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INTRODUCTION 
 

Colorectal cancer (CRC) is one of the leading 

malignancies in humans, ranking in the top three in 

terms of incidence and mortality, accounting for 

approximately 10% of all cancer cases and deaths [1, 2]. 

By 2030, the new cases and deaths are forecasted to 

more than 2.2 million and 1.1 million, respectively [3]. 

The introduction of new chemotherapeutics, along with 
improving techniques in biological treatment, have 

significantly improved survival rates. However, 

elucidating the mechanisms of tumorigenesis and 

progression and searching for effective drugs in CRC 

remains challenging. Thus, it is important to identify 

novel therapeutic target molecules and drugs. 

 

Bioinformatics has emerged as a potential tool 

to understand the mechanisms of gene regulation and 

identify agents [4–6]. Weighted gene co-expression 

network analysis (WGCNA), a systematic biological 

method to identify the relationships between genes and 

phenotypes, allows the exploration of modules that are 

candidate regulators and drivers of disease states [7, 8]. 

The objective of this work was to examine the key 
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ABSTRACT 
 

Colorectal cancer (CRC) often has a poor prognosis and identifying useful and novel agents for treating CRC is 
urgently required. This study aimed to examine molecular markers associated with CRC prognosis and to 
identify potential drug candidates. The differentially expressed genes (DEGs) of CRC in TCGA were identified. 
The genes associated with CRC, summarized from NCBI-gene, OMIM, and the DEGs, were used to construct a 
co-expression network by WGCNA. Moreover, the co-expression genes from modules of interest were used to 
carry out functional enrichment. A total of 2742 DEGs, including 1674 upregulated and 1068 downregulated 
genes, were identified. Thirteen co-expression modules were constructed with WGCNA. Brown and blue  
co-expression modules with significant differences in disease phenotype were found. Functional enrichment 
analysis showed that genes in the brown module were mainly related to cell cycle, cell proliferation, DNA 
replication, and RNA transport. The genes in the blue module were mainly associated with fatty acid 
degradation, sulfur metabolism, PPAR signaling pathway and bile secretion. In addition, both the genes in 
brown and blue were associated with tumor staging. Some prognostic markers and candidate small molecules 
drugs for CRC treatment were identified. In conclusion, we revealed molecular biomarker profiles in CRC by 
systematic bioinformatics analysis, constructed regulatory networks of mRNA, ncRNA and transcriptional 
regulators (TFs), and identified potential drugs targeting hub proteins and TFs. 
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genes involved in tumorigenesis and progression in 

CRC through WGNCA and to identify potential 

therapeutic drugs. 

 

MATERIALS AND METHODS 
 

Extraction and processing of data 

 

RNA sequencing data and clinic traits of patients were 

obtained from The Cancer Genome Atlas (TCGA) 

database (https://cancergenome.nih.gov/). A total of 464 

CRC samples and 41 normal samples were included. 

The gene probe IDs were matched to the gene symbols 

using Perl language command. Before Log2 

transforming, R package was used to transform FPKM 

values into TPM values. Moreover, Human CRC  

genes were downloaded from the NCBI 

(https://www.ncbi.nlm.nih.gov/) as well as OMIM site 

(https://www.omim.org/). All cancer-related 

medications were collected from the DrugBank 

database (https://go.drugbank.com/). Single-Cell data 

were downloaded from CancerSEA (http://biocc.hrbmu. 

edu.cn/CancerSEA). 

 

WGCNA analysis 

 

Two obvious outliers were removed from the cohort. 

Then, the weighted gene co-expression network was 

constructed with WGCNA package in R software [9, 10]. 

The gene expression profiles were constructed using the 

genes associated with CRC summarized from NCBI-

gene, OMIM, and the differentially expressed genes 

(DEGs) of TCGA. The WGCNA algorithm was carried 

out to identify different modules. The correlation 

between the different modules and phenotype was then 

analyzed with Pearson correlation coefficient [11]. 

