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INTRODUCTION 
 

Hepatocellular carcinoma is a highly malignant tumor 

and is one of the leading causes of cancer-related deaths 

worldwide [1]. Despite significant progress in the 

diagnosis and treatment of HCC, its incidence and 

mortality rates remain high [2]. In clinical practice, 

early diagnosis and treatment of HCC are of paramount 

importance. Numerous studies have shown that early 

detection and intervention can greatly improve patient 

prognosis [3, 4]. Therefore, finding new methods for the 

diagnosis and treatment of HCC is currently a hot topic 

in HCC research. In recent years, extensive genomic 

and transcriptomic studies have shown that aberrant 

changes in many genes and signaling pathways may 

contribute to HCC formation and progression [5–7]. 
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ABSTRACT 
 

Background: Hepatocellular carcinoma (HCC) is a highly malignant tumor with high incidence and mortality rates. 
Aging-related genes are closely related to the occurrence and development of cancer. Therefore, it is of great 
significance to evaluate the prognosis of HCC patients by constructing a model based on aging-related genes. 
Method: Non-negative matrix factorization (NMF) clustering analysis was used to cluster the samples. The 
correlation between the risk score and immune cells, immune checkpoints, and Mismatch Repair (MMR) was 
evaluated through Spearman correlation test. Real Time Quantitative PCR (RT-qPCR) and immunohistochemistry 
were used to validate the expression levels of key genes in tissue and cells for the constructed model. 
Result: By performing NMF clustering, we were able to effectively group the liver cancer samples into two 
distinct clusters. Considering the potential correlation between aging-related genes and the prognosis of liver 
cancer patients, we used aging-related genes to construct a prognostic model. Spearman correlation analysis 
showed that the model risk score was closely related to MMR and immune checkpoint expression. Drug 
sensitivity analysis also provided guidance for the clinical use of chemotherapy drugs. RT-qPCR showed that 
TFDP1, NDRG1, and FXR1 were expressed at higher levels in different liver cancer cell lines compared to normal 
liver cells. 
Conclusion: In summary, we have developed an aging-related model to predict the prognosis of hepatocellular 
carcinoma and guide clinical drug treatment for different patients. 
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These research findings provide new ideas and methods 

for the diagnosis and treatment of HCC. Traditional 

treatment methods for HCC include surgical resection, 

radiation therapy and chemotherapy, but these treat-

ments still have many problems and limitations [8, 9]. 

With the emergence of new technologies and drugs, 

personalized therapy is gradually becoming a new trend 

in HCC treatment [10]. For example, targeted therapy 

against tumor-related signaling pathways has become a 

hot topic in HCC treatment [11]. In addition, immuno-

therapy as a novel approach to HCC treatment has also 

received widespread attention [12, 13]. In summary, 

HCC is a serious disease. Due to the complex etiology 

and mechanisms of HCC, the therapeutic effects of 

HCC vary greatly. Therefore, new biomarkers and 

prognostic models are needed to achieve precision 

management for individuals. 

 

Aging with the significant feature of permanent growth 

arrest is often a response to endogenous and exogenous 

stresses, including telomere dysfunction, oncogene 

activation, and persistent DNA damage [14]. The 

generation of senescent cells occurs throughout a 

person’s life and plays a functional role in various 

physiological and pathological processes, including 

embryonic development, wound healing, host defense, 

and tumor suppression [15]. Studies have shown that 

aging is an effective barrier to prevent tumor 

development [16]. Cell senescence is associated with 

the decline of hematopoietic stem cell (HSC) function 

and an increased risk of malignancies in the hemato-

poietic system, especially leukemias, multiple myeloma, 

myelodysplastic syndromes, and lymphomas, which are 

more common in the elderly [14]. According to the 

literature, cell senescence can promote skin carcino-

genesis through the p38MAPK and p44/42MAPK 

signaling pathways [17]. Additionally, research has 

found that the aging-related SIN3B can promote 

inflammation and pancreatic cancer progression [18]. 

