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INTRODUCTION 
 

Lung cancer is a significant public health problem and 

remains one of the leading causes of cancer-related 

deaths worldwide [1]. Among the different subtypes 

of non-small cell lung cancer (NSCLC), lung 

squamous cell carcinoma (LUSC) has one of the 

poorest prognoses and highest mortality rates [2], 

accounting for the majority of all lung cancer cases. 

Despite advances in medical treatments for LUSC, 

including surgery, chemotherapy, and radiation 

therapy, the 5-year survival rate for LUSC patients 

remains alarmingly low, at below 30% [3]. Recently, 

immunotherapy has emerged as a promising treatment 

option for advanced-stage LUSC and has shown 

potential in improving patient outcomes [4, 5]. 

However, patient response to immunotherapy is 

highly variable, and not all patients benefit equally 

from this treatment [6]. This variability in response 

highlights the need for new biomarkers to predict 

patient response and to inform the development of 

personalized treatment strategies. 
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ABSTRACT 
 

Lung squamous cell carcinoma (LUSC) is a highly malignant subtype of non-small cell lung cancer with poor 
prognosis. Platelets are known to play a critical role in cancer development and progression, and recent studies 
suggest that they can also regulate immune response in tumors. However, the relationship between platelet-
related genes (PRGs) and LUSC prognosis and tumor microenvironments remains unclear. In this study, we used 
multiple bioinformatics algorithms to identify 25 dysregulated PRGs that were significantly associated with 
LUSC prognosis. We found that PRGs were involved in multiple biological processes, particularly in the tumor 
microenvironment, and that platelet-related scores (PRS) were a risk factor. Additionally, we established a  
6-gene prognostic signature combining PRGs and immune-related genes that accurately predicted outcomes 
and immunotherapy efficacy in LUSC patients. Our study provides a comprehensive analysis of the biological 
functions and potential therapeutic targets of PRGs in LUSC, which may inform the development of new 
treatments for this disease. 
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Platelets play a significant role in cancer development 

and progression, and recent studies have suggested 

that they may have a more complex role in cancer 

beyond just blood clotting [7, 8]. Platelets have been 

shown to be involved in the regulation of tumor 

angiogenesis, immune evasion, and the promotion of 

tumor cell proliferation [9–11]. The crosstalk between 

cancer cells and platelets plays a crucial role in the 

malignant progression of tumors. Tumor cells can 

activate platelets, and in turn, platelet activation can 

promote tumor growth and metastasis [12, 13]. 

Additionally, platelets have been shown to regulate 

immune response in tumors, affecting the efficacy of 

immunotherapy [14, 15]. Multiple cytokines (such as 

VEGF, PDGF, IL-6) secreted by platelets contribute to 

the formation of an immunosuppressive tumor micro-

environment and can reduce the ability of NK cells to 

recognize tumor cells. Interestingly, there are also 

studies that use platelets as a biological carrier for 

encapsulating drugs to enhance anti-tumor immunity 

[16, 17]. Current research on platelets in lung cancer 

primarily focuses on the prognostic value of platelet 

counts or the platelet-to-lymphocyte ratio during 

clinical investigations [18–21]. However, the 

association of platelet-related genes (PRGs) with 

prognosis in LUSC is unclear. 

 

At present, in multiple types of tumors, platelet-related 

genes have shown good efficacy in patient molecular 

subtyping and prognosis guidance, including liver 

cancer, esophageal cancer, and colorectal cancer  

[22–24]. These findings have led to increased interest 

in the potential of platelet-related genes as prognostic 

biomarkers for prognosis and immunotherapy 

response in LUSC. The study of platelet-related 

genes in LUSC has the potential to provide new 

insights into the biology of this disease and inform 

the development of personalized treatment strategies, 

including immunotherapy. 

 

The aim of this study was to characterize the role of 

platelet-related genes (PRGs) in prognosis and tumor 

microenvironments, with a specific focus on 

establishing a gene signature for predicting immuno-

therapy response in LUSC patients. To achieve this, we 

conducted a comprehensive analysis of public gene 

expression datasets from LUSC patients and 

implemented various bioinformatics tools to identify 

genes related to platelets and immunity that were 

significantly associated with LUSC prognosis. Finally, 

we established a 6-gene signature based on these genes, 

which we validated using multiple independent datasets. 

The results of this study have the potential to provide a 

new tool for improving the prognosis of LUSC patients 

and to inform the development of personalized 

treatment strategies. 

