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INTRODUCTION 
 

Lung cancer is the most commonly diagnosed cancer 

worldwide (11.6%) and is the leading cause of cancer-

related deaths (18.4%) [1]. Lung squamous cell carcinoma 

(LUSC) is a prevalent form of non-small cell lung  

cancer (NSCLC), accounting for approximately 30% of  

all lung cancers [2]. Despite advances in chemotherapy 

and molecular-targeted therapies in recent years, the 

prognosis for LUSC patients remains very poor [3, 4]. 
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ABSTRACT 
 

Epithelial-mesenchymal transition (EMT), a biological process through which epithelial cells transform into 
mesenchymal cells, contributes to tumor progression and metastasis. However, a comprehensive analysis of 
the role of EMT-related genes in Lung squamous cell carcinoma (LUSC) is still lacking. In this study, data were 
downloaded from available databases, including The Cancer Genome Atlas (TCGA) database and the Gene 
Expression Omnibus (GEO) database. The association between differentially expressed EMT-related genes 
(EMT-RDGs) and LUSC prognosis, drug sensitivity, mutation, and immunity was analyzed using bioinformatics 
methods. In the results, Lasso and univariate Cox regression analyses identified four EMT-RDGs that were 
differentially expressed, and used to establish a prognostic model capable of distinguishing between high- and 
low-risk groups. Then, prognostic factors were identified by multivariate Cox regression analysis and used to 
construct a nomogram. The high-risk group had a significantly poorer prognosis than the low-risk group. The 
tumor immune environment was significantly different between the two groups, with the low-risk group 
exhibiting a better response to immunotherapy. In addition, the half-maximal inhibitory concentration 
prediction indicating that the constructed model could effectively predict sensitivity to chemotherapy. This 
study provides new reference for further exploration of new clinical therapeutic strategies for LUSC. 
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Metastasis is the most prominent feature of cancer 

cells and the primary cause of death in 90% of cancer 

patients. The epithelial-to-mesenchymal transition 

(EMT) is originally known as a process during embryonic 

development in which cells acquire mesenchymal 

phenotype and lose epithelial phenotype. Persistent 

EMT is essential for dissemination from primary 

tumors, with the progress of EMT, the tumor cells 

obtain motile and invasive phenotype, the loss of cell-

cell adhesion capacity and increased motility and 

invasion ability during EMT, which results in tumor 

cells escaping from primary tumors and invading the 

bloodstream or lymphatic system [5]. According to the 

transient EMT model, a subsequent mesenchymal - 

epithelial transition (MET) step can play a role in 

tumor metastasis [6]. Additionally, EMT can promote 

tumor cell proliferation, inhibit apoptosis, reduce 

cellular senescence, and promote immunosuppression 

[7]. EMT activation is the primary mechanism in the 

generation of cancer stem cell (CSC) [8], and it is 

regulated by a series of EMT-activated transcription 

factors (EMT-TFs), including the SNAIL1, TWIST, 

and ZEB families. 

 
An extensive study has been conducted on the relation-

ships between EMT and prognosis in non-small cell 

lung cancer in recent years. Schliekelman et al. [9] 

discovered a correlation between EMT phenotype and 

NSCLC cell invasion ability. Byres et al. [10] 

developed a 76-gene EMT signature to investigate the 

clinical responses to inhibitors in NSCLC patients. 

EMT-related genes (ERGs) have significant clinical 

relevance in NSCLC. However, there are no systematic 

studies of ERGs and their relationships with LUSC 

prognosis and treatment efficacy. As such, we used 

TCGA data and GEO data as the training and validation 

datasets, respectively. The two sets were used to screen 

differentially expressed EMT-related genes (EMT-

RDGs) and construct a prognostic model. Then, we 

investigated their relationship with prognosis, immune 

infiltration, drug sensitivity, and gene mutation in 

LUSC patients, which can provide a basis for clinical 

treatment of LUSC patients. 

 
MATERIALS AND METHODS 

 
Data collection and collation 

 
Gene expression data (FPKM value) and clinical 

information on LUSC were down-loaded from the TCGA 

database (https://gdc.xenahubs.net). FPKM were then 

transformed to TPM. The validation dataset (GSE73403) 

with prognostic information was downloaded from  

the GEO database (https://www.ncbi.nlm.nih.gov/geo/, 

TPM, transcripts per million). 

The gene mutations and gene copy number variants 

information of 492 LUSC from the TCGA database is 

publicly available via the GDC Data Portal (https://portal. 

gdc.cancer.gov/). mRNAsi indexes for LUSC cases in 

TCGA were obtained from previous studies. 

 
The data on Cancer-associated transcription factors (TFs) 

used in subsequent studies were downloaded from the 

Cistrome Cancer database. 

 
Selection of EMT-related genes 

 
The ERGs list was obtained from the EMT  

gene database (http://dbemt.bioinfo-minzhao.org). Other 

ERGs were obtained from Molecular Signatures Database 

(MsigDB) (http://www.broad.mit.edu/gsea/msigdb/), 

specifically Hallmarkdata set (h.all.v7.2.symbols.gmt),  

GO data set (c5.bp.v7.2.symbols.gmt), KEGG gene  

set (c2.cp.kegg.v7.2.symbols.gmt), BioCarta gene  

set (c2.cp.biocarta.v7.2.symbols.gmt), PID gene set 

(c2.cp.pid.v7.2.symbols.gmt), and Reactome gene set 

(c2.cp.reactome.v7.2.symbols.gmt). These genes were 

summarized for inclusion in this study. 