Liu et al. research has shown that dysbiosis of the liver 

microbiota can cause activation and aging of hepatic 

stellate cells, thereby driving the progression of liver 

cirrhosis to hepatocellular carcinoma [19]. Previous 

research has revealed a close relationship between 

aging and cancer. However, current studies on the link 

between liver cancer and aging are often limited to 

individual molecules, and research on multiple key 

aging genes and liver cancer is still lacking. 

 

The aim of this study is to construct a risk prognosis 

model by integrating multiple key genes related to aging 

and to explore the relationship between risk score and 

immune cell and tumor microenvironment by com-
bining bulk and single-cell sequencing. Furthermore, we 

investigate their correlation with MMR, immune 

checkpoints, and IC50 to determine the effectiveness of 

immune therapy and different chemotherapy drugs. In 

addition, we validated these results by multi-omics 

analysis and basic experiments. 

 

MATERIALS AND METHODS 
 

Data source 

 

Transcriptomic and clinical data for hepatocellular 

carcinoma were downloaded from The Cancer 

Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) 

database, including 374 cancer samples and 50 normal 

samples. Clinical data included survival status, 

survival time, gender, grade, and TNM stage. The liver 

cancer-related dataset (GSE14520) was downloaded 

from the GEO database (https://www.ncbi.nlm. 

nih.gov/), and after collating the data, a total of 221 

liver cancer samples were used for subsequent model 

verification analysis. Dataset GSE39791 was used for 

differential analysis of cancerous and paraneoplastic 

tissues. 

 

NMF clustering analysis 

 

Non-Negative Matrix Factorization (NMF) is a 

commonly used clustering method for subgroup 

identification. Prior to the clustering analysis, the data 

were filtered and sorted. Subsequently, the differential 

analysis and prognosis of 278 aging-related genes 

were performed, followed by the application of the 

NMF algorithm to classify the samples into two 

clusters, namely C1 and C2. The C1 cluster consisted 

of 68 samples, while the C2 cluster consisted of 153 

samples. 

 

Functional enrichment analysis 

 

To explore the underlying biological processes and 

signaling pathways associated with the acquisition of 

differential genes, gene ontology (GO) and KEGG 

enrichment analyses were performed using the 

“clusterProfiler” R package. GO analysis included BP, 

CC and MF. The annotated gene set file is 

“c2.cp.kegg.v7.4.symbols.gmt” and “c5.go.v7.4. 

symbols.gmt”. A threshold value of P value < 0.05 was 

determined. 

 

Single-cell data analysis 

 

Single cell sequencing data were obtained from the 

GEO database (GSE146115). The Seurat package 

analyzes the dataset and clusters the samples after PCA 

dimensionality reduction and t-SNE dimensionality 

reduction. The SingleR package was used for cell type 

annotation of single-cell data. 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Weighted gene co-expression network analysis 

 

WGCNA is an analytical method for analyzing gene 

expression patterns of multiple samples. Genes with 

similar expression patterns can be clustered and the 

association between modules and specific traits or 

phenotypes can be analyzed. Aging-associated genes 

were used to construct the weighted correlation network, 

where prognosis-related modules were selected for 

further analysis. 

 

Modeling analysis 

 

A risk score model was constructed using the screened 

key genes, and a risk score was also calculated for each 

patient. A comprehensive evaluation of the role of these 

key molecules in the prognosis of patients with 

hepatocellular carcinoma. Lasso regression analysis was 

used to construct a prognostic model. The risk score of 

each HCC patient was calculated by the formula: risk 

score = (Expression of FXR1 × coefficient) + 

(Expression of NDRG1 × coefficient) + (Expression of 

TFDP1 × coefficient). The TCGA dataset is divided into 

training and test sets, while we use the GSE14520 dataset 

for further model validation. Survival analysis was 

performed using KM curves to assess whether there was 

a difference in survival between high and low risk groups 

of patients with liver cancer in the training and test sets. 