MATERIALS AND METHODS 
 

Data collection and preprocessing 

 

After screening for incomplete follow-up information and 

paraffin tissue samples, we retrieved transcriptome 

expression profiles of 489 LUSC patients and 

corresponding clinicopathological features from the 

TCGA-LUSC cohort. Simple nucleotide variations files of 

each patient in the format of “maf” were downloaded 

from TCGA portal (TCGA-LUSC project) and merged by 

performing the maftools package [25]. Through the GEO 

database, we obtained six lung cancer cohorts (GSE3141, 

GSE12472, GSE30219, GSE157011, GSE138682, and 

GSE149507) and three immunotherapy cohorts 

(GSE78220, GSE176307, and GSE135222). Similarly, 

the scRNA-seq dataset E-MTAB-6149 was obtained from 

the EMBL-EBI portal (https://www.ebi.ac.uk/). Referring 

to previous literature, RNA-Seq data were normalized to 

FPKM [26]. The bulk RNA expression of any genes that 

were zero in at least 50% of the samples was removed. 

The platelet-related genes (PRGs) were obtained from 

previous literature [27, 28], and the immune-related genes 

(IRGs) were obtained from the Gene List module of the 

ImmPort portal (https://www.immport.org/home). The 

LUSC patients lacking information on survival status or 

time less than 30 days was excluded. The patient sample 

information included in this study is shown in 

Supplementary Table 1. 

 

Identification of PRGs-related clusters 

 

The “limma” package (version 3.52.4) [29] was 

implemented to identify dysregulated genes, and by 

intersecting with the PRGs, we obtained 112 PRGs 

according to |log2FC| > 1 and adjusted p-value < 0.01. 

Based on the expression of these PRGs and follow-up 

information from LUSC patients, we conducted the 

univariate Cox regression method to screen PRGs with 

prognostic value. The PRGs with p-value < 0.05 were 

obtained for further clustering analysis. We performed 

the “ConsensusClusterPlus” package (version 1.58.0) 

[30] to classify LUSC specimens into two molecular 

subgroups related to PRGs, using the parameters of 

clusterAlg = “km”, distance = “spearman” and reps = 

“100”. We implemented the principal component 

analysis (PCA) algorithm for visualizing the distribution 

of two PRGs-related subtypes. Kaplan-Meier product 

limit analysis were employed to compare the overall 

survival (OS) of the two PRGs-related subtypes. 

 

Platelet score calculation and biological processes 

quantification 
 

We utilized the “Gene set variation analysis (GSVA)” 

package [31] to calculate the platelet score (PRS) and 
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determine the activity levels of biological gene sets 

from the MSigDB database (downloaded on 

December 26, 2022) for each individual patient 

diagnosed with LUSC. The “limma” package was 

employed to investigate the differences in the pathway 

activity of distinct subtypes, and only candidates with 

a p-value < 0.001 were selected. We used the heatmap 

function of the “pheatmap” package (version 1.0.11) 

to visualize. 

 

Tumor microenvironment analysis 

 

To quantify the infiltration levels of immune cell types 

in the tumor microenvironment (TME), we performed 

the “ESTIMATE” [32] and “CIBERSORT” [33] 

analyses on LUSC patients with default parameters. 

These tools were based on gene expression profiles of 

various immune cell types and utilized the relative 

expression levels of genes specific to each immune cell 

type to estimate the infiltration levels of different types 

of immune cells in the TME. These tools have been 

extensively used in previous similar studies [34–36]. 

 

To investigate the relationship between the established 

gene signature and TME, we performed the Spearman 

correlation analysis between the risk scores and the 

infiltration levels of TME. The significance of the 

correlations was determined using a two-tailed 

Student’s t-test. 

 

Identification of immune-related genes significantly 

associated with PRS 

 

Weighted gene co-expression network analysis 

(WGCNA) [37] algorithm was employed to identify 

modules of co-expressed genes and to identify hub 

immune-related genes (IRGs) that were significantly 

associated with PRS. In detail, we chose the top 5000 

genes with the biggest median absolute deviation and 

decided the optimal “powerEstimate” value was 6. The 

other settings were by default. We obtained 10 co-

expressed modules and found that the magenta modules 

had the highest correlation with PRS. 

 

Establishment of the 6-gene signature 

 

By intersecting IRGs and the magenta modules, we 

obtained 19 hub genes related to immunity and 

platelets. We employed the univariate Cox analysis to 

explore the association between these genes and 

prognosis and identified 11 genes with p-value < 0.05. 

To predict better the prognosis of LUSC patients, we 

constructed a 6-gene risk signature using a multivariate 
Cox regression model. The final risk score of each 

LUSC patient was calculated using the following 

specific formula: 

 
1

×
n

i ii
Riskscore Coef Exp

=
=  

 

where i represents one of 6 genes (ARRB1, DGKA, 

FGG, EHD1, MMRN1 and DOCK9). 

 

The LUSC patients were dichotomized into high- and 

low-risk subgroups based on the median risk scores. 