 

Functional and pathway enrichment analyses of co-

expression modules 

 

The functional and pathway enrichment analyses of 

genes in the constructed modules were performed 

employing Cluster profiler R package (P value cutoff = 

0.01, q value cutoff = 0.01). 

 

PPI network construction 

 

The PPI (protein-protein interaction) information for 

hub modules was explored via STRING (Search Tool 

for the Retrieval of Interacting Genes Database) 

(http://www.string-db.org/) [12]. 

 

Network module cross-talk analysis 

 

Interactions between genes play an important role in 

certain biological functions. As such, identification of 

the interactions between modules is important for 

understanding how these genes interact with other genes 

and sub-networks. To elucidate the interactions between 

modules, the human PPI information was used as a 

background set and a comprehensive cross-talk analysis 

was implemented for all modules to further understand 

the interaction mechanism of co-expression modules. 

First, the human protein interaction network (score > 

900) in String was used to generate 1000 random 

networks while keeping the network size and the degree 

of each node unchanged. Then, the number of 

interaction pairs between modules was counted 

according to the random network. Finally, the number 

of interaction pairs between modules is compared with 

the number of interaction pairs in a random background. 

When the number of interaction pairs between modules 

is greater than the number of interaction pairs in a 

random background, these interactions are called cross-

talk. In the context of random networks, if the number 

of interaction pairs between modules in N random 

networks is greater than the number of interaction pairs 

between modules in the real network, then the number 

is recorded as n. The formula for calculating p value: 

p = n/N (N = 1000). When the p value < 0.05, it can be 

considered that these cross-talk modules are more 

significant than random ones. In other words, there is a 

cross talk interaction between modules [13, 14]. 

 

Pivot analysis predicts module transcriptional 

regulators and potential drugs 

 

The pivot node is defined as follows: (i) There are at 

least two pairs of interactions with the module gene; 

(ii) The p value of the significance analysis of the 

interaction between the node and each module should 

be ≤ 0.05, and the statistical method is hypergeometric 

test. The pivot node of the interaction module for 

further analysis was explored with Python program. In 

general, Gene transcription and post-transcriptional 

regulation are driven by non-coding RNA (ncRNA) and 

transcriptional regulators (TFs). Hence, ncRNA and TFs 

were predicted and their roles were detected in CRC-

related dysfunction modules. 

 

The analysis method of ncRNA pivot: The interaction 

relationship of ncRNA-mRNA included in the RAID 

2.0 database was used as the interaction background, all 

the interaction pairs between ncRNA and modular 

genes are counted. Then the interaction pairs between 

each ncRNA and the genes in or outside the module 

were counted. Pivot was selected according to the 

significance p-value of the hypergeometric test. Using 

the same way, Pivots of TFs and drugs in the TRRUST 
v2 database and DrugBank database were selected, 

respectively [14]. The complete analysis flow was 

presented in Supplementary Figure 1. 

https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.omim.org/
https://go.drugbank.com/
http://biocc.hrbmu.edu.cn/CancerSEA
http://biocc.hrbmu.edu.cn/CancerSEA
http://www.string-db.org/
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Availability of data and materials 

 

The datasets used and/or analyzed during the current 

study are available from the corresponding author on 

reasonable request. 

 

RESULTS 
 

DEGs screening of CRC 

 

Gene expression profiles of 464 tumors and 41 

corresponding normal tissues were obtained from 

TCGA. Using |log2FC| > 1 and FDR < 0.05 as the 

threshold, 2742 DEGs, including 1674 upregulated and 

1068 downregulated genes, were screened out. 