Subsequently, risk-survival curves were used to assess 

patient survival and death in the high and low risk groups 

and how the key genes that were modeled differed 

between the two groups. And the ROC curve is used to 

determine the effectiveness of this prediction model. 

 

Immunoassay and drug sensitivity analysis 

 

The Cibersort algorithm was used to quantify the 

abundance of various immune cells in each sample.  

In total, we evaluated 22 human immune cells. The 

immune score, stromal score and total score are derived 

by the ESTIMATE algorithm to assess the immune 

microenvironment in the tumor tissue. The tumor 

stemness index is an important metric used to assess the 

similarity between tumor cells and stem cells. 

Analyzing the correlation between the stemness index 

and the risk score can help predict whether the model 

can serve as an indicator of stemness. Correlations with 

immune checkpoints and MMR were calculated using 

Spearman correlation analysis to determine the 

suitability of hub genes for predicting the efficacy of 

immunotherapy. Immunotherapy was validated between 

different risk groups using the IMvigor210 dataset. The 

“oncoPredict” package was used to assess drug 

sensitivity in different groups, and we analyzed the 

current chemotherapeutic agents that have some 

relevance to liver cancer. 

Real-Time quantitative PCR (RT-qPCR) 

 

Total RNA was extracted using TRIZOL (#15596026, 

Invitrogen, USA), and the concentration was determined 

and placed on ice for use. Add the calculated amount of 

RNA to PCR tubes, generally reverse transcribe 500 ng 

of total RNA per tube, add PrimeScript™ RT Master Mix 

(Takara Bio, Japan) about 2 ul, and add RNase free water 

(Takara Bio, Japan) to fix the volume to 10 μl. Set up the 

reaction program: 37°C for 15 min, 85°C for 5 s. Reverse 

transcription was completed to obtain cDNA. Dilute the 

qPCR primers to 10 μM and mix the Forward and 

Reverse primers in equal volumes. Prepare the qPCR 

system in the following proportions: 2xTB Green 

(#RR820L, Takara, Japan) 10 μl, ddH2O 8 ul, template 

cDNA 1 μl, primers (Forward primer + Reverse primer) 

1 μl. Run the qPCR according to the following procedure: 

94°C for 2 min, 94°C for 30 s, 60°C for 32 s, 60–94°C 

for 45 cycles, and collect the solubility curve. Data were 

collected and qPCR results were analyzed [20]. The 

primer sequences are as follows: FXR1-F: 5′-

GAGAAGACGGTATGGTTCCATTT-3′, FXR1-R: 5′-

AGGCGTTCCATTCTTAGCTGT-3′; NDRG1-F: 5′-

CTCCTGCAAGAGTTTGATGTCC-3′, NDRG1-R: 5′-

TCATGCCGATGTCATGGTAGG-3′; TFDP1-F: 5′-

AATTGAAGCCAACGGAGAACTC-3′, TFDP1-R: 5′-

CGGTCTCTGAGGCGTACCA-3′; GAPDH-F: 5′-

GGAGCGAGATCCCTCCAAAAT-3′, GAPDH-R: 5′-

GGCTGTTGTCATACTTCTCATGG-3′. 

 

Immunohistochemistry analysis 

 

The Human Protein Atlas (HPA) (https://www. 

proteinatlas.org/) database is based on proteomic, 

transcriptomic and systems biology data for statistical 

analysis, and covers protein expression in normal and 

tumor tissues. Among them, the expression of FXR1 

and NDRG1 in the liver, which we used to construct 

aging-related prognostic models, was also included. 

 

Data statistics 

 

The Wilcoxon test was used for the analysis of 

differences between the two groups, while the 

correlation analysis was based on the Spearman 

correlation test. Kaplan-Meier analysis and log-rank test 

were used to compare the survival analysis between the 

two groups. P values are bilateral and P < 0.05 is 

considered statistically significant. R software (version 

4.2.2) was used to perform the statistical analysis. 