The gene signature was validated using the three 

external datasets of LUSC patients. The accuracy of the 

gene signature in predicting the prognosis of LUSC 

patients was evaluated using the receiver operating 

characteristic (ROC) curve. We also conducted the 

Univ- and Multiv-Cox methods to access the 

independence of the 6-gene signature and other clinical 

features. 

 

scRNA-seq analysis 

 

We conducted single-cell data analysis using the 

“Seurat” package (version 4.3.0) [38]. First, we 

standardized the scRNA matrix and identified 600 

highly variable genes for PCA analysis. Based on the 

standard deviation of PC changes and previous 

literature [39], we selected PC 20 and a resolution of 1.0 

to cluster the LUSC cells and obtained 34 cell clusters. 

According to the canonical marker genes, we finally 

confirmed 11 cell types and visualized these cells by 

Uniform Manifold Approximation and Projection 

(UMAP). The AddModuleScore procedure was 

executed to estimate the PRS for different cell types. 

 

Prediction of anti-tumor drugs sensitivity 

 

By importing the pharmacogenomic information in 

GDSC2 database as training dataset, we conducted the 

oncoPredict package (version 0.2) to access the 

susceptibility of about 200 anti-tumor drugs for each 

LUSC patient. 

 

Statistical analysis 

 

Statistical analysis and visualization were performed 

using the R software (version 4.2.1). Unless otherwise 

stated, Wilcoxon sum test was used to compare the 

differences between distinct LUSC subtypes. Kaplan–

Meier survival curves and the log-rank test were used to 

compare the differences in survival time. The p-value 

< 0.05 was considered statistically significant. We used 

the Bonferroni method to execute adjustments for 

multiple comparisons. 

 

Availability of data and material 

 

mRNA expression matrix and follow-up information are 

downloaded from the TCGA and GEO. Further results 
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or code inquiries can be directed to the corresponding 

author. 

 

RESULTS 
 

Identification of PRGs with prognostic values 

 

The overall design of this study is depicted in the flow 

chart (Figure 1). To explore the expression of PRGs 

between LUSC tissues and normal controls, we first 

performed the “limma” package to identify dysregulated 

genes, and by intersecting with the PRGs, we obtained 

112 PRGs (Figure 2A, 2B). The GO analysis result 

showed that the PRGs were involved in platelet-related 

pathway, such as coagulation, hemostasis and platelet 

degranulation (Figure 2C). The KEGG analysis result 

also showed that the platelet activation pathway was 

significantly enriched (Figure 2D). By performing 

univariate Cox analysis, we identified a total of 25 

PRGs that were significantly associated with LUSC 

prognosis for further analysis (Figure 2E). Additionally, 

we analyzed the expression of these 25 PRGs in two 

external datasets and demonstrated significant dys-

regulation in lung cancer (Supplementary Figure 1). We 

further explored the frequency of gene mutation for the 

25 PRGs, and found that the top 3 of most mutated 

genes were HGF, FN1, and VWF (Figure 2F). 

 

Molecular subtypes related to PRGs in LUSC 

 

We performed a consensus clustering algorithm on 

LUSC patients based on the expression of prognostic 

PRGs. According to the consensus variation curve and 

clustering heatmap, we determined that the best 

classification effect for LUSC patients was achieved 

when k = 3 (Figure 3A–3C). The KM curve showed 

that the cluster 3 tended to have worst clinical 

outcomes (log-rank test, p = 0.0075) (Figure 3D) and 

the PCA plot suggested that the three PRGs-related 

subtypes had significantly different distributions 

(Figure 3E). The boxplot illustrated that the expression 

of all PRGs, excluding the prognostic protective factor 

DGKA, was lowest in the cluster 1 (Figure 3F). The 

heatmap showed significant differences in biological 

behaviors among the three subtypes (Figure 3G). 

Pathways such as complement and coagulation 

cascades and intestinal immune network for 

IgA production were significantly enriched in 

 

 
 

Figure 1. The flow chart of this study. 
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cluster 1, while the P53 and Wnt signaling pathways 

were significantly enriched in cluster 2, and the 

homologous recombination repair and retinol 

metabolism were significantly enriched in cluster 3. 

Further analysis indicated that the activity of 50 

hallmark gene sets was significantly higher in cluster 3 

 

 
 

Figure 2. Identification of prognostic platelet-related genes (PRGs). (A) Differentially expressed genes (DEGs) in LUSC tissues 

compared to normal controls. (B) Venn plots showed that 122 common genes in DEGs and PRGs. (C, D) The top 10 results of GO and KEGG 
enrichment based on 122 PRGs. (E) Hazard ratios (HR) forest plot of 25 PRGs with prognostic values. (Red: risk factors, Blue: protective 
factors, *p < 0.05, **P < 0.01 and ***P < 0.001). (F) The waterfall plots of 25 PRGs in 485 LUSC patients. 
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(Figure 3H). These findings suggested that PRGs played 

a role in oncogenic pathways and contributed to the 

development and progression of cancer, resulting in 

unfavorable outcomes for LUSC patients. 