 

Weighted co-expression network construction and 

key modules identification 

 

A total of 3745 genes associated with CRC were used to 

construct a co-expression network by WGCNA 

(Figure 1). And of them, 1289 genes were downloaded 

from the NCBI-gene database, 43 genes were down-

loaded from the OMIM database and 2742 DEGs were 

screened out from TCGA. When co-expression analysis 

was performed by WGCNA, clustering showed that 2 

samples were outliers. After removing these 2 samples, 

the remaining 503 samples were analyzed. We set the 

power β to a soft-thresholding parameter β = 8 (scale 

free R2 = 0.9) to ensure a scale-free network (Figure 

2A). Then we selected a soft threshold of 7 in the 

network construction process and 13 modules were 

identified (Figure 2B, 2C).The samples were clustered 

according to the gene expression in the gene modules 

and all tumor samples were mainly divided into two 

clusters (Figure 2D). The CRC phenotypes (Normal and 

Tumor) in the two types of sample modules were 

counted separately, and the chi-square test was 

performed. The results showed that the two types of 

samples have significant differences in the CRC 

phenotype (Table 1, P value = 2.2e-16), suggesting 

these modules were related to the tumorigenesis of 

CRC. In order to determine the correlation between 

gene modules and CRC phenotype, the characteristic 

value of each gene module were calculated. Then, the 

correlation with the sample phenotype (Normal and 

Tumor) and the P value of the corresponding correlation 

were calculated. The results of gene module 

characteristic values and phenotypic correlation 

coefficients are shown in Table 2. Among them, the 

most positively correlated module is brown, and the 

most negatively correlated module is blue. Moreover, 

the brown and blue modules were significantly 

associated with CRC phenotype compared with other 

modules (Figure 3). 

 

Modular genes detection and validation 

 

To identify the functions of brown and blue modules, 

the core genes of the two modules need to be further 

 

 
 

Figure 1. 3745 genes associated with CRC in NCBI-gene, OMIM, and the DEGs of TCGA. 
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analyzed to determine the core driver genes of tumor 

deterioration. We visually displayed the genes in the 

two modules (Figure 4), calculated the degree of each 

gene node, and selected genes with high screening 

degrees as candidate tumor driver genes. According to 

the degree of connectivity, the top five genes in brown 

module were BUB1, BUB1B, CDK1, CCNA2, MCM10 

and the top five genes in blue module were TMEM236, 

CEACAM7, SLC26A3, CA2, and APPL2. The above 

10 modular genes were then validated with CRC data of 

GEPIA database. Among them, CCNA2 was negatively 

associated with the overall survival of CRC patients 

(Figure 5). Moreover, the expression levels of BUB1, 

BUB1B, CDK1, CCNA2, MCM10 were significantly 

higher in CRC tumor tissues compared with normal 

tissues based on the GEPIA database (Figure 6). The 

roles of BUB1B, CDK1, CCNA2, MCM10, 

CEACAM7, SLC26A3, CA2, and APPL2 in CRC 

 

 
 

Figure 2. (A) The network parameter selection. (B) The cluster dendrogram of the differentially expressed genes. (C) Identification of 

modules associated with the clinical traits. Interaction relationship analyses of co-expression genes. Different colors of horizontal axis and 
vertical axis represent different modules. The brightness of yellow in the middle represents the degree of connectivity of different modules. 
There was no significant difference in interactions among different modules, indicating a high-scale independence degree among these 
modules. (D) The samples were mainly divided into two clusters according to the gene expression in the gene modules. 
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Table 1. The distribution of tumor samples in cluster 1 and cluster 2. 

 Normal Tumor 

Cluster 1 0 418 

Cluster 2 41 45 

 

Table 2. Gene module characteristics and phenotype correlation results. 

Module Cor P-value 

Black 0.524539269 5.66E-37 

Purple 0.270138429 7.07E-10 

Brown 0.538135736 3.52E-39 

Pink 0.479827937 2.20E-30 

Tan 0.388179852 1.43E-19 

Blue −0.883369869 2.42E-167 

Green yellow −0.585090335 1.27E-47 

Green −0.185033296 2.92E-05 

Turquoise 0.272366704 5.06E-10 

Magenta 0.202002654 4.86E-06 

Red −0.380699969 7.91E-19 

Yellow −0.5373022 4.84E-39 

Grey 0.570203511 8.46E-45 

 

development were explored based on scRNA-seq data 

of CancerSEA database. The results showed that these 

hub genes were positively related to cell cycle, DNA 

damage, DNA repair, proliferation, stemness, 

differentiation, and metastasis. For example, CCNA2 

was positively related to stemness in CRC (Figure 7). 

