature indicates whether or not an instance 

(compound) is indirectly associated with a given GO 

term. More precisely, the feature value ‘1’ means that at 

least one of the proteins that interact with the compound 

(as recorded in the STITCH database) is annotated with 

the corresponding GO term. Conversely, the feature 

value ‘0’ means that none of the proteins interacting 

with the compound have been annotated with that GO 

term. The proteins’ GO term annotations were obtained 

using the goatools (version 1.1.6) Python library, from 

the Gene Ontology version 1.4, downloaded in 11-2021 

(Website: geneontology.org). The created version-1 

dataset initially had 9000 unique GO terms, which were 

reduced to 7588 predictive features after applying the 

simple frequency-threshold filter. The created version-2 

dataset had 8364 unique GO Terms, which were 

reduced to 5572 predictive features after the same 

procedure. 

 

Phenotypes dataset 

 

In this dataset, each binary feature indicates  

whether or not a compound (instance) is indirectly 

associated with a given Phenotype Ontology 

(Physiology) term in the WormBase database (release 

WS283, downloaded in 11-2021) [24] (Website: 

https://wormbase.org/tools/ontology_browser). More 

precisely, the feature value ‘1’ means that at least one of 

the proteins that interacts with the compound (as 

recorded in STITCH) is annotated with the 

corresponding Phenotype Ontology term; otherwise, the 

feature takes the value ‘0’. Note that the Phenotype 

Ontology has physiology and anatomical phenotypes, 

and we only used the physiology terms, because 
anatomical characteristics are not as relevant for our 

prediction problem (whether or not a compound’s 

administration extends C. elegan’s lifespan). The 

created version-1 dataset initially had 1783 physiology 

phenotype features, which were reduced to 1258 after 

applying the frequency-threshold filter. The created 

version-2 dataset had 1008 predictive features after 

applying the frequency-threshold filter. 

 

Age-related genes dataset 

 

In this dataset, each predictive feature indicates whether 

or not a compound (instance) interacts with a given age-

related gene. To create these features, we used the lists 

of C. Elegans genes in the GenAge [29, 59] (Build 20, 

downloaded in 11-2021; website: https://genomics. 

senescence.info/genes) and the GenDR [26] (Build 4, 

downloaded in 11-2021; website: https://genomics. 

senescence.info/diet) databases. 

 

The GenAge database is a collection of genes from 

different organisms known to be associated with 

longevity and/or ageing. The GenDR database is a 

collection of genes specifically associated with dietary 

restriction (including caloric restriction), included in the 

definition of this feature type because this intervention 

is commonly associated with lifespan increase in 

multiple organisms, and some of those genes were not 

listed in GenAge. 

 

Based on the proteins coded by these genes, we defined 

the value of their features using the list of protein 

interactors associated with each compound. If at least 

one of the interactors of a compound is coded by a 

given gene (feature), its feature value in the dataset is 

‘1’, otherwise the value is ‘0’. The created version-1 

dataset initially had 553 binary features, which were 

reduced to 346 features after applying the frequency-

threshold filter. The created version-2 dataset initially 

had 353 features, which were reduced to 139 features 

after applying the frequency-threshold filter. 

 

Filter feature selection methods 

 

Filter methods are a type of feature selection (FS) 

method used in a pre-processing phase of machine 

learning – before training the classification algorithm 

[60]. They calculate a score for each feature in the 

dataset, usually based on the distribution of its values in 

relation to the class label. Then, the top k (a user-

specified parameter) features with the highest scores are 

kept, and all others are discarded. Note that filters are 

independent from the classification algorithm, in 

contrast to the more computationally expensive wrapper 

FS methods [60]. 

 
Filter methods differ mainly in terms of how they 

calculate the features’ scores, as there are various ways 

to measure feature importance, and no method is the 

https://wormbase.org/tools/ontology_browser
https://genomics.senescence.info/genes
https://genomics.senescence.info/genes
https://genomics.senescence.info/diet
https://genomics.senescence.info/diet
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best for all datasets. For our experiments in this study, 

we selected 5 different filter methods and, in addition to 

these, we developed a sixth (meta)-method called Auto-

Filter, which automatically selects the best candidate 

filter method for each dataset using a data-driven 

approach. These filter methods are described next. 