 

Platelet scores as a prognostic risk factor of LUSC 

Patients 

 

Based on the results from the previous section, we 

calculated platelet scores (PRS) for each LUSC patient 

using the ssGSEA algorithm. By comparing the PRS 

between the three clusters, we found that cluster 1 had 

the lowest scores, while cluster 3 had the highest scores 

(Figure 4A). Using the median of PRS, we divided 

LUSC patients into high PRS and low PRS subgroups. 

Survival analysis showed that patients with high PRS 

had worse clinical outcomes (p = 0.0014, HR = 1.6) 

(Figure 4B), and ROC curves suggested that PRS had 

moderate performance (Figure 4C). We also performed 

PCA algorithm to visualize the distribution of the two 

 

 
 

Figure 3. Molecular subtypes based on 25 prognostic PRGs and biological function analysis. (A–C) Consensus curves and 

heatmap when k = 3. (D) Overall survival (OS) analysis for the three distinct LUSC clusters. (E) PCA analysis showed that the distributions of 
three clusters. (F) Boxplot showed the expression of 25 PRGs in the three clusters (Wilcoxon test). (G, H) The significantly different KEGG 
and HALLMARK genesets in the three clusters using ssGSEA analysis. ***P < 0.01 and ****P < 0.0001. 
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subgroups (Figure 4D). Using the univariate Cox 

method, we calculated the HR and p-values of PRS and 

50 oncogenic pathways. Compared to 50 oncogenic 

pathways, PRS was the most significant prognostic risk 

factor (Figure 4E). The KM analysis based on three 

external datasets confirmed that PRS was significantly 

associated with unfavorable outcomes in LUSC (Figure 

4F–4H). 

 

 
 

Figure 4. Platelet-related scores (PRS) were an unfavorable factor in LUSC. (A) The cluster 3 with worst outcomes had higher PRS. 

(ANOVA test, p < 0.001). (B) OS analysis for the LUSC patients with high- and low-PRS. (HR = 1.6). (C) The HR and p-value of PRS and 50 
Hallmark pathways. (D) ROC curves for 2-, 4-, and 6-year. (E) PCA displayed the distribution of the two subclusters. (F–H) LUSC patients with 
high PRS tended to have a bad prognosis in GEO database (GSE3141, GSE12472 and GSE30219). 
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Relevance of the platelet scores and biological 

processes 

 

Using differential analysis, we identified 265 

differentially expressed genes (DEGs), with the 

majority being upregulated (Figure 5A). We conducted 

GSEA algorithm to screen out significantly enriched 

cancer-related pathways based on the principle of |NES| 

> 1 and adjusted p-value < 0.001. All of the pathways 

were enriched in the high PRGs group (Figure 5B). We 

also employed GO and KEGG analyses to explore the 

association of PRS with biological function (Figure 5C, 

5D). The top 3 GO results were antigen processing and 

presentation via MHC−II, extracellular matrix 

organization, and immunoglobulin mediated immune 

response, while the top 3 KEGG results were comp-

lement and coagulation cascades, allograft rejection, 

and intestinal immune network for IgA production. 

These results further demonstrated that PRS were 

involved in multiple biological processes, especially in 

the immune response. 

Distinct TME pattern related to platelet scores 

 

It is well known that the tumor microenvironment 

(TME) plays a crucial role in tumor progression and 

response to immunotherapy [40–42]. Given the 

potential significance of PRS in immunity, we further 

explored the relationship between PRS and TME. We 

compared the expression profiles of MHC II molecules 

in the two subtypes and found that high PRS 

had higher expression (Figure 6A). Similarly, high 

PRS generally had higher expression levels of immune 

checkpoint molecules (Figure 6B). We further 

implemented ESTIMATE method to calculate the 

Stromal score, Immune score and ESTIMATE score 

for LUSC patients, and found the high PRS had 

higher infiltration level than low PRS (Figure 6C). 

We demonstrated that high PRS were sig-

nificantly positively correlated with infiltration scores 

through another algorithm named ImmuCellAI 

[43](Figure 6D). Furthermore, we compared the 

infiltration levels of 22 immune cells in TME 

 

 
 

Figure 5. Enrichment analysis revealed PRS was significantly correlated with immune-related pathways. (A) Volcano plot of 

DEGS between high- and low-PRS patients. (B) GSEA results showed the significantly different Hallmark genesets (|NES| > 1 and adjusted 
p < 0.001). (C, D) The top 10 results of GO and KEGG enrichment based on PRS-related DEGs. 



www.aging-us.com 6977 AGING 

using the CIBERSORT algorithm. The result illustrated 

that the two PRS subgroups had distinct immune 

infiltration patterns, and the compositions of 9 types  

of immune cells were significantly different (Figure 

6E). 

