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INTRODUCTION 
 

Prostate cancer (PCa) is the most frequent cancer 

diagnosed in men; it accounts for 27% of diagnoses and 

ranks second in terms of fatalities in the United States 

[1]. It is anticipated that there will be 268490 new cases 

and 34500 deaths of PCa in 2022, based on the latest 

statistical data from the American Cancer Society [1]. 

Bone metastases are manifested in 70% of PCa patients 

in the advanced stage, and they were also present in 

90% of individuals with metastatic PCa [2, 3]. 

Mechanisms that aggravate patients with PCa to 

develop bone metastases and immune regulation in 

bone metastatic PCa are not well understood, even 
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ABSTRACT 
 

Immunotherapy has become a revolutionary treatment for cancer and brought new vitality to tumor 
immunity. Bone metastases are the most prevalent metastatic site for advanced prostate cancer (PCa). 
Therefore, finding new immunotherapy targets in PCa patients with bone metastasis is urgently needed. We 
conducted an elaborative bioinformatics study of immune-related genes (IRGs) and tumor-infiltrating 
immune cells (TIICs) in PCa bone metastases. Databases were integrated to obtain RNA-sequencing data and 
clinical prognostic information. Univariate and multivariate Cox regression analyses were conducted to 
construct an overall survival (OS) prediction model. GSE32269 was analyzed to acquire differentially 
expressed IRGs. The OS prediction model was established by employing six IRGs (MAVS, HSP90AA1, FCGR3A, 
CTSB, FCER1G, and CD4). The CIBERSORT algorithm was adopted to assess the proportion of TIICs in each 
group. Furthermore, Transwell, MTT, and wound healing assays were employed to determine the effect of 
MAVS on PCa cells. High-risk patients had worse OS compared to the low-risk patients in the training and 
validation cohorts. Meanwhile, clinically practical nomograms were generated using these identified IRGs to 
predict the 3- and 5-year survival rates of patients. The infiltration percentages of some TIICs were closely 
linked to the risk score of the OS prediction model. Some tumor-infiltrating immune cells were related to the 
OS. FCGR3A was closely correlated with some TIICs. In vitro experiments verified that up-regulation of MAVS 
suppressed the proliferation and metastatic abilities of PCa cells. Our work presented a thorough 
interpretation of TIICs and IRGs for illustrating and discovering new potential immune checkpoints in bone 
metastases of PCa. 
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though they contribute significantly to the mortality of 

men with advanced PCa [4]. 

 

Immunotherapy in cancer has made great progress, and 

tremendous immunotherapy clinical trials for various 

tumors have been witnessed in recent years. Tumor-

infiltrating immune cells (TIICs) are closely associated 

with tumor progression and immunotherapy, as well as 

being biomarkers for prognosis and playing complex 

roles [5–7]. Chemokine CCL2 can recruit monocytes 

with highly expressed CCR2, while targeted inhibition 

of CCR2 can decrease the recruitment of M2 

macrophages and induce tumor infiltration of activated 

CD8+ T cells [8]. Another chemokine, CXCL12, which 

can drive monocyte migration, could be induced by 

radiation therapy and trigger tumor-associated macro-

phage aggregation in tumor tissues [9]. IL-15 can up-

regulate TIGIT and CD226 via tumor-infiltrating NK 

cells, increasing NK cell-mediated cytotoxicity and 

reducing tumor metastases [10]. Additionally, CD70 

inhibits NK cell signaling, which is conducive to the 

immune regulation of B cell lymphoma and leukemia 

that express CD27 [11]. As stated, CCL2, CXCL12, IL-

15, CD20, and CD70 are immune-related genes that 

have a certain significance for tumor development and 

immunotherapy. In parallel, PD-1 and PD-L1 have been 

the most successfully used immunotherapy targets, and 

antibodies targeting PD-1 and PD-L1 have exhibited 

promising efficacy in melanoma, lung carcinoma, and 

renal-cell cancer [12, 13]. Sipuleucel-T, however, is the 

most successful immunotherapy based on dendritic cells 

currently approved for advanced PCa [14, 15]. 

Therefore, finding new potential immune checkpoints in 

different tumors is of great significance. IRGs have 

been recognized as practical prognostic indicators and 

novel targets of various malignancies, including 

osteosarcoma [16], cervical cancer [17], colorectal 

cancer [18], and ovarian serous cystadenocarcinoma 

[19]. As a result, having a higher priority for knowledge 

of TIICs and IRGs will contribute to looking for 

particularly targeted molecules and may provide novel 

perspectives on PCa bone metastases. 