Functional annotation and KEGG pathway 

enrichment of key modules 

 

Gene ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses of 

the brown and blue modules were performed to explore

 

 
 

Figure 3. The genes in this two module correlations with the phenotype of CRC. (A) The genes in the brown module correlations 

with the phenotype of CRC. (B) The genes in the blue module correlations with the phenotype of CRC. 
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potential biological processes and mechanisms 

associated with CRC. The result showed that the genes 

in the brown modules were mainly related to 

chromosome segregation, nuclear division, organelle 

fission and other functions in go enrichment (Figure 

8A), while related to cell cycle, DNA replication and 

RNA transport and other pathways in KEGG pathway 

enrichment. (Figure 8B). Meanwhile, the genes in the 

blue modules were mainly related to lipid catabolic 

process, cellular lipid catabolic process, organic anion 

transport and other functions in go enrichment (Figure 

8C), while related to fatty acid degradation, mineral 

absorption, PPAR signaling pathway, and other 

pathways in KEGG pathway enrichment (Figure 8D). 

 

 
 

Figure 4. The network of candidate tumor driver genes in two modules. (A) The network of candidate tumor driver genes in 

brown module. (B) The network of candidate tumor driver genes in blue module. 

 

 

 
 

Figure 5. Overall survival analysis of 10 key genes in CRC (based on TCGA data in GEPIA). (A–J) Expression levels of CCNA2 are 

significantly related to the overall survival of patients with CRC (P < 0.05). 
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Figure 6. The expression analysis of 10 key genes in CRC (based on TCGA data in GEPIA). (A) BUB1, (B) BUB1B, (C) CDK1, (D) 
CCNA2, (E) MCM10, (F) TMEM236, (G) CEACAM7, (H) SLC26A3, (I) CA2, (J) APPL2. 

 

 
 

Figure 7. The function of hub genes in single-cell functional analysis from the CancerSEA database. (A) Scatter plot of the 

correlation between CCNA2 and stemness in CRC. (B) Heat map of correlation between hub genes and functional status in CRC. (*p < 0.05). 
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Module cross-talk analysis 

 

With the human protein interaction network as the 

background, we constructed 1000 random networks and 

calculated the interaction pairs between each gene 

module. We set the significance threshold P value 

< 0.05 and screened 16 significant cross talks (module 

cross-talk interaction pairs). The blue and brown 

modules had strong interactions with other modules 

(Figure 9). 

ncRNA regulating modular genes 

 

Based on the 70,962 pairs of ncRNA-mRNA interaction 

relationship included in the RAID 2.0 database, we 

explored the pivot node (ncRNA) of the regulatory 

function modules. When P value < 0.01, a total of 260 

Pivot-Module interaction pairs were screened out, 

including 164 ncRNAs. The results were shown in 

Table 3 (only the modules significantly related to the 

phenotype were listed), with each module displaying the 

 

 

 
Figure 8. Enrichment analysis of brown and blue modules. (A) GO analysis of all genes in brown modules. (B) KEGG pathway analysis 

of all genes in brown modules. (C) GO analysis of all genes in blue modules. (D) KEGG pathway analysis of all genes in blue modules. 
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most significant 5 Pivot-Module interaction pairs. The 

ncRNAs that had significant regulatory effects on the 

brown module included MALAT1, CRNDE, FENDRR, 

DRAIC, LOC101927497, etc. The ncRNAs with 

significant regulatory effects on the blue module 

included ANCR, AFAP1-AS1, CISTR, FMR1-AS1, 

MALAT1, etc., (Figure 10). 