 

Information gain 

 

This filter calculates the score of a feature as the value 

of the Information Gain (reduction of Entropy) obtained 

by partitioning the instances of a dataset into subsets, 

based on the values of that feature. Notably, this 

measure is known to be biased in favour of features 

with many values [61], but this is not an issue in our 

case as all predictive features in our datasets are binary. 

The Information Gain is calculated for each feature F as 

follows. 
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Where Ent(C) is the entropy of the class labels on the 

training data, p(Ci) is the empirical probability (relative 

frequency) of class i in the training set (as our 

classification problem is binary, the class is either 0 or 1), 

and Ent(C|F) is the entropy of the class labels 

conditioned on the values of feature F on the training 

data. We calculate the entropy of the class labels before 

and after splitting the dataset using the current feature, 

i.e. calculating Ent(C) and Ent(C|F) respectively, the 

latter being a weighted sum of the Entropies of the class 

labels in both splits (data subsets where F = 0 and F = 1), 

where the weights are the proportions of instances with  

F = 0 and F = 1 in the training data. The information 

gain is the difference between the entropy Ent(C) and the 

conditional entropy Ent(C|F), with larger values 

indicating a greater reduction of class-label entropy, i.e. a 

stronger predictive power associated with the feature. 

 

The Chi² (Chi-squared) statistic 

 

The Chi² test is a statistical hypothesis test used to get 

an estimation of the degree of association between two 

categorical variables (in our case, each predictive 

feature and the class variable). It compares the observed 

and expected frequencies of each combination of values 

of those two variables, and larger differences between 

these values indicate that the variables have a stronger 

association [62]. We used the value of the Chi² statistic 

calculated by this test as the score for a filter method, as 

the higher this value gets, the greater the association 

between the feature and the class variable. The Chi² 

score is calculated as follows. 
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Where Oij represents the observed frequency of the co-

occurrence of the i-th value of a feature and the j-th 

class label, i.e. the number of instances with the i-th 

feature value and the j-th class label in the training set, 

and Eij represents the expected value of that frequency 

of co-occurrence under the assumption that the feature 

and the class variable are statistically independent. 

 

Decision stump 

 

A Decision Stump is the simplest version of a decision 

tree classifier, where the class label is decided based on 

a single node partition of the data, using a single 

feature. It usually does not have much predictive power 

on its own, but it can be used in other contexts such as 

providing a score for a filter method [63]. The score of a 

feature is calculated by training a decision stump 

classifier with a very narrow subset of the training data 

containing only that feature and the class variable, then 

evaluating the trained classifier on a subset of data 

which was not used for training (to estimate 

generalisation performance). In our experiments, the 

performance of a decision stump classifier was 

estimated by an internal 5-fold cross-validation 

procedure, applied to the training set only (i.e. not using 

the test set). Hence, the training set is divided into 5 

folds and the decision stump classifier was trained 5 

times, each time using a different fold as the ‘validation 

set’ (to estimate generalisation performance) and the 

other four folds as a ‘learning set’. We used the median 

of the five AUC values obtained by the decision stump 

classifier over the 5 validation sets as the score for this 

filter. 

 

Log odds ratio 

 

The associations between two categorical variables, 

such as a binary predictive feature and the binary class 

variable in our datasets, may be displayed through a 

contingency table. In these tables each cell contains a 

count (n) or probability (p) of each combination of the 

values of the two variables, as shown in Figure 2. Some 

measures of association can be calculated based on this 

representation, including the Log Odds Ratio and the 
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Asymmetric Optimal Prediction filters, described in this 

Subsection and the next. 

 

The Odds Ratio [64] is a measure of association 

applicable to binary variables, which estimates the odds 

of an outcome based on the exposure (i.e., how much 

the odds of getting a ‘1’ value for a variable change 

based on the value of the associated variable). Odds 

values higher than 1 indicate an increased probability of 

success, and values lower than 1 indicate the opposite. 

 

Smaller data samples cause the distribution of the Odds 

Ratio to be highly skewed. Thus, the natural logarithm 

of this measure, Log Odds Ratio, is used instead. The 

Log Odds Ratio between each feature and the class 

variable was used as a score for this filter method, 

calculated as follows. 
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Asymmetric optimal prediction 

 

The Asymmetric Optimal Prediction (AOP) is another 

measure of association between two categorical 

variables, with the distinction of measuring an asym-

metric predictive relationship, i.e. measuring to what 

extent the value of variable A can be well predicted by 

the value of another variable B, regardless of strength of 

the converse type of prediction (predicting B from A) 

[65]. This is relevant because in the classification task 

we use the feature value to predict the class label, not 

vice-versa, therefore it can be beneficial to focus on this 

asymmetrical association between the two variables. 