 

For the current work, datasets on PCa bone metastases 

were obtained from GEO, TCGA, and cBioPortal 

databases. Differentially expressed IRGs and hub genes 

were confirmed from the GSE32269 dataset of the GEO 

database. Importantly, an IRG-based prognostic model 

was constructed and verified from the integrated data  

of TCGA-PRAD from the TCGA database and 

prad_su2c_2019 from the cBioPortal database. TIICs in 

primary and bone metastases of PCa and their correlation 

with risk scores were also analyzed and explored. 

Ultimately, our finding revealed that FCGR3A and 

MAVS might perform as appropriate immune targets for 

PCa bone metastases. 

MATERIALS AND METHODS 
 

Data preparation 

 

Details on 2483 IRGs (Supplementary Table 3)  

were acquired from the ImmPort database 

(https://www.immport.org/resources). IRGs among 

differentially expressed genes (DEGs) in the 

GSE32269 dataset were filtered by the function 

“intersect” in the “dplyr” package. DEGs were 

authenticated from the GSE32269 dataset containing 

29 metastatic bone marrow samples and four normal 

bone marrow samples using the “limma” packages of 

R software (version 4.2.1) using the criteria of an 

adjusted p-value < 0.05 and log2|fold change|>1. The 

volcano map was drawn using the “ggplots” package, 

and the heat map was plotted using the “pheatmap” 

package. Correlations between FCGR3A and PD-1, 

PD-L1, and CTLA4 were analyzed using the TIMER2.0 

database (http://timer.comp-genomics.org/). 

 

An appropriate dataset comprising RNA sequencing, 

FPKM values of 82 PCa bone metastases, and clinical 

survival information was downloaded from the 

cBioPortal database (http://www.cbioportal.org/study/ 

summary?id=prad_su2c_2019) from Abida W’s study 

[20]. Considering the small number of patients  

with primary PCa in this dataset, the data from  

TCGA-PRAD was integrated. The TCGA-PRAD dataset, 

comprising a gene expression matrix, an annotation file, 

and clinical information for 505 PCa patients (1 

metastatic and 504 primary tissues), was downloaded 

from UCSC Xena (https://xena.ucsc.edu/) [21]. Next, the 

same number of bone metastases and primary PCa 

samples were randomly selected from prad_su2c_2019 

and TCGA-PRAD to integrate the new dataset. The 

new dataset consisted of an FPKM expression matrix 

and clinical information for 83 patients with bone 

metastasis and 83 patients with PCa in situ. Finally, 

the batch effect of the new dataset was removed via 

the “combat” function and normalized, then randomly 

divided into the training cohort (70%) and the 

validation cohort (30%) using the “createData 

Partition” function in the “caret” package of R 

software (Figure 1). 

 

Function enrichment analysis 

 

Gene ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) analyses of up- and down-

regulated IRGs in GSE32269 were implemented to 

yield possible biological functions and signaling 

pathways using the R software “clusterProfiler” 
package. GO analyses consist of three parts: biological 

process (BP), cell composition (CC), and molecular 

function (MF). 

https://www.immport.org/resources
http://timer.comp-genomics.org/
http://www.cbioportal.org/study/summary?id=prad_su2c_2019
http://www.cbioportal.org/study/summary?id=prad_su2c_2019
https://xena.ucsc.edu/
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Figure 1. The working flow chart of this study. IRGs, immune-related genes; DEGs, differentially expressed genes; FC, fold change, BM, 
bone metastases; TCGA, The Cancer Genome Atlas; OS, overall survival; ROC, receiver operating characteristic; RT-qPCR, Real-time 
quantitative Polymerase Chain Reaction. 
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Identification of hub genes and biology networks 

 

The STRING database (https://string-db.org/) is widely 

used for searching protein-protein interactions (PPIs), 

including the direct physical interaction between 

proteins and the indirect correlation between proteins. It 

is currently updated to version 11.5 and contains 

approximately 67.5 million proteins from over 14 

thousand organisms and 200 billion interactions [22]. 

Fifty up-regulated and 159 down-regulated differentially 

expressed IRGs were imported into the STRING 

database and constructed into a visual network model by 

Cytoscape (version 3.9.1) [23]. In Cytoscape software 

for visualization, the cytoHubba plugin was used to 

calculate the betweenness and degree scores, which were 

important topological methods to evaluate the centrality 

of candidate genes [24]. The top 20 genes with the 

highest node scores were selected as candidate genes. 