Construction of risk signature and evaluation of 

performance 

 

Given the important connection between PRS and 

immunity, we conducted the WGCNA algorithm to 

 

 
 

Figure 6. The exploration of PRS and tumor microenvironment (TME). (A) MHC-II molecules were highly expressed in high PRS 

patients. (B) Similarly, almost all immune checkpoints (ICs) were highly expressed in high PRS patients. Boxplot showed the high PRS 
patients had significantly higher infiltration levels of TME using ESTIMATE (C) and ImmuCellAI (D) algorithm. (E) Two types of PRS patients 
exhibited distinct immune cell populations. Wilcoxon test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 and ns represents not significant. 



www.aging-us.com 6978 AGING 

investigate genes related to platelets and immunity. The 

heatmap showed the correlation coefficient and p-value of 

each module feature with PRS, and the magenta module 

had highest correlation (Figure 7A). By intersecting 

the immune-related genes (IRGs) and genes in the 

magenta module, we got 19 genes in total (Figure 7B). 

 

To better predict the clinical outcomes in LUSC patients, 

we constructed a 6-gene risk signature using the 

multivariate Cox regression model (Figure 8A). The risk 

score of each LUSC patient was calculated using the 

following specific formula: Risk scores = 

(−0.3242) × Exp ARRB1 + (−0.2985) × Exp DGKA + 

0.0922 × Exp FGG + 0.2103 × Exp EHD1 + 

0.2332 × Exp MMRN1 + 0.2964 × Exp DOCK9. We 

dichotomized the LUSC patients into high and low risk 

subgroups. OS analysis illustrated that risk score was 

associated with unfavorable outcomes (p < 0.001, HR = 

1.9) (Figure 8B). The distribution of risk score and 

survival status of LUSC patients are shown in Figure 8C. 

ROC curves were employed to evaluate the performance 

of the 6-gene signature, and the AUC value of 2-, 4-, and 

6-year was separately 0.63, 0.64, and 0.63 (Figure 8D). 

We also combined the univariate Cox and multivariate 

Cox analyses to demonstrated that the 6-gene signature 

was an independent risk factor in LUSC (Figure 8E, 8F). 

Survival analysis results on three external datasets 

demonstrated the robustness of our model (Figure 8G–8I). 

 

To further investigate whether the risk signature was 

applicable for LUSC patients stratified by different 

clinical features, we performed survival analyses under 

various clinical subgroups, including gender 

(Female/Male) and stage (I–II/III–IV). In each stratum 

of the above clinical features, the high-risk subtype had 

significant worse clinical outcomes than the low-risk 

subtype (Figure 9A–9D). These results demonstrated 

that our risk signature had reliable predictive ability for 

prognosis within each stratum. 

 

Relationship of risk signature with TME and 

prediction of immunotherapy response 

 

We conducted GSEA analysis to investigate the 

difference of biological function in the term of GO and 

KEGG between the two risk subgroups (Figure 10A, 

10B). The results showed significant differences in 

immune-related processes, such as granulocyte 

migration, humoral immune response, and autoimmune 

thyroid disease. We then compared the infiltration levels 

of the TME and found that the high-risk subgroup had 

significantly higher scores (Figure 10C). The scatter plot 

also illustrated that risk scores were positively correlated 

with TME scores using Spearman analysis (Figure 10D–

10F). Next, we explored the performance of the 6-gene 

signature in predicting the response to immunotherapy. 

The KM analysis results showed a significant correlation 

between the gene signature and the efficacy of 

immunotherapy in LUSC patients (Figure 10G–10I). 

 

scRNA data analysis 

 

We retrieved single-cell expression data from 5 NSCLC 

patients in the E-MTAB-6149 cohort, which included 

 

 
 

Figure 7. Identification of hub genes related to PRS by WGCNA. (A) Heatmap showed the correlation coefficient and p-value of 

distinct module. (B) Venn plots of 10 common genes related to PRS and immunity. 
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approximately 40,000 cells for subsequent analysis. 