 

The AOP measure compares two scenarios for 

predicting the class label for a randomly chosen 

instance: (1) knowing only the class-distribution in the 

training data and (2) knowing both the class distribution 

and the value of a feature F. The AOP measure is 

calculated using the probability of error in both cases, 

 

 
 

Figure 2. Structure of a contingency table. 

and increases in value as the probability of error in 

scenario 2 reduces. The AOP score is calculated as 

follows. 
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where p00 = n00/n, p10 = n10/n, p01 = n01/n, p11 = n11/n; 

n00, n10, n01 and n11 are as defined in Figure 2, n is the 

total number of training instances, E1 is the probability 

of a prediction error when an instance is predicted to 

have the most frequent class label among all training 

instances (i.e. the class prediction ignores the feature 

value), and E2 is the probability of a prediction error 

when an instance is predicted to have the most frequent 

class label among the training instances which have the 

same feature value (1 or 0) as the current instance (i.e. 

the class prediction is based on the feature value). 

 

Filter ensembles 

 

As our datasets have imbalanced class distributions, the 

majority-class instances can skew the feature score 

values computed by a filter. One simple way to mitigate 

this would be to undersample the majority-class 

instances in the training set before calculating the filter 

scores, so that the data used by the filter is balanced 

[66]. However, this would cause most majority class 

instances to be completely ignored during the FS 

process. 

 

Therefore, we applied instead a more robust way to 

calculate filter scores that also addresses the class 

imbalance issue, named Filter Ensembles. This strategy 

consists of using an ensemble of filters with bootstrap 

samples, combining their scores to get a final score value 

for each feature, which is calculated using only balanced 

datasets (i.e., each bootstrap sample has its majority 

class instances undersampled to a 1:1 ratio of positive- 

and negative-class instances). A similar strategy was 

used by [67] in the context of gene-gene interaction, and 

by [68] in the context of biomarker identification. 

 

In our experiments we used an ensemble of 50 filters, 

but this number can be adjusted based on the available 

computational resources and the class distribution of the 

original dataset (more imbalanced datasets might need 

more filters). Each of the 50 balanced datasets is fed 
into a filter method to calculate the features’ scores, and 

the final score of a feature with that filter is the median 

value over these scores. This strategy is computationally 
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expensive, but it can be implemented as a parallel 

algorithm, making use of multi-thread and multi-core 

architectures to reduce running time, as the scores for 

each of the 50 filters can be calculated simultaneously. 

 

We performed a preliminary set of experiments 

comparing using the proposed Filter Ensembles strategy 

to not doing so (i.e., running a single filter using the full, 

unbalanced dataset), and concluded that the strategy led 

to classifiers with better predictive accuracy in general, 

and was therefore worthwhile. The discussion for this set 

of experiments is out of the scope of this paper, but the 

result tables detailing them are available in the 

Supplementary Material (Supplementary Tables 1–8). 

 

Auto-K: automatically selecting the number of top-

ranked features to be kept 

 

Generally, the user of a filter method needs to manually 

choose the number of top-ranked features to be selected 

by the method, called k. Naturally, this choice can 

significantly impact the performance of a classifier 

trained with the selected features. In order to make our 

filter methods more adaptable, and reduce the impact  

of subjective user choices of k in the predictive 

performance of classifiers, we used an automated 

process for selecting the best k value for a dataset out of 

a set of candidate k values, which we named Auto-K. 

 

The candidate values of k were defined based on the 

numbers of features in the original datasets, as follows. 

For the Interactors and GO terms datasets, which have 

the two largest numbers of features, we set the 

candidate k values as 250, 500, 750 and 1000. For the 

Phenotypes datasets, which have relatively smaller 

numbers of features, we set the candidate k values as 

100, 200, 300 and 400. Finally, for the GenAge/GenDR 

datasets, which have the smallest numbers of features, 

we set the candidate k values as 50, 100, 150 and 200 

for the dataset version-1 and as 50, 100 for the dataset 

version-2. 

 

The Auto-K selection works as follows. For each of the 

folds of the 10-fold external cross-validation, an internal 

5-fold cross-validation is used to train RF classifiers 

using each candidate k value, and the value that results 

in models with the highest median AUC is chosen. Note 

that only the training data is used by the Auto-K 

process, as the test data cannot be accessed prior to 

evaluating the final classifier. 