 

Data availability statement 

 
The article/supplementary material contains the original 

contributions presented in this study. For further 

information, please contact the corresponding author. 

https://www.proteinatlas.org/
https://www.proteinatlas.org/


www.aging-us.com 6851 AGING 

RESULTS 
 

NMF clustering analysis 

 

First, we draw a flowchart illustrating the whole 

analysis process in detail (Figure 1). As mentioned 

previously, we obtained RNA-Seq data and relevant 

clinical information for hepatocellular carcinoma 

through the TCGA database. A total of 278 aging-

associated genes were obtained from the CellAge 

database (https://genomics.senescence.info/cells/), and 

we performed NMF Clustering based on the expression 

matrix of these aging-associated genes. It can be seen 

that the samples are better divided into two clusters 

(Figure 2A). KM analysis was used to analyze the 

prognostic differences between the two groups of 

patients, and we saw a poorer prognosis for patients in 

the C1 cluster (Figure 2B). Immediately after, we 

 

 
 

Figure 1. A flow chart of the manuscript. 

https://genomics.senescence.info/cells/
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performed a differential analysis of the two clusters of 

samples and Hierarchical clustering clearly showed a 

total of 13 aging-related differential genes (p < 0.05). 

Also, we found significant differences in T and M 

staging and Stage between the two clusters (Figure 2C). 

Subsequently, we performed GO analysis. BP was 

mainly enriched in regulation of epithelial cell 

differentiation, CC was mainly enriched in vesicle 

lumen and secretory granule lumen, while MF was 

mainly enriched in protein serine/threonine kinase 

inhibitor activity (Figure 2D). And the main pathways 

enriched by KEGG analysis are cell cycle, cellular 

senescence, central carbon metabolism in cancer, and 

HIF-1 signaling pathway (Figure 2E). 

 

 
 

Figure 2. NMF staging and correlation analysis of patients with hepatocellular carcinoma. (A) Patients were classified into two 

clusters using the NMF algorithm. (B) Prognostic analysis revealed a poorer prognosis for patients with the C1 cluster. (C) Exploration of 
differential genes between different subtypes by differential analysis. (D, E) GO and KEGG analysis to investigate the underlying 
mechanisms and pathways. 
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Single-cell data analysis 

 

We downloaded single-cell sequencing data 

(GSE146115) from the GEO database for liver cancer 

tissues, and collated the data for a total of 3200 single-

cell comprehensive transcriptional profiles. The PCA 

and tSNE dimensionality reduction analysis of the 

samples allowed us to divide the samples into 12 

clusters, and the subsequent heat map shows the 

differential genes between the different clusters (Figure 

3A, 3B). We then annotated the 12 clusters of cells and 

could find that the cells were clearly divided into four 

classes. In addition to the main component hepato-

cellular carcinoma cells, there are macrophages, T cells 

and NK cells (Figure 3C). Subsequently, the expression 

of typing difference genes between different cells in 

liver cancer tissues was analyzed. The scatter plot 

clearly shows that RBX1 is expressed in the highest 

 

 
 

Figure 3. Single-cell analysis reveals the expression of differential genes in different cell types. (A) Using the tSNE algorithm to 
dimensionalize the samples into 12 clusters. (B) Heat map clearly showing the major differentially expressed genes in different clusters. (C) 
The Seurat package annotates different clusters with a total of 4 classes of cells. (D) The bubble diagram shows the expression of difference 
genes in different cells. (E) Visualization of 13 differential genes by single-cell sequencing. 
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amount in all cells. In addition, the expression of RBX1 

was again significantly higher in NK cells than in other 

cells (Figure 3D, 3E). 