Using the Seurat package, we confirmed the presence of 

12 distinct cell types and visualized these cells using the 

UMAP algorithm (Figure 11A). We also examined the 

expression of 6 genes using the FeaturePlot function in 

Seurat, which showed that ARRB1 was highly 

 

 
 

Figure 8. Construction and evaluation of the 6-gene signature. (A) The multivariate Cox risk model of 6 genes. (B) OS curves of the 
two risk subgroups (HR = 1.9, p-value < 0.001). (C) The distribution of risk scores, survival times and outcomes of LUSC patients. (D) 
Receiver operating characteristic (ROC) curves for 2-, 4- and 6-year of TCGA-LUSC cohort. (E, F) Univariate and multivariate Cox regression 
analyses of the risk model and other clinic-pathological factors. (G–I) External validation in GEO database (GSE30219, GSE157011, and 
GSE3141). 
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expressed in monocyte/macrophage and endothelial 

cells, while FGG was mainly expressed in malignant 

cells (Figure 11B). To estimate the PRS in different cell 

types, we used the AddModuleScore procedure, which 

indicated that PRS were most abundant in endothelial, 

alveolar, and malignant cells (Figure 11C, 11D). 

Endothelial and alveolar cells were in contact with 

capillaries and therefore had a higher PRS score. 

Interestingly, malignant cells also showed high 

expression of PRGs, suggesting that tumors might affect 

the TME and promote progression by secreting PRGs. 

 

Drug sensitivity speculation 

 

We used pharmacogenomic data from GDSC2 

(https://www.cancerrxgene.org/) to perform ridge 

regression analysis using the “oncoPredict” package to 

predict the susceptibility of anti-tumor drugs in LUSC 

patients. The results showed that the risk scores were 

significantly positively correlated with several anti-

tumor drugs, including Erlotinib, Osimertinib, Gefitinib, 

Rapamycin, and Paclitaxel (Figure 12A, 12B). These 

findings suggest that PRGs may be potential therapeutic 

targets in LUSC and may help doctors to better 

personalize chemotherapy strategies for individual 

patients. 
 

DISCUSSION 
 

The results of our study have provided important 

insights into the role of platelet-related genes in the 

prognosis and response to immunotherapy in patients 

 

 
 

Figure 9. The performance of 6-gene signature under different clinical characteristics. KM survival curves for the two risk 

subgroups of LUSC patients stratified by age (A, B) and tumor stage (C, D). 

https://www.cancerrxgene.org/
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with LUSC. Our comprehensive analysis of public gene 

expression datasets and bioinformatics tools has 

identified a total of 19 genes related to platelet and 

immunity that were significantly associated with LUSC 

prognosis. These genes were used to establish a 

prognostic gene signature that was validated using 

 

 
 

Figure 10. The application of 6-gene signature in immunotherapy efficacy. The top 5 results of GSEA analysis in the term of GO-BP 
(A) and KEGG (B). (C) The high-risk subgroups had higher Stromal scores, Immune scores, and ESTIMATE scores (Wilcoxon test). (D–F) The 
risk scores of LUSC patients were positively correlated with the infiltration scores. (G–I) The low-risk subgroups were more prominent in 
prognosis than the high-risk subgroups in immunotherapy cohorts (GSE78220: Melanoma; GSE176307: Urothelial Cancer; GSE135222:  
Non-small cell lung carcinoma). 
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multiple independent datasets and had good 

performance in both training and external datasets. 

 

One of the major challenges in improving the prognosis 

of LUSC patients is the lack of reliable biomarkers for 

predicting the progression of the disease [44, 45]. 

Accurate prognostic biomarkers could assist in the 

selection of the most appropriate treatment for each 

individual patient, monitor disease progression and 

response to treatment, and ultimately improve patient 

outcomes [46]. Recent studies have developed risk 

model based on PRGs in multiple cancer [22, 23, 47, 

48], indicating platelet-related genes may have 

prognostic value in LUSC. Clinically, it has been found 

that a high platelet count is associated with poor 

prognosis or metastasis across a multitude of cancer 

types, including lung, colorectal, breast, pancreatic, and 

kidney cancers [49–55]. Platelets are known to play a 

significant role in influencing both the disease burden 

and the efficacy of treatments for cancer patients [56]. 

However, the prognostic implications of PRGs in LUSC 

and their underlying mechanisms remain under-

investigated and poorly understood. 

 

We identified 122 differentially expressed PRGs, 

indicating widespread dysregulation of PRGs in LUSC 

patients. The result was consistent with previous reports 

of dysregulated PRGs in other types of cancer. [23, 28, 

48]. The Cox analysis results showed that most PRGs 

were associated with unfavorable outcomes in LUSC, 

 

 
 

Figure 11. scRNA analysis of PRS in E-MTAB-6149 dataset. (A) A total of 12 cell types was confirmed. (B) The expression distributions 

of 6 genes across different cell types. (C, D) The platelet-related scores (PRS) calculated by AddModuleScore function in Seurat among 12 
cell types. 
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consistent with reports in LUAD [28]. Cancer cells can 

induce platelet formation by secreting related cytokines, 

which contribute to metastasis [57]. In addition, 

excessive activation of platelets, which can lead to 

blood clots, is a leading cause of death in patients 

receiving chemotherapy [10]. Targeting these PRGs 

might play an important role in suppressing tumor 

metastasis and decreasing the side effects of treatments. 