 

The Auto-Filter method for feature selection 

 
As the performance of a filter method depends largely 

on the data distribution, making an automated data-

driven choice of the best filter method for each dataset 

intuitively should lead to better predictive performance, 

compared to making a fixed choice regardless of the 

data. 

 

Thus, we implemented another filter approach named 

the Auto-filter approach. In addition to automatically 

selecting the best k value for the number of top-ranked 

features to be kept in the dataset, the Auto-Filter 

approach also selects the best candidate filter method 

out of the 5 candidate filters discussed in Section 4.2 or 

out of their filter ensemble counterparts (Section 4.3). 

This automated filter-method selection is based on an 

internal 5-fold cross-validation process applied to the 

training set, where it trains RF classifiers using each of 

the possible combinations of a filter (or filter ensemble) 

method and a k value. 

 

The median AUC (Area Under the ROC curve) of the 

classifiers over the 5 folds of the internal cross-

validation is used to select the best filter or filter 

ensemble method (the one with the highest median 

AUC), with the AUC variance as a tie-breaking 

criterion (the lower the variance, the better). As the 

Auto-Filter procedure is used inside an external cross-

validation process, it will be run once for each fold in 

that external process, using each training dataset. Note 

that different candidate filter or filter ensembles and k 

values might be selected across the different folds of the 

external cross-validation. The pseudocode in Algorithm 

1 represents the Auto-Filter procedure used in each fold 

of the external cross-validation. 

 

The Auto-Filter approach is flexible, as the user may 

select any number of candidate filters (with or without 

using filter ensembles) and k values, as well as the 

classification algorithm and performance metric used in 

its internal method for selecting the best candidate filter 

method (e.g., it might be more relevant to optimise the 

filter choice using the F-Score or the AUC metric, 

depending on the characteristics of the project). 

However, the Auto-Filter approach has the disadvantage 

of being computationally costly, as it requires many 

runs of each candidate filter and the classification 

algorithm. This disadvantage can be alleviated by a 

parallel implementation, as most parts of the process 

(i.e., calculating the scores of each candidate filter, the 

folds in the internal cross-validation, and the external 

cross-validation process) are independent. 

 

Experimental setup 

 

In order to test the feature selection approaches described 

in this paper, we ran experiments comparing Random 
Forest (RF) classifiers trained using each of them. In all 

experiments we performed a 10-fold cross-validation 

process and report the median value of the well-known 
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Algorithm 1. The Auto-Filter procedure. It receives a set of candidate filter methods S, a set of candidate k values K, the 

training dataset of the external cross-validation, a classification algorithm (in this work, random forest) to be used in the 

internal comparisons of the candidate filters, and a target predictive performance metric (in this work, the AUC). It returns 

the candidate filter and k value combination with the largest average score. Note that in this pseudocode the term ‘filter 

method’ is being used in a generic way, it can denote either a single filter method or its counterpart filter ensemble. 

1:function Auto-Filter(S, K, training_set, classifier, perf_metric) 

2: candidate_filters = [ ] 

3: internal_CV = createStratifiedCrossValidationSets(training_set,5) 

4: For each filter in S: 

5:  For each k in K: 

6:   For each estimation_set, validation_set in internal_CV: 

7:    filter.calculateFeatureScores(estimation_set) 

8:    estimation_set.applyFilter(filter, k) 

9:    validation_set.applyFilter(filter, k) 

10:    c = trainClassifier(estimation_set, classifier) 

11:   score = c.Evaluate(validation_set, perf metric) 

11:    score_array.add(score) 

12:  candidate_filters.append([filter, k, score_array]) 

13:return selectBestFilter(candidate_filters) 

 

Area Under the Receiver Operating Characteristic curve 

(AUC) [69]. The RFs were trained with 500 trees and the 

number of features randomly sampled as candidate 

features for each node was d  (rounded up to nearest 

integer, with 0.5 being rounded up), with d being the 

number of features in the current dataset. 

 

As the datasets created for this research have a class-

imbalance issue (about 3.4 majority class instances for 

every minority class instance), we trained our RFs using 

the Balanced Random Forest (BRF) method [31]. The 

BRF method draws a bootstrap sample of minority class 

instances for each tree in the forest, and randomly draws 

the same number of instances from the majority class 

instances, meaning the subset of instances used to 

generate each decision tree has a balanced ratio (1:1) of 

instances from each class. 