 
Identification of EMT-RDGs 

 
P-value < 0.05 and |logFC| > 0.32 were set as inclusion 

criteria for selection of differentially expressed genes 

(DEGs) between tumor and normal samples using  

the limma R package [11]. The EMT-RDGs were 

obtained by intersecting previously obtained differential 

genes with the ERGs. To elucidate the potential 

biological function of EMT-RDGs, the GO enrich-

ment analyze, including the terms “biological process 

(BP),” “cellular component (CC),” and “molecular 

function (MF)” and KEGG pathway enrichment analysis 

were implemented using the ClusterProfiler (https:// 

bioconductor.org/packages/release/bioc/html/clusterProfi

ler.html) package [12–15]. The pvalue < 0.05 was 

regarded as the screening criteria, and the dot plot 

function was used to visualize the results. Gene  

Set Variation Analysis (GSVA) was performed to 

generate the composite score of each gene set and to 

analyze the potential biological function alterations 

of different samples. 

 
Establishment of an ERGs-prognostic model based 

on Cox regression and lasso regression analysis 

 
Samples with a shorter than 90-day survival time were 

excluded. Univariate Cox regression analysis was 

performed to identify differentially expressed genes 

associated with survival. Least absolute shrinkage and 

selection operator (LASSO) regression analysis was 

https://gdc.xenahubs.net/
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performed to select ERGS expression features for 

prognostic model-building for LUSC patients by R 

package ‘glmnet’. Feature coefficients were plotted 

against shrinkage parameter (Lambda) after performing 

linear regression between ERGS expression using 

LASSO in the training cohort (TCGA dataset).  

The minimum Lambda which resulted in the least error 

was identified after cross-validation of regression 

between weighted expression level of 4 genes: Snail 

family transcriptional repressor 1 (SNAI1), Mothers 

against decapentaplegic homolog 7 (SMAD7), Bone 

morpho-genetic protein 2 (BMP-2), and Regulator  

of G-protein signalling 3 (RGS3). An EMT-RDGs 

signature was ultimately established to predict 

prognosis. We calculated risk scores equal to the  

sum of the products of gene expression levels and  

the corresponding coefficients (∑expression levels × 

coefficients) as follows: 

 
(Risk score = SNAI1 expression × 0.007 + SMAD7 

expression × 0.005 + BMP2 expression × 0.013 + RGS3 

expression × 0.065) 

 
Construction of a transcription factors co-expression 

network 

 
To evaluate the regulatory effect exerted by TFs  

on EMT-RDGs, we also examined their correlation. 

Pearson correlation analysis was used to perform 

correlation analysis. The 795 TFs were obtained from  

the database, and the TFs with empty values were 

eliminated. Correlation coefficient > 0.5 and FDR < 0.001 

were set as the cutoff values for selection to analyze  

the relationship between 530 TFs and EMT-RDGs. 

 
Validation of the performance of prognostic models 

 
The training cohort was divided into low-risk and 

high-risk groups using the median risk score as the 

cutoff point. Principal component analysis (PCA) and 

t-SNE were used to assess the grouped samples and 

expression patterns. Survival analysis was performed 

using the R package survminer to determine the 

survival difference be-tween the two groups. We then 

generated ROC curves to evaluate the performance  

of the prognostic model. Univariate and multivariate 

Cox regression analyses were performed to determine 

whether the four-gene model was an independent 

prognostic factor for LUSC. A nomogram was constructed 

based on age, gender, stage, smoking status, and risk 

score. In addition, calibration curves were plotted to 

assess the consistency between actual and predicted 

survival rates. The four-gene model was validated in 

an independent patient cohort (GSE73403). 

Assessment of immune infiltration and analysis of 

immune checkpoints 

 

CIBERSORT was used to estimate the proportions of 

22 sorted immune cell subtypes between the high- and 

low-risk LUSC patients. We employed the ESTIMATE 

algorithm to determine the immune and stromal scores, 

which reflect the enrichment of immune and stromal 

cell gene signatures, respectively. Tumor Immune 

Dysfunction and Exclusion (TIDE) was performed to 

investigate immune response. The ggpubr package was 

used to draw boxplots displaying comparisons of 

cytolytic activity scores, T cell inflammation scores, 

and mRNAsi indexes across different subgroups. 

 

Evaluation of drug susceptibility 

 

We used the R package pRRophetic to predict the half-

maximal inhibitory concentration (IC50) of chemo-

therapy drugs in the high- and low-risk groups of 

LUSC patients, and examined the sensitivity of 

different patients to chemotherapy drugs. In addition, 

the ridge regression model was constructed by 

integrating the gene expression profiles of cell lines 

from Genomics of Cancer Drug Sensitivity (GDSC, 

https://www.cancerrxgene.org/) and the TCGA data 

portal. Model accuracy was evaluated using a10-fold 

cross-validation. 

 

Gene mutation analysis 
 

The gene mutation data were obtained from the publicly 

available TCGA database via the GDC Data Portal 

(https://portal.gdc.cancer.gov/) using “MuTect2 Variant 

Aggregation and Masking”. Then, we used the 

malftools package in R [16] to analyze and visualize the 

SNP difference between the high- and low-risk groups. 

Significantly mutated genes (SMGs) were identified 

using MuSigCV (mutation significance with 

covariates). Agene was considered SMG if it satisfied 

the condition for statistical significance (q < 0.05) at 

MuSigCV. 

 

Statistical analysis 
 

All statistics and visualization were performed using the 

R software 4.1.1. All results were considered 

statistically significant when P < 0.05, *P < 0.05, 
**P < 0.01, ***P < 0.001 and ****P < 0.0001 denoted 

statistical significance. 
 