 

Immunoassay of NMF clustering 

 

To explore the immune cell landscape between different 

NMF clusters, we performed the analysis of immune 

infiltration by the Cibersort algorithm. First, we can see 

how the various types of immune cells are different 

between the two clusters. Among them, B cell naive, 

plasma cells, and Tregs had significant differences 

between the two types, and the expression in C2 clusters 

was higher than that in C1 cluster (Figure 4A, 4B). The 

estimate algorithm allowed exploring the differences in 

immune scores, stromal scores and total scores between 

the two clusters, and we found that immune scores were 

significantly different between the two clusters 

 

 
 

Figure 4. Immunoassay and drug sensitivity analysis of samples with different cluster. (A) The histogram shows the expression 
of immune cells between the different typologies. (B) Expression of B cell naive, Plasma cell and Tregs between different clusters. (C) 
Exploring the correlation of different clusters with the tumor microenvironment. (D) Analysis of the differences between the various 
chemotherapeutic agents in the different clusters. 
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(Figure 4C). We then investigated whether there were 

differences in drug sensitivity of chemotherapeutic 

drugs between the two clusters and plotted graphs for 

those indicators that were significant (Figure 4D). 

 

Analysis of prognostic models 

 

Considering that aging-related genes may be highly 

correlated with the prognosis of hepatocellular 

carcinoma patients, we used these genes to construct a 

prognostic model. First, we clustered the aging genes by 

WGCNA, and we could see that the genes were divided 

into a total of 6 modules. Based on the p-values, we 

observed that the MEturquoise module exhibits the 

highest correlation with patient prognosis (Figure 5A, 

5B). For differential and prognostic analysis of aging-

related genes in this module, we screened a total of 38 

hub genes. Through the string database, we explored the 

 

 
 

Figure 5. WGCNA combined with Lasso algorithm to construct a prognostic model. (A) Clustering of genes using the WGCNA 

algorithm. (B) Clinical and prognostic analysis of the genes in different modules. (C) Study of associations between genes of the 
MEturquoise module using the STRING database. (D, E) Selection of valuable genes by Lasso algorithm to construct prognostic models. 
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correlation between these genes (Figure 5C). We 

identified FXR1, NDRG1 and TFDP1 to construct the 

model by lasso analysis. The risks core of each sample 

was calculated according to Equation (Figure 5D, 5E). 

We validated the model using 3 datasets considering the 

correlation between this risk score and patient prognosis. 

The TCGA dataset is first divided into training and 

validation sets using the R package “caret” while 

GSE14520 is also used as the validation set. It can be 

seen that patients with high-risk scores in all three 

datasets have a poor prognosis (Figure 6A). To further 

investigate the survival status of both groups, we found 

that patients in the high-risk group had a higher 

mortality rate. And the heat map revealed that the 

expression of all three key genes used for modeling 

were significantly higher in the high-risk group than in 

the low-risk group (Figure 6B). ROC curves can be seen 

for the TCGA training set model with AUC values of 

0.797, 0.749 and 0.740 for 1, 2 and 3 years While the 

validation set AUC values are 0.698, 0.626, and 0.627 

 

 
 

Figure 6. Prognostic analysis and model efficacy validation. (A) Prognosis between high and low risk groups was analyzed by KM 

curves. (B) Risk curves showing the differences between high and low risk groups. (C) ROC curves analyzing the specific efficacy of the model. 
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respectively. Finally, the AUC values for GSE14520 

were 0.665, 0.674, and 0.612 (Figure 6C). 

 

Prognostic model immune landscapes drug 

sensitivity analysis 

 

To explore the relationship between risk score and 

immune cells, we investigated the abundance of more 

than 20 immune cells in the tumor microenvironment. 

By spearman correlation test, we found that risk score 

was significantly correlated with different immune cells. 