 

TFs regulating modular genes 

 

Based on the 9396 pairs of TFs-mRNA interaction 

relationship included in the TRRUST v2 database, we 

explored the pivot node (TFs) of the regulatory function 

modules. When P value < 0.01, a total of 80 Pivot-

Module interaction pairs were screened out, including 

77 TFs. The results were shown in Table 4 (only the 

modules significantly associated with the phenotype 

were listed), with each module displaying the most 

significant 5 Pivot-Module interaction pairs. The TFs 

that had significant regulatory effects on the brown 

module included E2F1, MYC, TP53, E2F4, YBX1, etc. 

The TFs with significant regulatory effects on the blue 

module included ZBTB17, CDX2, PPARA, AR, CDX1, 

etc., (Figure 10). 

 

Drug candidates for module genes 

 

We retrieved 17 drugs to treat CRC from the DrugBank 

database, and we searched for the drug pivot nodes of 

the regulatory function modules using drug-gene 

interactions as a background set. When P < 0.05, a total 

of 3 Pivot-Module interaction pairs were obtained, 

including 3 drugs. We did not yet detected drugs that 

were significantly related to the brown and blue 

modules (Table 5). Nevertheless, it was clear from the 

above analysis that the genes in the brown and blue 

modules may play an important role in the phenotype of 

CRC. To explore more effective drugs for the treatment 

of CRC, we screened the drugs of the brown and blue 

regulatory modules in the context of all drug-gene 

interaction pairs in the DrugBank. The results were 

shown in Table 6 (top 5, sorted by regulatory interaction 

pairs). 
 

DISCUSSION 
 

CRC is the most common gastrointestinal tumor and its 

progression is related to the activation of various 

oncogenes and the inactivation of various tumor 

suppressor genes [15, 16]. With the rapid development 

of bioinformatics, databases are widely used to analyze 

tumor-related molecules and explore therapeutic agents 

[17, 18]. In this study, we obtained biomarker profiles of 

CRC through comprehensive bioinformatics analysis, 

investigated the biological processes and mechanisms 

involved in these biomarkers, constructed regulatory 

networks of mRNA, ncRNA and TFs, and identified 

potential drug candidates targeting hub proteins and TFs. 

 

 
 

Figure 9. The module crosstalk analysis showed blue and brown modules had strong interactions with other modules. 



www.aging-us.com 7047 AGING 

Table 3. Pivot (ncRNA)-module interaction pairs. 