Cell culture and qRT-PCR 
 

A total of 10 pairs of surgically resected cancer tissues 

and adjacent non-tumorous tissues were collected from 

patients with a pathological diagnosis of LUSC at the 

https://www.cancerrxgene.org/
https://portal.gdc.cancer.gov/
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Shanxi Provincial Cancer Hospital between January 

2021 and January 2022. The mRNA expression levels 

of selected EMT-RDGs were validated using qRT-

PCR. Total cellular RNA was extracted using Trizol 

reagent (Invitrogen, CA, USA). Reverse transcription 

of RNA to cDNA was performed using PrimeScript™ 

RT Master Mix (Perfect Real Time) (Takara RR036A). 

Quantitative real-time PCR was performed using the 

GoTaq® qPCR Master Mix kit (Promega A6001) to 

determine the mRNA expression level of the hub genes. 

The expression levels of target genes were determined 

by qRT-PCR performed in triplicate on a Vii7 Q-PCR 

System (ABI, USA). Melting curves were generated at 

the end of amplification to confirm the specificity  

of the PCR product. Table 1 depicts the synthesis of the 

primers used in this study. To determine the relative  

expression of each target gene, GAPDH was used as  

the reference gene. Relative quantification was calculated 

using the comparative 2−ΔΔCt method. 

 

Data availability 

 

The datasets analyzed for this study can be found  

in the online repositories. The data underlying  

this study are freely available from TCGA database 

(https://gdc.xenahubs.net), the GSE73403 dataset 

(https://www.ncbi.nlm.nih.gov/geo/), GDC Data Portal 

(https://portal.gdc.cancer.gov/) and the Cistrome Cancer 

database. 

 

RESULTS 

 
Data collection 

 

The flow chart of our study is shown in Figure 1. After 

removing outliers (Pearson’s correlation coefficients 

< 0.8), a total of 469 tumor samples and 49 normal 

samples from TCGA remained in the training set, and 

69 patients from the validation dataset (GSE73403) 

containing prognostic information were included as the 

testing set. Table 2 provides a summary of the clinical 

information of LUSC patients. 

 

Screening of EMT-RDGs 

 

There were 10,994 DEGs between LUSC samples and 

normal samples, including 4968 upregulated genes and 

6026 downregulated genes (Figure 2A). The heatmap 

and volcano plot were performed to visualize 

differentially expressed genes (Figure 2B). We analyzed 

DEGs using GO and KEGG analyses to further 

investigate the biological functions and signaling 

pathways involved in the occurrence and progression of 

diseases (Supplementary Figure 1A and 1B). GO 

enrichment results revealed that several terms were 

enriched for biological process (BP) (Figure 2C), 

molecular function (MF) (Figure 2D), and cellular 

component (CC) (Figure 2E). For BP, the DEGs  

were significantly enriched in the ‘immune response-

activating cell surface receptor signaling pathway’, 

‘immune response-activating signal transduction’,  

and ‘regulation of immune effector process’. For  

MF, the DEGs were enriched in ‘glycosaminoglycan 

binding’, ‘antigen binding’, and ‘extracellular matrix 

structural constituent’. For CC, the DEGs were  

enriched in ‘mitochondrial inner membrane’, 

‘mitochondrial matrix’, and ‘external side of plasma 

membrane’. KEGG enrichment analysis revealed that 

these genes were primarily related to ‘herpes simplex 

virus 1 infection’, ‘endocytosis’, and ‘salmonella 

infection’ (Figure 2F). The biological functions were 

associated with the extensive fusion of human alveolar 

epithelial cells [17], the dissemination and colonization 

of metastatic cells [18], cell apoptosis, and the 

development of lung cancer [19]. Gene set enrichment 

analysis based on MsigDB revealed that differential 

genes were particularly enriched along multiple 

pathways, including TRANSFERASE_ACTIVITY_ 

TRANSFERRING_ONE_CARBON_GROUPS and 

CELL_CYCLE, etc, indicating a close relationship 

between differential genes and EMT. Thus, 883  

EMT-RDGs were selected by intersecting DEGs with 

1384 ERGs, including 464 upregulated and 419 

downregulated genes. 

 
Establishment of the four-gene prognostic model 

 
The candidate 883 EMT-RDGs were subjected to 

univariate Cox regression analysis, and we obtained 108 

differentially expressed genes related to survival. Then, 

108 genes were filtered using LASSO regression 

analysis (Supplementary Figure 2A and 2B). Four 

EMT-RDGs, SNAI1, SMAD7, BMP2, and RGS3 were 

eventually associated with the prognosis of LUSC. The 

four EMT-RDGs were used to construct the prognostic 

model. 

 
Construction of a transcription factors co-expression 

network 

 

Correlation analysis between TFs and EMT-RDGs 

revealed that abnormal expression of EMT-RDGs was 

significantly associated with 29 TFs. Therefore, to better 

explain this association, we constructed a TFs-based 

Sankey diagram. There are 29 TFs and 4 EMT-RDGs in 

the Sankey diagram (Supplementary Figure 3). 

 
Performance validation of the predictive models 

 
The 418 tumor samples were acquired after filtering 

samples who had survival times of less than 3 months. 

Based on the risk score formula and the calculated 

https://gdc.xenahubs.net/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/


www.aging-us.com 6869 AGING 

Table 1. Primer sequences used for qRT-PCR. 