Among them, B cell memory, macrophage M0 and risk 

score were significantly positively correlated. B cell 

naive, plasma cells and risk scores were negatively 

correlated (Figure 7A). We then assessed whether there 

were differences in tumor microenvironment scores 

between the high and low risk groups. It can be seen 

that the immune score, stromal score and total score 

 

 
 

Figure 7. Immunological analysis between high and low risk groups. (A) Correlations between risk scores and different immune 

cells were calculated by the Cibersort algorithm. (B) Tumor microenvironment analysis to assess the differences between high and low risk 
groups. (C) Tumor stemness analysis found that risk scores were strongly correlated with tumor stemness. (D) Correlation analysis found 
that risk scores were strongly correlated with MMR. (E) Correlation analysis revealed that risk scores were strongly correlated with immune 
checkpoints. (F, G) The immune efficacy of the different risk groups was analyzed by the IMvigor210 dataset. 
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were significantly lower in the high-risk group than in 

the low-risk group (Figure 7B). There is growing 

evidence that increased expression of stem cell-

associated biomarkers in tumor cells is highly correlated 

with drug resistance, cancer recurrence and tumor 

proliferation [21]. Our study found that this risk score 

was positively correlated with the tumor stemness score 

(Figure 7C). To understand the differences in 

immunotherapy between high and low risk groups, we 

predicted whether risk scores were associated with 

immunotherapy by MMR and immune checkpoint 

analysis. MMR were all positively correlated with risk 

scores, with MSH2 having the highest correlation 

(Figure 7D). The immune checkpoint analysis also 

found several indicators correlated with risk score, 

NRP1, TNFSF4, TNFSF15, TNFSF18, CD276, CD80 

and HHLA2 were strongly correlated with risk score (P 

< 0.001). However, PD1, PDL1, and CTLA4 did not 

show correlation (Figure 7E). Subsequently, we verified 

with the dataset that risk score was a better predictor of 

the effectiveness of immunotherapy and that patients in 

the high-risk group had better immunotherapy outcomes 

(Figure 7F, 7G). To study the expression of key genes 

for constructing the model, we analyzed the expression 

of TFDP1, NDRG1 and FXR1 by single cell sequencing. 

Among them, TFDP1 expression was low in all four 

types of cells, while FXR1 was mainly expressed in NK 

cells. NDRG1 was highly expressed in hepatocellular 

carcinoma cells, macrophages and NK cells (Figure 8A, 

8B). Subsequently, we investigated the sensitivity of 

high and low risk groups to different chemotherapeutic 

drugs. Interestingly, we found significant differences in 

drug sensitivity between the two groups for 

Camptothecin, Cisplatin, Gemcitabine, Irinotecan, 

Oxaliplatin and Vinblastine, but not for sorafenib and 5-

Fluorouracil (Figure 8C). 

 

Experimental validation of key genes 

 

We used the GSE39791 dataset for validation and could 

see that the expression of TFDP1, NDRG1 and FXR1 in 

liver cancer tissues was significantly higher than that in 

normal tissues (Figure 9A). Subsequently, we 

performed experimental validation using LO2 normal 

liver cells as well as the HEPG2, BEL-7402, and HCC-

LM3 liver cancer cell lines. And the expression of the 

three key genes in different hepatocellular carcinoma 

cells was higher than that in normal hepatocytes (Figure 

9B). Finally, IHC results showed that the expression of 

FXR1 and NDRG1 was significantly higher in liver 

cancer tissues than in normal tissues (Figure 9C). 

 

DISCUSSION 
 

With the development of immunotherapy, new 

treatment options are bringing hope to liver cancer 

patients. Immunotherapy works by enhancing the 

body’s immune system to attack tumor cells, and unlike 

traditional treatment methods, it does not destroy 

normal cells, thus reducing many side effects [22]. One 

common immunotherapy method is the use of immune 

checkpoint inhibitors. Immune checkpoints are proteins 

that can help the body’s immune system recognize and 

attack tumor cells. However, certain tumor cells can use 

immune checkpoints to evade immune system attacks, 

leading to tumor growth and spread. The role of 

immune checkpoint inhibitors is to block these immune 

checkpoints, making tumor cells unable to escape 

immune attacks [23]. In the treatment of liver cancer, 

the use of immune checkpoint inhibitors has made some 

progress. Clinical studies have shown that some 

immune checkpoint inhibitors can enhance T cell 

immune responses, helping patients suppress tumor 

growth and spread, while also prolonging survival and 

improving quality of life [24]. 