Module ncRNA Connection P-value 

Brown MALAT1 1569 2.88E-23 

Brown CRNDE 1984 2.36E-21 

Brown FENDRR 2672 8.23E-16 

Brown DRAIC 386 5.94E-12 

Brown LOC101927497 237 1.23E-11 

Blue ANCR 795 1.23E-20 

Blue AFAP1-AS1 590 9.38E-15 

Blue CISTR 2883 2.32E-14 

Blue FMR1-AS1 619 1.41E-10 

Blue MALAT1 1569 5.15E-10 

Black CISTR 2883 1.45E-08 

Black FENDRR 2672 1.68E-08 

Black MALAT1 1569 3.54E-08 

Black MIR17HG 800 4.10E-07 

Black NRAV 622 7.90E-06 

Green FENDRR 2672 3.61E-12 

Green AFAP1-AS1 590 3.35E-09 

Green MALAT1 1569 6.12E-09 

Green CRNDE 1984 9.24E-06 

Green H19 29 3.73E-05 

Green yellow C8orf34-AS1 46 4.00E-04 

Green yellow AC079779 2 1.27E-03 

Green yellow RP11-834C11 2 1.27E-03 

Green yellow SNHG3 2 1.27E-03 

Green yellow LINC01852 3 1.90E-03 

Grey ANCR 795 2.23E-27 

Grey AFAP1-AS1 590 3.67E-20 

Grey CISTR 2883 1.42E-18 

Grey FENDRR 2672 6.20E-11 

Grey H19 29 5.88E-09 

Magenta AFAP1-AS1 590 2.54E-08 

Magenta HOXA11-AS 8 3.17E-08 

Magenta PANDAR 3 9.97E-08 

Magenta ANCR 795 2.73E-07 

Magenta CISTR 2883 8.29E-07 

Pink CISTR 2883 1.31E-09 

Pink SNHG16 723 1.41E-05 

Pink RAD51-AS1 905 1.20E-04 

Pink MIR17HG 800 1.69E-04 

Pink CRNDE 1984 3.28E-04 

Purple NRAV 622 2.59E-06 

Purple CISTR 2883 2.02E-05 

Purple LOC284191 2 1.94E-03 

Purple CALML3-AS1 3 2.91E-03 

Purple AP000265 4 3.88E-03 

Red CASC15 120 1.21E-07 
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Red CAT8 190 2.68E-06 

Red NORAD 1028 4.61E-04 

Red AFAP1-AS1 590 6.12E-04 

Red GAS5 1067 6.25E-04 

Tan CISTR 2883 1.93E-04 

Tan FENDRR 2672 1.83E-03 

Tan LA16c-380H5 2 2.08E-03 

Tan LOC102724908 2 2.08E-03 

Tan RP1-101D8 2 2.08E-03 

Turquoise KCNJ2 7 5.14E-04 

Turquoise DEPDC1 5 1.10E-03 

Turquoise MAPRE1 5 1.10E-03 

Turquoise ATG101 3 1.95E-03 

Turquoise CYB561D2 3 1.95E-03 

Yellow FENDRR 2672 8.10E-20 

Yellow CRNDE 1984 1.57E-17 

Yellow ANCR 795 2.20E-13 

Yellow LOC101927497 237 5.26E-09 

Yellow MALAT1 1569 1.86E-06 

 

In the present study, WGCNA analysis showed that 

the brown and blue modules were significantly 

associated with CRC phenotype compared with other 

modules. GO enrichment analysis showed that the 

genes in the brown module were significantly enriched 

in cell cycle, DNA replication, RNA transfer, etc. 

DNA replication has been thought as a source for gene 

amplification in tumors. Available studies confirmed 

that the above mentioned entries were related to tumor 

development [19, 20]. Meanwhile, GO analysis 

suggested that the genes in the blue module were 

mainly enriched in fatty acid degradation, sulfur 

metabolism, PPAR signaling pathway, etc. The 

reduction in fatty acids often leads to the inhibition of 

tumor cells proliferation [21]. However, whether the 

PPAR signaling pathway acts as a pro- or anti-tumor 

agent in CRC is currently controversial and needs to 

be explored in depth [22]. 

 

 
 

Figure 10. The interaction network among this two module, lncRNA and TF. The darker the color, the more significant the 

interaction with the module, the dashed line represents TF, the solid line represents ncRNA. (A) The network in brown module. (B) The 
network in blue module. 
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Table 4. Pivot (TFs)-module interaction pairs. 