 

Data availability 

 

The datasets used in the experiments and the  

program code for the feature selection methods will  

be made freely available on a repository at 

https://github.com/caioedurib/auto_filter. 
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SUPPLEMENTARY MATERIALS 

 

Supporting Information 

 

 

Supplementary Tables - Comparing feature 

selection methods 
 

Supplementary Table 1 through Supplementary Table 8 

compare the median AUC values obtained by the 

random forest algorithm when using two different 

versions of each candidate filter method, with the 

highest value in each table highlighted in boldface. 

Supplementary Table 1 through Supplementary Table 4 

refer to the “version-1” datasets and Supplementary 

Table 5 through Supplementary Table 8 refer to the 

“version-2” datasets. The difference between the 

version-1 and version-2 datasets is explained in Section 

4.1 of the main paper. 
 

Regarding the two versions of the candidate filter 

methods, the first version, named single filter, simply 

applies the standard filter method without using any 

ensemble or class balancing approach. Hence, it 

computes scores for the features using the dataset's 

original imbalanced form, where the majority class will 

usually have a larger impact on the score of a feature. 

The second version, named filter ensemble, addresses 

that issue by computing scores using an ensemble of 

balanced filters as proposed in Section 4.3 of the main 

paper. In order to determine whether the significant 

computational cost added by using the filter ensemble 

methods is worthwhile, we compared the single filter 

and filter ensemble methods in a set of experiments 

using the datasets prepared in this work, with two 

versions of a dataset for each of the four types of 

predictive feature. The last row of each table shows the 

AUC value for the baseline approach of simply training 

the classifier using the full set of features, without 

performing any feature selection in a pre-processing 

phrase. Note that, in all experiments, the value of k (the 

number of features selected by a filter or filter ensemble 

method) is automatically selected through the Auto-K 

process defined in Section 4.4 of the main paper. 

 

Results comparing filter methods on the version-1 

datasets 

 

Discussion 
 

As can be observed in Supplementary Tables 1–8, in 7 

out of the 8 datasets, the best AUC value (highlighted in 

boldface in each table) was obtained by the filter 

ensemble approach. In addition, in total, over the 48 

pairs of results comparing single filter vs filter ensemble 

methods (6 comparisons per table times 8 tables), the 

latter won in 40 (83%) of the cases. Hence, the filter 

ensemble approach clearly performed better than the 

single filter approach.  

 

After deciding to apply the filter ensemble strategy, we 

then compared the filter ensembles’ results to determine 

the best FS method (regarding predictive accuracy) out 

of our set of 6 candidate filter ensemble methods. The 

proposed Auto-Filter approach (described in Section 

4.5) got the best median AUC results for two version-1 

datasets, namely the Interactors_1 and the GOTerms_1 

datasets. Other individual methods generated the best 

model in the other datasets; notably the Decision Stump 

ensemble filter won for 3 datasets. 

 

Supplementary Datasets 
 

The datasets created for this study are available as tab-

separated spreadsheets on our GitHub project 

(https://github.com/caioedurib/auto_filter), alongside a 

script to run the proposed Auto-Filter approach. 

 

Supplementary Dataset 1.1. Protein interactors of 

DrugAge compounds (Version 1). 

 

Supplementary Dataset 1.2. Protein interactors of 

DrugAge compounds (Version 2). 

 

Supplementary Dataset 2.1. GO Term annotations  

for the Protein Interactors of DrugAge compounds 

(Version 1). 

 

Supplementary Dataset 2.2. GO Term annotations for 

the Protein Interactors of DrugAge compounds 

(Version 2). 

 

Supplementary Dataset 3.1. Physiology Phenotype 

annotations for the protein interactors of DrugAge 

compounds, based on WormBase Phenotype data 

(Version 1). 

 

Supplementary Dataset 3.2. Physiology Phenotype 

annotations for the protein interactors of DrugAge 

compounds, based on WormBase Phenotype data 

(Version 2). 

 

Supplementary Dataset 4.1. Ageing-related gene 

matches for the protein interactors of DrugAge 

compounds, based on the GenAge’s and GenDR’s lists 

of genes related to ageing and dietary restriction, 

respectively (Version 1). 

https://github.com/caioedurib/auto_filter
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Supplementary Dataset 4.2. Ageing-related gene 

matches for the protein interactors of DrugAge 

compounds, based on the GenAge’s and GenDR’s lists 

of genes related to ageing and dietary restriction, 

respectively (Version 2). 
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Supplementary Tables 
 

 

Supplementary Table 1. Median AUC values obtained by Random 
Forest using the single filter vs filter ensemble methods in a  
pre-processing phase – protein interactors dataset (version 1). 