 

This study first performed NMF classification using 

TCGA liver cancer transcriptome database, and the 

results showed that the samples were well divided into 

two clusters. KM analysis showed a significant 

difference in prognosis between the two clusters, and 

we then analyzed the potential mechanisms through GO 

and KEGG analyses. The MF analysis mainly enriched 

in protein serine/threonine kinase inhibitor activity, 

which has been found to be closely related to the 

occurrence and development of liver cancer in previous 

studies [25, 26]. Interesting KEGG pathway enrichment 

included Cell cycle, Cellular senescence, and HIF-1 

signaling pathway. The disruption of the cell cycle is 

closely related to the occurrence and development of 

liver cancer, and HIF-1 abnormal activation plays an 

important role in the development of liver cancer, 

including promoting tumor cell growth, metabolism, 

and immune evasion [27, 28]. Considering that aging-

related genes may be related to the prognosis of patients, 

we used the WGCNA algorithm to select an aging gene 

module that was correlated with patient prognosis. Then, 

we used the aging-related genes in this module to 

construct a lasso model, and the selected genes mainly 

included TFDP1, NDRG1, and FXR1. Previous studies 

have demonstrated that overexpression of TFDP1 can 

promote tumor cell growth, thereby accelerating the 

progression and deterioration of certain liver cancers 

[29]. NDRG1 can enhance the interaction between 

fibroblasts and tumor cells, leading to the development 

of hepatocellular carcinoma [30, 31]. FXR1 can 

promote the proliferation, invasion, and migration of 

hepatocellular carcinoma, and its action is mediated by 

Smad2/3 [32]. These studies provide additional 
evidence for the reliability of the genes we screened and 

are consistent with our predicted results. Afterwards, we 

performed survival analysis of the model using three 
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datasets and found that patients in the high-risk group 

had significantly worse prognosis than those in the low-

risk group. Additionally, the model demonstrated good 

prediction performance at 1, 2, and 3 years based on the 

ROC curves. 

 

Furthermore, we used the Cibersort algorithm to explore 

the correlation between the model risk score and 21 

immune cell types. We found a positive correlation 

between the risk score and B cell memory and 

macrophages M0, and a negative correlation with B cell 

naive and plasma cell. Previous studies have shown that 

a decrease in B cell naive is closely related to the 

occurrence and prognosis of liver cancer, which may be 

associated with immune escape and tolerance in the 

liver cancer microenvironment [33]. The quantity and 

function of plasma cells in liver cancer patients  

may also affect the immune status and treatment 

 

 
 

Figure 8. Single-cell analysis of modeled key genes and drug sensitivity analysis of different risk groups. (A, B) Single-cell 

analysis reveals the expression of modeling key genes in different cells. (C) Use the oncopredict package to explore chemotherapeutic 
agents that are significantly different between high and low risk groups. 
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effectiveness [34]. Tumor stem cells are tumor cells 

with stem cell-like characteristics. Studies have shown 

that the existence and characteristics of liver cancer 

stem cells make liver cancer highly recurrent and 

resistant to treatment [35]. The stemness index is an 

indicator of the similarity between tumor cells and stem 

cells. Our study found a good correlation between this 

risk score and tumor stemness, demonstrating that the 

score can predict the degree of tumor stemness to a 

certain extent. This has important implications for 

subsequent treatment. Immunotherapy is an emerging 

cancer treatment method, but researchers have found 

that its efficacy varies greatly among different solid 

tumor patients [22, 23]. Therefore, we explored the 

 

 
 

Figure 9. Experiment in vitro and in vivo. (A) Expression of FXR1, NDRG1 and TFDP1 was significantly higher in hepatocellular 
carcinoma tissues than in normal liver tissues by GEO dataset. (B) The expression of FXR1, NDRG1 and TFDP1 was found to be significantly 
higher in three types of hepatocellular carcinoma cells than in normal hepatocytes by RT-qPCR assay. (C) The expression of FXR1 and 
NDRG1 was found to be significantly higher in hepatocellular carcinoma tissues than in normal liver tissues using the HPA database. 
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correlation between this risk score and immunotherapy. 