Module TFs Connection P-value 

Brown E2F1 155 1.96E-15 

Brown MYC 113 4.13E-08 

Brown TP53 201 1.54E-07 

Brown E2F4 26 3.79E-05 

Brown YBX1 33 1.96E-04 

Blue ZBTB17 3 1.19E-04 

Blue CDX2 36 2.92E-04 

Blue PPARA 43 4.65E-03 

Blue AR 105 5.38E-03 

Blue CDX1 8 5.53E-03 

Black FLI1 26 7.22E-03 

Black HDAC5 10 9.81E-03 

Black LMO2 10 9.81E-03 

Green STAT3 185 4.17E-03 

Green NFKBIA 23 6.18E-03 

Green WWP1 3 8.08E-03 

Green ZFP36 9 9.72E-03 

Green yellow NR1I2 27 1.93E-05 

Green yellow EAPP 4 9.39E-04 

Green yellow NR1I3 5 1.55E-03 

Green yellow NR0B2 9 5.40E-03 

Green yellow YBX1 33 8.19E-03 

Grey ATF4 41 7.29E-04 

Grey SMARCA4 9 2.30E-03 

Grey ARNT 22 4.12E-03 

Grey DNMT1 33 5.12E-03 

Grey ZNF24 5 5.50E-03 

Magenta KLF8 8 1.50E-05 

Magenta RUNX2 21 4.28E-04 

Magenta SMAD3 35 1.47E-03 

Magenta TWIST2 27 1.81E-03 

Magenta CITED2 2 2.49E-03 

Pink RB1 35 2.22E-04 

Pink ENO1 5 6.12E-03 

Pink MED1 5 6.12E-03 

Pink PA2G4 5 6.12E-03 

Pink ARID3A 6 9.03E-03 

Purple HIF1A 95 6.25E-03 

Purple PIAS1 6 7.64E-03 

Red NFKB1 399 4.96E-06 

Red RELA 394 4.04E-05 

Red STAT1 98 3.40E-04 

Red IRF1 57 1.12E-03 

Red NFKBIA 23 1.35E-03 

Tan RBL1 5 4.78E-03 

Turquoise KAT2B 13 1.90E-03 
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Turquoise TP53BP1 2 1.92E-03 

Turquoise RB1CC1 3 5.59E-03 

Turquoise JUND 38 5.74E-03 

Yellow ARNTL 10 1.65E-06 

Yellow CLOCK 18 4.79E-05 

Yellow NPAS2 4 3.26E-03 

Yellow EZH2 43 3.32E-03 

Yellow HOXD3 5 5.35E-03 

 

Table 5. Pivot (drugs)-module interaction pairs. 

Module Pivot n P-value 

Grey Mepenzolate 2 0.008032 

Red Olsalazine 2 0.02381 

Yellow Trimebutine 21 0.012873 

 

Table 6. The drugs related to modules brown and blue. 

Module TFs Connection P-value 

Blue L-Carnitine 14 3.43E-06 

Blue Oleic-Acid 12 2.80E-05 

Blue Creatine 7 1.21E-03 

Blue 
2-[(2,4-DICHLOROBENZOYL) AMINO]-5-(PYRIMIDIN-2-YLOXY) 
BENZOIC-ACID 

3 3.33E-03 

Blue 2-chloro-5-nitro-N-phenylbenzamide 3 3.33E-03 

Brown 
1-(3,5-DICHLOROPHENYL)-5-METHYL-1H-1,2,4-TRIAZOLE-3-
CARBOXYLIC-ACID 

2 5.45E-04 

Brown 
1-[4-(AMINOSULFONYL) PHENYL]-1,6-DIHYDROPYRAZOLO [3,4-E] 
INDAZOLE-3-CARBOXAMIDE 

2 5.45E-04 

Brown 
1-methyl-8-(phenylamino)-4,5-dihydro-1H-pyrazolo [4,3-h] quinazoline-3-
carboxylic-acid 

2 5.45E-04 

Brown 2-ANILINO-6-CYCLOHEXYLMETHOXYPURINE 2 5.45E-04 

Brown 
(2R)-2-{[4-(benzylamino)-8-(1-methylethyl) pyrazolo [1,5-a] [1,3,5] triazin-2-yl] 
amino} butan-1-ol 

2 5.45E-04 

 

We then determined the core driver genes of tumor 

deterioration in the brown and blue modules. The top 

five genes were BUB1, BUB1B, CDK1, CCNA2 and 

MCM10 in the brown module and TMEM236, 

CEACAM7, SLC26A3, CA2 and APPL2 in the blue 

module. Among the core genes, BUB1 was identified as 

a risk factor for CRC [23]. CDK1 was shown to 

regulate CRC cell proliferation through p53 pathway 

[24]. CCA2 was reported to be a prognostic factor for 

CRC [25]. SLC26A3 has been shown to be an important 

tumor suppressor gene in CRC [26]. In addition, 

elevated CA2 suppressed tumor cell growth both 

in vitro and in vivo [27]. However, the roles of BUB1B, 

MCM10, TMEM236, CEACAM7 and APPL2 in CRC 

have not been reported and further investigated are 
needed. 