Interactors dataset Single filter Filter ensemble 

Information Gain 0.736 0.743 

Chi² 0.730 0.738 

Decision Stump 0.731 0.738 

Asymmetric Optimal Prediction 0.724 0.742 

Log Odds Ratio 0.725 0.713 

Auto-Filter 0.759 0.801 

Baseline (no filter method) 0.717 

 

Supplementary Table 2. Median AUC values obtained by 
Random Forest using the single filter vs filter ensemble methods 
in a pre-processing phase – GO terms dataset (version 1). 

GO terms dataset Single filter Filter ensemble 

Information Gain 0.753 0.744 

Chi² 0.740 0.725 

Decision Stump 0.719 0.734 

Asymmetric Optimal Prediction 0.725 0.750 

Log Odds Ratio 0.721 0.708 

Auto-Filter 0.779 0.818 

Baseline (no filter method) 0.767 

 

Supplementary Table 3. Median AUC values obtained by Random 
Forest using the single filter vs filter ensemble methods in a pre-
processing phase – physiology phenotypes dataset (version 1). 

Phenotypes dataset Single filter Filter ensemble 

Information Gain 0.759 0.722 

Chi² 0.711 0.729 

Decision Stump 0.714 0.761 

Asymmetric Optimal Prediction 0.755 0.741 

Log Odds Ratio 0.724 0.706 

Auto-Filter 0.719 0.728 

Baseline (no filter method) 0.741 
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Supplementary Table 4. Median AUC values obtained by 
Random Forest using the single filter vs filter ensemble methods 
in a pre-processing phase – GenAge/GenDR dataset (version 1). 

GenAge/GenDR dataset Single filter Filter ensemble 

Information Gain 0.709 0.727 

Chi² 0.740 0.751 

Decision Stump 0.757 0.742 

Asymmetric Optimal Prediction 0.739 0.744 

Log Odds Ratio 0.708 0.721 

DDFMS 0.702 0.725 

Baseline 0.683 

 

Supplementary Table 5. Median AUC values obtained by Random 
Forest using the single filter vs filter ensemble methods in a pre-
processing phase – protein interactors dataset (version 2). 

Interactors dataset Single filter Filter ensemble 

Information Gain 0.695 0.752 

Chi² 0.661 0.722 

Decision Stump 0.689 0.704 

Asymmetric Optimal Prediction 0.651 0.737 

Log Odds Ratio 0.656 0.662 

Auto-Filter 0.656 0.688 

Baseline (no filter method) 0.747 

 

Supplementary Table 6. Median AUC values obtained by Random 
Forest using the single filter vs filter ensemble methods in a pre-
processing phase – GO terms dataset (version 2). 

GO terms dataset Single filter Filter ensemble 

Information Gain 0.736 0.754 

Chi² 0.692 0.73 

Decision Stump 0.726 0.772 

Asymmetric Optimal Prediction 0.69 0.768 

Log Odds Ratio 0.667 0.713 

Auto-Filter 0.669 0.708 

Baseline (no filter method) 0.765 
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Supplementary Table 7. Median AUC values obtained by Random 
Forest using the single filter vs filter ensemble methods in a pre-
processing phase – physiology phenotypes dataset (version 2). 

Phenotypes dataset Single filter Filter ensemble 

Information Gain 0.694 0.718 

Chi² 0.66 0.716 

Decision Stump 0.695 0.701 

Asymmetric Optimal Prediction 0.654 0.704 

Log Odds Ratio 0.644 0.716 

Auto-Filter 0.644 0.688 

Baseline (no filter method) 0.715 

 

Supplementary Table 8. Median AUC values obtained by 
Random Forest using the single filter vs filter ensemble methods 
in a pre-processing phase – GenAge/GenDR dataset (version 2). 

GenAge/GenDR dataset Single filter Filter ensemble 

Information Gain 0.653 0.69 

Chi² 0.638 0.685 

Decision Stump 0.678 0.681 

Asymmetric Optimal Prediction 0.64 0.72 

Log Odds Ratio 0.617 0.69 

Auto-Filter 0.628 0.692 

Baseline 0.701 

 