Combined with the high PRS being associated with 

poor prognosis, high PRS patients might be suitable to 

accept treatment with antiplatelet drugs such as aspirin 

and clopidogrel. As mentioned earlier, platelets play an 

important role in tumor immunity. The results of 

enrichment analysis demonstrate that PRGs and PRS 

are involved in immune-related pathways, such as 

antigen processing and presentation via MHC-II, as well 

as complement and coagulation cascades. Antigen 

processing and presentation via MHC-II help in 

identifying tumor cells and enhancing anti-tumor 

immunity [58]. Previous bioinformatic analysis studies 

have also shown that the complement and coagulation 

cascades pathway is one of the key pathways in lung 

cancer [59]. Our findings deepen the understanding of 

the relationship between PRGs and immunity. In the 

future, it will be interesting and important to conduct 

further research on these PRGs. 

 

We divided LUSC patients into three clusters based on 

PRGs, and the three clusters showed significantly in 

prognosis and biological function. Moreover, cluster 3, 

with the worst prognosis, had the highest PRS. For 

example, cluster 3 had high enrichment scores of the 

JAK-STAT signaling pathway, which was dangerous 

and carcinogenic in lung cancer [60, 61]. Cell adhesion 

molecules cams were also enriched in cluster 3, 

consistent with the role of platelets in promoting the 

invasion and migration of tumor cells. For example, 

Myriam Labelle et al. reported that platelets could 

intersect with malignant and promote the EMT [11]. 

Interestingly, we found that immune-related pathways 

were also correlated with PRGs, such as intestinal 

immune network for IgA production and leukocyte 

transendothelial migration. There are emerging studies 

that platelets can directly interact with immune cells or 

release cytokines to regulate immunity [62]. Our 

analysis provides a basis for further investigation of the 

role of PRGs in the immune response of LUSC patients. 

 

According to the results of WGCNA, we obtained 19 

genes related to platelet and immunity. By conducting 

Cox regression model, we established a 6-gene 

signature for predicting the prognosis and 

immunotherapy efficacy in LUSC. By performing 

multiple bioinformatics tools in training and external 

datasets, we confirmed that the risk signature was 

robust and reliable in LUSC patients. The six genes 

were ARRB1, DGKA, FGG, EHD1, MMRN1, and 

DOCK9. Among them, ARRB1 and DGKA are 

prognostic protective factors, while the remaining four 

genes are risk factors. ARRB1 encodes a member of the 

beta-arrestin family of proteins, which are known to 

regulate various signaling pathways involved in cell 

growth, survival, and death [63]. Previous study 

indicated that loss of beta-arrestin1 expression was 

associated with poorer prognosis for both LUAD and 

LUSC [64]. In addition, ARRB1 was a potential 

 

 
 

Figure 12. Drug susceptibility analysis. (A) The half maximal inhibitory concentration (IC50) values of several anti-tumor drugs 

(Erlotinib, Osimertinib, Gefitinib, Rapamycin, and Paclitaxel) (Wilcoxon test). (B) The Spearman correlation analysis of risk scores with these 
drugs. The results showed that high-risk subgroups were resistance to the five drugs. 
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biomarker in lung cancer to distinguish LUAD from 

LUSC [65]. DGKA (Diacylglycerol Kinase Alpha) is a 

gene that encodes an enzyme that is involved in 

regulating the signaling pathways of diacylglycerol. 

Jingping Yun et al. found that DGKA was associated 

with unfavorable clinical outcomes and promoted 

metastasis in NSCLC [66]. It is worth noting that the 

expression data and clinical information used by the 

authors are obtained from in-house samples. In addition, 

our results were calculated based on multivariate Cox 

analysis, in which the linear correlations between genes 

affect them. Interestingly, DGKA had a dual function 

during cisplatin resistance in two lung cancer cell lines 

[67]. So, more clinical samples and experiments are 

needed to address the function and role of DGKA in 

LUSC. Fibrinogen gamma chain (FGG) is a component 

of the fibrinogen protein, which is involved in blood 

clotting. Recent studies have indicated a potential role for 

FGG in the development and progression of malignant, 

especially in EMT [68, 69]. Fibrinogen also promote 

tumor growth and metastasis in lung cancer [70]. Two 

studies have identified FGG as useful biomarker for early 

diagnosis and prognosis of the disease [71, 72]. Ying 

Xing et al. found that the EHD1 expression level in 

metastatic patients was higher than that of non-metastatic 

patients in lung cancer [73]. Targeting EHD1 was 

considered a remedy for advanced metastatic patients. 