Gene Name  Sequence 

SNAI1 FORWARD GCCTAGCGAGTGGTTCTTCTG 

SNAI1 REVERSE TAGGGCTGCTGGAAGGTAAA 

SMAD7 FORWARD ATGTTCAGGACCAAACGATCT 

SMAD7 REVERSE GGATGGTGGTGACCTTTGG 

BMP2 FORWARD GACGTTGGTCAACTCTGTTAAC 

BMP2 REVERSE GTCAAGGTACAGCATCGAGATA 

RGS3 FORWARD CAGTGAGATCATCCTACTCGTG 

RGS3 REVERSE CAGTTCTTCTCCCGTTTGTTG 

PMEPA1 FORWARD CGTAGGTGAAAAGGCAGAACA 

PMEPA1 REVERSE GACACAGCTCAACAAAGAAACGT 

LOXL2 FORWARD ACAGAATGTGAAGGAGACATCC 

LOXL2 REVERSE TGATGTTGTTGGAGTAATCGGA 

PLOD2 FORWARD GGATGCAGATGTTGTTTTGACA 

PLOD2 REVERSE GCTTTCCATGACGAGTTACAAG 

MMP14 FORWARD CAAGATTGATGCTGCTCTCTTC 

MMP14 REVERSE ACTTTGATGTTCTTGGGGTACT 

SPOCK1 FORWARD CAGAAACTGGAATCCCAACAAG 

SPOCK1 REVERSE TTGCACTTGACCAAATTCGAAG 

DCN FORWARD GACAACAACAAGCTTACCAGAG 

DCN REVERSE TGAAAAGACTCACACCCGAATA 

GAPDH FORWARD TGACTTCAACAGCGACACCCA 

GAPDH REVERSE CACCCTGTTGCTGTAGCCAAA 

 

median risk score, LUSC patients were divided into 

high-risk (n = 209) and low-risk groups (n = 209). The 

clinicopathological characteristics of the two groups  

are shown in Supplementary Figure 4. The risk score 

and the corresponding survival status of LUSC patients 

were illustrated by the risk curve and scatter plots 

(Figure 3A and 3B), and the expression-identifications 

of 4 EMT-RDGs between the high- and low-risk groups 

were compared by the heatmap (Figure 3C). To determine 

if our prognostic model could identify LUSC patients, 

we used PCA analysis and t-SNE to examine the 

distribution patterns of the high- and low-risk groups 

(Figure 3D). 

 
According to our four-gene model, the high- and  

low-risk groups were reasonably distinct. Similar 

findings were obtained when the four-gene model was 

also applied to the validation set (Supplementary 

Figure 5A–5D). The Kaplan-Meier survival analysis 

revealed that the high-risk group had a poorer overall 

survival (OS) than the low-risk group (P < 0.001) in 

both the training and validation sets (Figure 3E and 

Supplementary Figure 5E). The ROC curves (Figure 

3F) were plotted to assess the prognostic performance 

of the model. The area under the curve (AUC) for 1-, 

3- and 5- year OS predictions were 0.587, 0.644, and 

0.636, respectively. In the validation sets, the AUC for 

1-, 3- and 5- year OS predictions were 0.789, 0.695, 

and 0.846, respectively (Supplementary Figure 5F). 

The above findings indicated that the four-gene model 

could accurately predict the prognosis of LUSC 

patients. 

 

The four-gene model as an independent prognostic 

factor in LUSC patients 

 

Univariate and multivariate Cox regression analyses 

were performed to determine if the risk score and 

clinicopathological characteristics (age, gender, stage, 

and smoking status) could be used as independent risk 

factors of overall survival. Univariate and multivariate 

Cox regression analysis demonstrated that the stage  

and risk score was significantly associated with OS 

(Figure 4A). In the validation set, both univariate  

and multivariate Cox regression analysis revealed a 

significant association between the risk score and OS 

(Figure 4B). The aforementioned findings indicated that 

the four-gene model had a high clinical utility. 

 

Based on the four-gene model and clinicopathological 

characteristics, a nomogram was constructed to predict 

the survival rate of individuals based on EMT-RDGs 

and clinical factors (Figure 4C). Additionally, a 

calibration curve was constructed to evaluate the 

predictive accuracy of the prognostic model 

(Figure 4D). The value of the C index was 0.62. This 



www.aging-us.com 6870 AGING 

Table 2. The clinical information of LUSC patients from TCGA and GEO databases. 

 
TCGA 
N = 469 

GEO 
N = 69 

Age (%)   

≤65 181 (38.6) 47 (68.1) 

>65  283 (60.3) 22 (31.9) 

Unknown 5 (1.1) – 

Gender (%)   

Female 119 (25.4) 4 (5.8) 

Male 350 (74.6) 65 (94.2) 

T (%)   

T1  108 (23.0) 4 (5.8) 

T2 273 (58.2) 42 (60.9) 

T3 67 (14.3) 20 (29.0) 

T4 21 (4.5) 3 (4.3) 

N (%)   

N0 300 (63.9) 35 (50.8) 

N1 122 (26.0) 17 (24.6) 

N2 37 (7.9) 17 (24.6) 

N3 5 (1.1) – 

NX 5 (1.1) – 

M (%)   

M0  388 (82.7) 69 (100.0) 

M1 6 (1.3)  – 

MX 75 (16.0) – 

Stage (%)   

I 228 (48.6) 25 (36.2) 

Ⅱ 156 (33.3) 21 (30.4) 

Ⅲ 75 (16.0)  23 (33.3) 

IV  6 (1.3) – 

Unknown  4 (0.8) – 

Smoking (%)   

Yes 440 (93.8)  58 (84.1)  

No 17 (3.6)  11 (15.9) 

Unknown 12 (2.6) – 

Survival status   

Alive 266 (56.7) 41 (59.4) 

Dead   203 (43.3) 28 (40.6) 

OS days (Median; Quartile) 973.5 [669.0, 1124.2] 943.7 [883.3, 1268] 

 

indicates that the prognostic model can be used to 

predict prognosis of LUSC patients. 