 

We also explored the potential ncRNAs based on the 

ncRNA-mRNA interaction relationships included in the 

RAID 2.0 database. There are some ncRNAs that have 

been shown to be associated with tumor progression. 

For example, aberrant expression of MALAT1 was 

involved in tumor angiogenesis and metastasis [28, 29]. 

CRNDE regulated the invasion and migration of CRC 

through the Wnt/β-catenin signaling pathway [30]. 

FENDRR influenced CRC progression via regulating 

miR-18a-5p and miR-424-5p [31, 32]. ANCR 

modulated CRC progression by binding specifically to 

EZH2 [33]. AFAP1-AS1 affected CRC progression 

through miR-195-5p/WISP1 axis [34]. In addition, 

DRAIC, LOC101927497, CISTR and FMR1-AS1 were 

thought to be closely related to the progression of other 

tumors [35, 36]. However, their role in CRC remains to 

be explored. 
 

Moreover, we obtained TFs of the regulatory function 

modules based on the TRRUST v2 database. Some 

TFs are associated with tumor progression, including 
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CRC. For instance, E2F1 regulated CRC progression 

and contributed to oxaliplatin resistance [37, 38]. 

MYC influenced the cell cycle and tumorigenesis by 

regulating lncRNAs [39]. CRC with stabilized mutp53 

exhibited enhanced Jak2/Stat3 signaling and were 

associated with poorer survival [40]. E2F4 was 

deemed to be an important target gene in the 

regulation of CRC carcinogenesis [41]. PRKCQ-AS1 

impacted CRC progression by regulating miR-1287-

5p/YBX1 pathway [42]. A targeted proteomics 

approach has revealed ZBTB17 serves as a diagnostic 

marker for resectable gastric cancer [43]. CDX2 was 

involved in the epithelial-mesenchymal transition of 

CRC through PTEN [44]. The functionally related 

FOXM1 and PPARA were implicated in the vascular 

endothelial growth factor receptor signaling pathway 

in CRC [45]. CDX1 affected CRC differentiation and 

was regulated by promoter methylation [46]. 

However, the relationship between AR and tumors, 

particularly between it and CRC, needs to be further 

investigated. 

 

Finally, we found that L-carnitine and oleic-acid could 

serve as potential therapeutic agents for CRC. However, 

L-carnitine mediated cytoprotection in glioblastoma 

multiforme and led to poor prognosis of patients [47]. 

Moreover, L-carnitine was involved in the pathogenesis 

of endometrial cancer [48]. Studies are lacking to 

explain whether there is a relationship between L-

carnitine and the development of CRC. Oleic-acid 

promoted CRC metastasis following the induction of 

NOX4 [49]. 

 

The innovation of this work compared to former studies 

is the discovery of several new molecules and drug 

candidates not reported in CRC through the use of a 

comprehensive set of genes. However, there are still 

several limitations. First, the data in this study were 

only obtained from public databases and further 

validation of clinical specimens is needed. Second, we 

did not explore the impact of the identified molecular 

markers on CRC progression. Finally, we did not 

investigate the anti-tumor effects of the identified drug 

candidates in vivo and in vitro. Therefore, future studies 

need to collect more clinical specimens and design more 

experiments to further functional validation of the 

identified molecular markers and drug candidates. 

 

CONCLUSION 
 

In conclusion, we revealed molecular biomarker 

signatures at the RNA and protein levels in CRC by 

systematic bioinformatics analysis, and constructed 

regulatory networks for mRNAs, ncRNAs and TFs. 

Moreover, we identified potential drugs targeting hub 

proteins and TFs. 
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Supplementary Figure 1. Flowchart of this study. 