Additionally, EHD1 can promote angiogenesis and 

resistance to chemotherapy [74, 75]. MMRN1 

(Multimerin 1) is a massive, soluble protein to promote 

platelet adhesion. MMRN1 was upregulated in ovarian 

cancer [76] and was an unfavorable factor in AML [77]. 

Several studied suggested that MMRN1 might be 

potential diagnostic and prognostic biomarker in multiple 

cancer [78, 79]. In lung cancer, Andres Metspalu et al. 

found that combining a panel of dysregulated genes, 

including MMRN1, predicted prognosis better than 

histological stage [80]. DOCK9 (Dedicator of cytokinesis 

9) is a gene that encodes a guanine nucleotide exchange 

factor (GEF) protein that is involved in the regulation of 

actin cytoskeleton dynamics. GEFs was dysregulated in 

human cancer and contribute to tumor invasion and 

metastasis [81]. DOCK9 is a risk factor in high-grade 

soft-tissue sarcoma [82]. Recently research found that 

DOCK9 was upregulated in LUSC compare with normal 

tissues [83]. The function and mechanism of DOCK9 in 

lung cancer, remain more experiments to investigate. 

Given these, the 6-gene signature involved multiple 

cancer-related processes and was closely related to 

prognosis in lung cancer. 

 

There was a complex cell interaction or communication 

between tumor cells and the tumor microenvironment 
(TME), which had a huge influence on tumor invasion 

and progression, as well as on response to 

immunotherapy [40]. We found that high PRS patients 

had higher immune infiltration scores but more tumor-

promoting cells (such as M2 macrophages and 

neutrophils), while low PRS patients had more 

cytotoxic cells (such as CD8+ T cells and follicular 

helper CD4+ T cells). Recent studies revealed that 

neutrophils facilitated lymphatic metastasis and were a 

risk factor in bladder cancer [84, 85]. This could 

contribute to the differences in prognosis among LSUC 

patients. Additionally, our 6-gene signature was 

significantly correlated with TME and was able to 

predict immunotherapy efficacy in LUSC. scRNA data 

analysis further suggested that tumor cells might affect 

TME by expressing PRGs. A comprehensive 

examination of the underlying mechanisms of TME is 

expected to enhance immunotherapy approaches, 

ultimately leading to prolonged positive outcomes for 

LUSC patients [86]. 
 

However, there are some limitations to this study that 

need to be acknowledged. Firstly, the gene signature 

established in this study needs to be validated in larger 

and more diverse patient populations to fully establish 

its clinical utility. Additionally, further research is 

needed to understand the biological mechanisms 

underlying the association between platelet-related 

genes and LSCC prognosis. Finally, further experiments 

are needed to fully understand the mechanism of the 6-

gene signature in immune response in LUSC patients. 

In future work, we will collect samples from LUSC 

patients to validate our prognostic signature and 

conduct experiments to explore the connection between 

the function of PRGs genes and immunity. 
 

In conclusion, our study highlights the significance of 

PRGs in LUSC prognosis and suggests that PRS could 

serve as a valuable prognostic risk factor for 

personalized treatment in LUSC patients. The risk 

signature developed in this study has the potential to be 

used as a tool for risk assessment and personalized 

treatment. However, further validation is necessary to 

confirm its utility in clinical settings. Our findings 

emphasize the need for further investigation into the 

mechanisms underlying the relationships between PRS, 

immune response, and LUSC prognosis. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 

 
 

Supplementary Figure 1. The expression analysis of 25 PRGs in public database. (GSE149507 and GSE138682). (A, B) Boxplot 

showed the expression of 25 PRGs in lung cancer compared to normal tissues in two GEO cohorts. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
0.0001 and ns represents not significant. 
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Supplementary Table 
 

Supplementary Table 1. Basic information of datasets included in this study. 

Accession number/ 
Source 

Platform 
Sample 

Tumor Normal 

TCGA-LUSC RNA-seq 489 49 

GSE3141 Affymetrix Human Genome U133 Plus 2.0 Array 61 0 

GSE12472 Agilent-012391 Whole Human Genome Oligo Microarray G4112A 35 0 

GSE30219 Affymetrix Human Genome U133 Plus 2.0 Array 110 0 

GSE157011 Affymetrix Human Genome U133 Plus 2.0 Array 484 0 

GSE138682 Affymetrix Human Genome U133 Plus 2.0 Array 5 5 

GSE149507 Affymetrix Human Genome U133 Plus 2.0 Array 18 18 

GSE78220 Illumina HiSeq 2000 28 0 

GSE176307 Ion Torrent S5 XL 90 0 

GSE135222 Illumina HiSeq 2500 27 0 

E-MTAB-6149 10x Genomics 5 0 

 

 