 

EMT-RDGs-based immune infiltration analysis 

 

Based on the CIBERSORT algorithm, plasma cells 

accounted for the largest proportion, followed by 

macrophages M0 (Figure 5A). T cells CD4 memory 

resting, Tregs and neutrophils were significantly higher 

in high-risk patients, whereas the proportion of T cells 

follicular helper cells was higher in low-risk patients. 

The presence of immunosuppressive immune cells in 

the tumor microenvironment of the high-risk group was 

consistent with the poor prognosis of the high-risk 

group. The correlation between risk score and immune 

cell infiltration was analyzed in greater depth. The 

results demonstrated that the risk score was positively 

correlated with T cells CD4 memory resting, Tregs, and 

neutrophils, and negatively correlated with T cells 

follicular helper (Supplementary Figure 6). There was a 
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strong correlation between the EMT-RDGs and most of 

the 22 immune cells used to construct the prognostic 

model (Figure 5B). 

 

We investigated the immunological pathways given  

the existence of the large disparities in immune cell 

infiltration between high- and low-risk groups. The 

high-risk LUSC patients were significantly associated 

with pathways, including antigen processing and 

presentation, TGF-β signaling, and TCR signaling 

(Figure 5C). Previous studies have demonstrated that 

TGF-β is the key cytokine in the EMT process, which 

may partially account for the poor prognosis of the 

high-risk group. In addition, the ESTIMATE algorithm 

 

 
 

Figure 1. The flow chart of our study. 
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Figure 2. Visualization of differentially expressed EMT-related genes and functional enrichment analysis of DEGs in LUSC. 
(A) The volcano plot for differentially expressed genes between LUSC and normal samples. (B) The heatmap for differentially expressed 
genes between LUSC and normal samples. (C–F) Significantly enriched pathways in biological processes (BP), molecular function (MF), 
cellular components (CC) and KEGG pathway. The size of the dots represents the number of enriched genes, while their color indicates the 
degree of enrichment. 
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Figure 3. Prognostic value of 4 EMT-RDGs in the training set. (A) A risk curve based on the risk score of each sample. (B) The scatter 

plot is based on the survival status of each sample, the blue and red dots represent survival and death, respectively. (C) A heatmap of 
4 EMT-RDGs. (D) t-SNE plot of high- and low-risk groups based on the four-gene prognostic model. (E) Kaplan-Meier curve for training set 
overall survival. (F) ROC curves for the 1, 3, and 5-year survival prediction. 
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revealed that the high-risk group had a higher  

immune score (Figure 5D), stromal score (Figure 5E),  

and ESTIMATE score (Figure 5F), indicating that 

immune infiltration was higher in the high-risk group 

(Figure 5G). 

 

In recent years, anti-tumor immunotherapy for lung 

cancer has generated a great deal of interest. Seven 

immune checkpoint expressions were compared between 

high- and low-risk patients (Figure 6A and 6B). In  

the high-risk group, the expression of CD274, CTLA4, 

IDO1, LAG3, PDCD1, TIGIT, and TNFRSF9 was 

elevated. The poor prognosis of the high-risk group may 

be attributable to the inhibition of the immune system 

by the high level of immune checkpoints expression. 

The TIDE algorithm and transcriptome data were  

then used to determine the correlation between immune 

infiltration and immunotherapy response. Results 

demonstrated that the high-risk group had a significantly 

higher probability of immunotherapy responders (Figure 

6C and 6D). 

 

TIDE predicted a poor immunotherapy response, even 

though the high-risk groups exhibited significantly 

stronger immune infiltration and immune checkpoint 

expression. Considering natural anti-tumoral system-

mediated cytosolic immune response, we quantified the 

average expression levels of the granzyme A (GZMA) 

and perforin (PRF1) genes to evaluate the cytolytic 

activity (CYT). The results appeared consistent with  

the immune score, indicating that the high-risk group  

had significantly higher cytolytic and T cell inflam-

mation scores (Supplementary Figure 7A and 7B). 

These results indicated that the tumors in the high-risk 

group were more immunogenic. It was suggested that 

the immune microenvironment, cytolytic activity, and 

T cell inflammation affected the prognosis of LUSC 

patients. The mRNAsi was a novel stemness index that 

was used to evaluate the dedifferentiation potential of 

tumor cells. In our study, the low-risk group had a 

higher mRNAsi score (Supplementary Figure 7C).  

It revealed that the low-risk group had tumor cells with 

a higher dedifferentiation potential. This may also 

partially explain the higher immunotherapy responses in 

the low-risk group. 

 

The responses of the high- and low-risk groups to 

drug treatments 

 

Based on the pRRophetic algorithm, 35 drugs exhibited 

statistically significant differences (Supplementary 

Table 1). The data was visualized using boxplots. The 

 

 
 

Figure 4. Independent prognostic analysis of the four-gene model. (A) Univariate and multivariate Cox regression analysis of the 
risk score and clinicopathological characteristics in the training set. (B) Univariate and Multivariate Cox regression analysis of the risk score 
and clinicopathological characteristics in the validation set. (C) A nomogram for prognostic prediction based on risk score and other 
clinicopathological factors in patients with LUSC. (D) Calibration curve for evaluating the predictive accuracy of the prognostic model. 
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Figure 5. The relationship between the infiltrated immune cells and risk score and the difference in immune score and 
immune pathways between high- and low-risk groups. (A) Comparison of the infiltration level of 22 tumor-infiltrating immune cells 

between the high- and low-risk groups. (B) The correlation heatmap between 22 immune cells and EMT-RDGs. (C) Box plots showing the 
immune pathways analysis between high- and low-risk groups. (D–F) Boxplots of the immune score, stromal score, and ESTIMATE score. 
(G) Heatmap of immune cells and ESTIMATE score for high- and low-risk groups. 
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IC50 values for six common chemotherapeutic  

drugs (cisplatin, bleomycin, docetaxel, doxorubicin, 

gemcitabine, and paclitaxel) did not change 

significantly between the high- and low-risk groups 

(Figure 7A). Several drugs with significant differences 

were targeted drugs, including ponatinib, Saracatinib, 

Axitinib, and Lestaurtinib, all of which had a higher 

IC50 in the low-risk group (Figure 7B). In other  

words, patients in the high-risk group appeared to be 

more susceptible to these targeted drugs. 