MMR is a predictive indicator of immunotherapy, and 

our study found that the correlation between the risk 

score and indicators such as EPCAM, MLH1, MSH2, 

MSH6, and PMS2 was extremely high. Among them, 

the correlation between MSH2 and risk score was the 

highest, and studies have shown that mutations and 

abnormal expression of the MSH2 gene are closely 

related to the occurrence and development of various 

cancers [36]. Subsequently, we further verified the 

effectiveness of immunotherapy in patients with 

different risk scores using data sets, and found that 

patients with higher risk scores had better responses to 

immunotherapy. Single-cell sequencing technology can 

reveal the heterogeneity and evolutionary trajectories 

of different subclones within a tumor, which helps to 

deepen our understanding of the molecular mechanisms 

underlying cancer initiation and progression [37]. In 

order to further explore the expression patterns of key 

molecules in different cell types, we performed single-

cell analysis using the GSE146115 dataset. We found 

that FXR1 had the highest expression level in NK cells. 

According to Zhang et al., natural killer cells (NK 

cells) play an important role in liver cancer 

immunotherapy, and their activity and infiltration level 

are closely related to the clinical prognosis of liver 

cancer [34]. NDRG1 was primarily expressed in liver 

cells. As for TFDP1, its expression levels were 

relatively low in various cell types, and it was mainly 

expressed in T cells. Studies have shown that T cells 

play an important role in tumor immunotherapy, and 

their immune surveillance and killing abilities are 

closely related to tumor progression and prognosis [22]. 

Subsequently, we performed drug sensitivity analysis 

and found that Camptothecin, Cisplatin, Gemcitabine, 

Irinotecan, Oxaliplatin and Vinblastine showed 

significant differences between the high risk and low 

risk groups. This has significant clinical implications 

for our diagnosis and treatment. Finally, through RT-

qPCR experiments, we found that the expression levels 

of key genes involved in the construction of the model 

were higher in different liver cancer cells than in 

normal liver cells. IHC validation confirmed the 

expression patterns of these key genes in cancer tissue 

and normal tissue. 

 

Certainly, our study has several limitations that need to 

be acknowledged. Firstly, we utilized multiple public 

databases for our joint analysis, but some of these 

databases lack clinical and immunotherapy data, which 

may result in certain omissions in our analysis. We plan 

to conduct further prospective studies to collect samples 

and data from our own hospital to conduct more in-
depth research. Secondly, downstream mechanisms of 

the genes used to construct our model were not 

explored, which may lead to some bias in our prediction 

of targeted drugs. Further research is needed to address 

this issue. 
 

In summary, our study has important clinical 

implications. The results obtained through the 

integration of bulk and single-cell sequencing data from 

multiple datasets are more reliable. The risk score 

constructed using WGCNA and LASSO can serve as a 

reliable and independent biomarker for predicting the 

prognosis of liver cancer patients. Single-cell 

sequencing analysis can help us further explore the 

expression patterns of hub genes in different cells. 

Functional enrichment analysis can assist in mechanism 

exploration and downstream analysis. In addition, our 

study explores the correlation between MMR and 

immune checkpoints through classification and model 

construction, which is helpful in assessing the 

effectiveness of immunotherapy. Furthermore, the 

difference in drug sensitivity between high and low risk 

groups determined by the risk model is useful for 

developing personalized chemotherapy regimens for 

patients. 
 

CONCLUSION 
 

In summary, we have constructed an aging-related 

model, which we hope can serve as a reference for 

predicting patient survival and guiding liver cancer-

related treatments. 
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