Somatic mutation features in the high- and low-risk 

groups based on EMT-RDGs 

 

We identified the mutation information in both the  

high- and low-risk groups. Among 418 LUSC patients 

from the TCGA database, 410 patients (98.09%) with 

single-nucleotide variant (SNV) data were selected for 

inclusion, with 208 patients in the high-risk group and 

the remaining 202 patients in the low-risk group. The 

waterfall was used to display the mutant situations of 

 

 
 

Figure 6. Differential analysis of immune checkpoint and risk score between high- and low-risk groups. (A) Boxplot showing 

differential expression of common immune checkpoint between high- and low-risk groups. (B) Chord diagram illustrating the relationship 
between the immune checkpoints. (C and D) Comparison of the immunotherapy response between high- and low-risk groups. 
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the top 20 genes with the highest mutation frequency. 

Missense mutations had the highest frequency  

of mutations, followed by nonsense mutations 

(Supplementary Figure 8A), and the number of single 

nucleotide polymorphism (SNP) was significantly 

larger than that of insertion (INS) or deletion (DEL). 

The most frequent nucleotide variation in the high-risk 

group was C > T, whereas in the low-risk group it was 

C > A (Supplementary Figure 8B–8D). The number of 

variants in each sample and different mutation types are 

 

 
 

Figure 7. (A) The sensitivity of the high- and low-risk groups to six commonly used chemotherapeutic drugs. (B) The sensitivity of the high- 

and low-risk groups to targeted drugs with significant differences. 
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indicated by different colors in Supplementary Figure 

8E and 8F. The top ten mutant genes with the highest 

mutation frequency were displayed in Histograms 

(Supplementary Figure 8G). TTN, TP53, MUC16, 

CSMD3, RYR2, LRP1B, USH2A, ZFHX4, SYNE1, and 

SPTA1 were the top 10 genes with the most frequent 

mutations in the high-risk group. TTN, TP53, CSMD3, 

MUC16, SYNE1, RYR2, LRP1B, ZFHX4, USH2A,  

and FAM135B were the top 10 genes with the most 

frequent mutations in the low-risk group. Based on the 

somatic mutational profiles of 410 LUSC patients, the 

MutSigCV algorithm identified 536 significantly 

mutated genes (SMGs) (q < 0.05). The top 10 most 

statistically significant driver genes were, TP53,  
TTN, CSMD3, ZFHX4, FAM135B, CDH10, HCN11, 

ZNF804A, CDKN2A, and NFE2L (Supplementary 

Figure 9). There were certain overlaps with genes with 

higher mutational frequency in high- and low-risk 

groups. TP53 was identified as a cancer gene, with a 

high mutation tendency in both high- and low-risk 

groups. This may correlate with the prognosis of LUSC 

patients. 

 

Validation of the expression of four EMT-RDGs in 

LUSC 

 

qRT-PCR was used to determine the expression of four 

mRNAs in tissue extraction samples. The results 

showed that SNAI, SMAD7, BMP2, and RGS3 were 

significantly down-regulated, which was consistent with 

the bioinformatics analysis (Figure 8). 

 

DISCUSSION 
 

Metastasis is an important contributing to poor 

prognosis in patients with LUSC [9]. The EMT  

process is core among the mechanisms driving tumor 

cell metastasis and chemoresistance [20, 21]. Recent 

studies have constructed EMT-RDGs risk score  

model to predict the prognosis of many types of 

cancer, such as colorectal cancer, liver cancer, and 

pancreatic ductal adenocarcinoma [22–29]. However, 

no study has tested whether ERGs-based models can 

predict the prognosis of LUSC patients. In this study, 

we systematically analyzed the expression profiles  

of ERGs in LUSC tissues in TCGA database. Risk score 

models were constructed based on EMT-RDGs for 

evaluating the prognosis of LUSC in clinical practice. 

The performance of the developed models was 

validated in GEO database. We also analyzed the 

mutational landscape, tumor immune environment, 

immune treatment, and drug sensitivity between high- 

and low-risk groups. 

 

To construct the prognostic model, four EMT-RDGs 

(SNAI1, SMAD7, BMP2, and RGS3) were screened. 

SNAI1 is a zinc finger transcription repressor of  

E-cadherin that plays a role during early embryonic 

development and cell migration stages. It has been 

reported to repressed E-cadherin to influence EMT 

events [30]. It is, therefore, an important regulator of 

metastasis in lung cancer. 

 

SMAD7 is an inhibitory Smad shown to inhibit TGF-β1 

signaling through multiple mechanisms. Studies have 

indicated that TGF-β1 regulates EMT at the transcrip-

tional and post-transcriptional levels, and that TGF-β1-

induced EMT participates in lung cancer metastasis 

[31]. Thus, we speculate that the suppression of SMAD7 

expression resulted in activation of the TGF-β1 signaling 

pathway leading to enhancement of metastasis in lung 

cancer. 

 

Bone metastasis is one of the most common compli-

cations of advanced Non-Small Cell Lung Cancer 

Treatment (NSCLC). Data shows that activation  

of BMP2 signaling aggravates bone metastasis of 

NSCLC. In a previous study, BMP2 suppressed  

the protein expression of E-cadherin suggesting that 

BMP2 signaling regulates the morphological changes  

of cells induced by EMT [32]. It has been shown  

that EMT process increases the motility and invasion 

ability of cells [33]. In this study, we found that BMP2 

expression was downregulated in the high-risk group. 

The mechanism involved need to be clarified in future 

studies. 

 
RGS3 is a well-known regulator of G protein signaling 

pathways. For instance, it can inhibit the TGF-β/SMAD 

signaling pathway in adventitial fibroblasts. Previously, 

it was reported that overexpression of microRNA- 

25 influenced the expression of RGS3 leading to the 

inhibition of apoptosis of lung cancer cells [34]. 

Moreover, microRNA-25 was found to be significantly 

upregulated in NSCLC tissues and negatively correlated 

the expression of microRNA-25 and RGS3 protein. 

 
Based on the results provided above, the four cancer-

related genes may have prognostic value in LUSC. 

However, further investigations are needed to verify this 

hypothesis and explore the underlying mechanisms. 

 

A recent study showed that the EMT process influences 

the immune cellular infiltration status of tumor cells  

and cancer metastasis [35]. Against this background, we 

explored the immune microenvironment of high-risk 

and low-risk groups in this study. Results revealed a 

significant difference in immune infiltration of various 

cell types between the high- and low-risk groups. 

Specifically, patients in the low-risk group had higher 

abundance of follicular helper T cells, whereas those in 

the high-risk group had higher abundance of resting 
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memory CD4 T cells, Tregs, and neutrophils. Evidence 

from previous studies indicate that tumor-infiltrating 

lymphocytes (TILs) are associated with the progression 

of various cancers [36]. For instance, infiltration  

level of cytotoxic T-cells, memory T cells, and helper 

T-cells was associated with a favorable prognosis [37]. 

Tumor immune-escape mechanisms have been a  

major limitation to the efficacy of drugs for controlling  

tumor progression [38]. Several mechanisms of  

tumor-immune escape have been reported including 

high number of immunosuppressive cells and over-

expression of immune checkpoint molecules in  

tumor microenvironment [39]. The cancer immunoediting 

hypothesis states that during tumor development in 

immune-competent hosts, tumor cells with less immuno-

genicity are selected to escape antitumor activity [38]. 

Lower expression of mRNAsi in the high-risk group 

resulted in low immunogenicity. Therefore, the poor 

prognosis of patients in the high-risk group may be due 

to the strong immunosuppression and low immune 

activity in the tumor microenvironment. 

 

Studies have demonstrated that immune checkpoint 

inhibitors are effective in patients with refractory 

malignancies including lung cancer. Therefore, 

immunotherapy is an emerging treatment for cancer. 

 

 
 

Figure 8. Validation of the expression of EMT-RDGs by RT-PCR. (A) SNAI1. (B) SMAD7. (C) BMP2. (D) RGS3. 
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However, it is not effective in high-risk patients with 

high TIDE scores. This is attributed to the high tumor-

infiltration of Tregs and stromal cells [40]. 

 
Compared to the low-risk group, although the high-

risk group had higher immune cell infiltration and 

immune checkpoint expression, it had a higher TIDE 

score, and responded poorly to immunotherapy, which 

may be responsible for the high infiltration of stromal 

cells and Tregs in the high-risk group. High infiltration 

of stromal cells may lead to the formation of a barrier 

that prevents T cells from killing tumors [40], which 

inhibits immunotherapy response. In this study, a 

lower risk score was significantly associated with high 

expression of PD-L1 and TP53 mutation [41–43]. 

Patients in the low-risk group showed a high stemness 

index which had less differentiated [44]. These results 

demonstrate that patients with lower risk scores may 

benefit from immunotherapy. In the study by Denggang 

et al., it was found that the high-risk group with  

high expression of CTLA4 and TIM-3 had a  

poor response to immunotherapy [45]. Elsewhere, 

enrichment of stromal cells was revealed to be a cause 

of the poor response to immunotherapy in the high-

risk group with elevated levels of immune-related  

gene pair (IRGP) [46]. Thus, while exploring the 

personalized immunotherapy and precise treatments, 

we cannot consider the effect of immune cells during 

treatment in isolation. 

 
The bottlenecks in the treatment of LUSC made patients 

have to revert to traditional chemotherapy to improve 

prognosis. In our study, patients in the high-risk group 

showed better response to targeted drugs, such as 

Ponatinib, Saracatinib, and Axitinib. These drugs are 

often used to control NSCLC [47] and have been 

reported to confer good benefits in clinical trials 

[48, 49]. However, further clinical studies are required 

to investigate the clinical effects of these drugs.  

The above results suggest that the combination of 

traditional chemotherapy drugs and targeted drugs may 

be more therapeutically beneficial for high-risk groups. 

In conclusion, the data presented here indicate that  

the high-risk group may show good sensitivity to 

targeted drugs therapy, whereas the low-risk group  

may show good sensitivity to immunotherapy. Adoption 

of this criterion may reduce unnecessary treatments, 

decrease the economic burden on patients, and improve 

individualized treatment for patients. 

 
Although the validation was performed in this study  

and the results obtained have considerable clinical 

relevance, there are some limitations to this work. 
Firstly, it was carried out based on the TCGA database, 

which lacked specific data on surgery, chemotherapy, 

and tumor size. Besides, some patients have undergone 

immune or targeted therapy, which may impact the 

prognosis analysis. Secondly, the number of samples in 

this study was relatively small.  Therefore, future studies 

with a larger sample size are needed to further validate 

the performance of the signature. Thirdly, subgroup 

analyses were not performed due to the small sample 

size. For instance, the tumor stage was not different 

between subgroups, this may have been due to the 

different proportions of samples in different stages from 

the training and validation sets. In future, in vitro and in 

vivo experiments should be conducted to elucidate the 

biological functions of the four EMT-RDGs in LUSC. 

 

CONCLUSION 
 

In this study, the expression pattern of LUSC patients 

was explored and a risk score model was constructed. In 

addition, the association of model with the prognosis, 

immune infiltration, and drug sensitivity of patients. 

The constructed model is expected to promote 

application of individualized therapies in LUSC 

patients. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

Supplementary Figure 1. A barplot depicting the GO enrichment (A) analysis and GSVA analysis of KEGG (B). The blue bands indicate a 

positive correlation, whereas the green bands indicate a negative correlation. 
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Supplementary Figure 2. Establishment of a prognostic model using LASSO regression analysis. (A) LASSO coefficient profiles 
for 108 EMT-RDGs. Each curve corresponds to a single gene. (B) Optimal parameter (lambda) selection in the LASSO model. 

 

 

 
 

Supplementary Figure 3. Sankey diagram. The correlation between TFs and EMT-RDGs. 
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Supplementary Figure 4. The clinicopathological characteristics of the high- and low-risk groups. 
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Supplementary Figure 5. Prognostic value of 4 EMT-RDGs in the validation set. (A) A risk curve based on the risk score of each 
sample. (B) A scatter plot showing the survival status of each sample. (C) A heatmap of 4 EMT-RDGs. (D) t-SN plot of high-and low-risk 
groups based on the four-gene prognostic model. (E) Kaplan-Meier survival curve analysis. (F) ROC curves for the 1-, 3-, and 5-year survival 
prediction. 
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Supplementary Figure 6. The statistically significant relationships between risk score and level of immune cell infiltration. 

 

 
 

Supplementary Figure 7. Differential analysis of cytolytic activity scores, T cell inflammation scores, and mRNAsi indexes 
between the high- and low-risk groups. (A) Difference in cytolytic activity scores between the high- and low-risk qroups. (B) 

Differences in T cell inflammation scores between the high- and low-risk groups. (C) Difference in mRNAsi indexes between the high- and 
low-risk groups. 
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Supplementary Figure 8. Information on somatic mutations in LUSC patients in the high-risk group. (A) The waterfall plot 

shows mutation information for each gene in LUSC patients. Rectangles with different colors represent different mutation types. (B–D) 
Classification of different mutation types. The most common type of mutation in the summarized figure was a missense mutation. (E) The 
number of variants in each sample. (F) Box plot. Different colors represent different mutation types. (G) Histograms of the top ten most 
frequently mutated genes in LUSC. 
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Supplementary Figure 9. The mutational landscape of SMGs in LUSC patients. Top: The number of aberrations detected within 
each sample is shown. Middle: Significantly mutated genes are colored based on the mutation types. Left: The mutation frequency of each 
gene. Right: The top ten significantly mutated genes, ranked by q-value according to MutSigCV analysis and the number of mutations per 
gene. Bottom: High- and low-risk groups. 
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Supplementary Table 
 

Supplementary Table 1. The IC50 of 65 chemotherapy drugs in the high- and low-risk groups of LUSC patients. 

Drug’s name P.value 

A.443654 1.00000000  

BIBW2992 1.00000000  

BI.2536 1.00000000  

BIRB.0796 1.00000000  

CCT018159 1.00000000  

Gefitinib 1.00000000  

Erlotinib 0.99999999  

Bosutinib 0.99999983  

Cisplatin 0.99998044  

Epothilone.B 0.99992999  

ATRA 0.99791900  

Etoposide 0.99735393  

FH535 0.99688335  

Doxorubicin 0.95712317  

BI.D1870 0.91972925  

Elesclomol 0.87438764  

EHT.1864 0.71950857  

Gemcitabine 0.64221140  

Cyclopamine 0.63948724  

CGP.082996 0.59314005  

ABT.888 0.38657311  

AMG.706 0.31067710  

ABT.263 0.27994608  

Docetaxel 0.22039561  

AKT.inhibitor.VIII 0.18308981  

BAY.61.3606 0.14699632  

Bleomycin 0.13859567  

Bexarotene 0.09412018  

Camptothecin 0.08357952  

AICAR 0.05181055  

Bortezomib 0.00748255  

CCT007093 0.00508396  

GNF.2 0.00198718  

AP.24534 0.00186805  

CMK 0.00053376  

AZD.0530 0.00022121  

Cytarabine 0.00018178  

Axitinib 0.00009021  
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AG.014699 0.00008762  

AUY922 0.00004240  

FTI.277 0.00003666  

AZD7762 0.00001216  

BMS.708163 0.00000894  

Embelin 0.00000837  

AZD8055 0.00000038  

AZD.2281 0.00000019  

AZD6244 0.00000011  

CHIR.99021 0.00000000  

AZ628 0.00000000  

CEP.701 0.00000000  

A.770041 0.00000000  

AS601245 0.00000000  

DMOG 0.00000000  

Bryostatin.1 0.00000000  

Bicalutamide 0.00000000  

CI.1040 0.00000000  

BMS.509744 0.00000000  

CGP.60474 0.00000000  

BX.795 0.00000000  

AZD6482 0.00000000  

Dasatinib 0.00000000  

BMS.536924 0.00000000  

BMS.754807 0.00000000  

GDC.0449 0.00000000  

GDC0941 0.00000000  

 