Molecular Complex Detection (MCODE) is a graph 

clustering algorithm that can select key sub-modules and 

genes [25]. In the end, hub genes were mined based on 

the intersection of the results of betweenness, degree 

topological methods, and the MCODE algorithm. 

 

Building and verification of prognostic models 

 

Details about preparing the training cohort and 

validation cohort data were provided above. Next, a 

univariate Cox regression analysis of IRGs was 

conducted in the training cohort via the “survival” 

package (version 3.4.0). The log-rank test was used for 

calculating the statistical significance of each IRG, and 

candidate genes were selected based on the standard of 

p<0.0001. Then, multivariate Cox regression was 

conducted to analyze the candidate genes and establish 

an optimal overall survival (OS) model. Finally, the risk 

score of each patient was calculated using the following 

formula: risk score = coefgene1 ×Exp gene1 + coefgene2 

×Expgene2 +…+coef gene(i)×Exp gene(i). 

 

Patients were grouped based on the median risk score; 

those with higher risk scores were classified as high 

risk, while those with lower risk scores were classified 

as low risk. For evaluating the predictive power of the 

risk score on patients’ overall survival, Kaplan-Meier 

(K-M) survival curve analysis was implemented 

between two subgroups. The “timeROC” package 

(version 0.4) was used to map the time-dependent 

receiver operating characteristic (ROC) curve for 

evaluating the predictive ability of the above-mentioned 

prognosis model. Meanwhile, the same prognosis model 

was used to calculate the risk score and group in the 

validation cohort. Likewise, the survival and ROC 
curves were visualized using the above methods in the 

validation cohort. In order to make it easier for the OS 

prognosis model to be applied in the clinic, the 

regression modeling strategies (rms) package (version 

6.3.0) was employed to build nomograms in the training 

and validation cohorts. Ultimately, the calibrate 

function in the “rms” package was used for mapping 

calibration plots to exhibit the error range of the 

prognostic model. 

 

Tumor-infiltrating immune cell analysis based on 

CIBERSORT 

 

The CIBERSORT algorithm was implemented to 

calculate the proportions of TIICs in the GSE32269 and 

GSE77930 datasets, as well as training and validation 

cohorts. CIBERSORT is a widely used method for 

calculating and estimating the level of 22 TIIC 

components in tissues from their gene expression 

profiles [26]. The program reference document was 

provided as Supplementary Table 4. 

 

Cell culture and cell transfection 

 

Four types of PCa cells were used in this study, including 

PC-3, DU-145, LNCaP, and 22Rv1, which were 

purchased from the Procell company (Wuhan, China). 

These four kinds of cells were cultured in RPMI-1640 

(Procell, Wuhan, China) containing 10% fetal bovine 

serum (HyClone, USA) and 1% penicillin/streptomycin 

(Thermo Fisher, USA). Cells were all grown in an 

environment of 37° C  and 5% CO2. Gene overexpression 

lentivirus MAVS mimics and their negative control were 

designed and constructed by Genechem (Shanghai 

Genechem Co., Ltd.). Cell transfection was carried out 

following the manufacturer’s instructions. 

 

Total RNA extraction and RT-qPCR 

 

Following the instructions, total RNA was extracted 

from each cell and grouped with TRIzol reagent 

(Invitrogen, USA), then removed the gDNA and 

reversed transcribed into cDNA with PrimeScript™ RT 

reagent Kit with gDNA Eraser (Takara, Japan). Real-

time quantitative PCR (RT-qPCR) was conducted using 

TB Green® Premix Ex Taq™ (Takara, Japan) according 

to the instructions. Primer sequences are exhibited in 

Supplementary Table 1. 

 

Capillary immunoblotting 

 

For faster and more accurate detection of targeted 

proteins, we employed the Simple Western™ System 

(ProteinSimple, USA) for Western blotting. The cell 

lysis, protein extraction, and quantification methods 

utilized for each group after transfection were in line 
with those used in our former research [27]. Then, boiled 

protein samples, primary antibodies of MAVS (1:1000, 

Abcam), β-actin (1:5000, Affinity), Akt (1:1000, 

https://string-db.org/
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Abcam), and Capase-3 (1:5000, Abcam), and the Wes 

anti-rabbit detection module based on a published 

manuscript [28], were added to each well of the Wes 

Separation 12-230 kDa Capillary Cartridges. All Wes 

reagents were purchased from ProteinSimple, and the 

experiment was implemented strictly in compliance with 

instructions. Eventually, Image J software (version 

2.9.0) was adopted for calculating the grey values of the 

images. 

 

Transwell assay 

 

The Transwell assay is a method for simulating the 

migration and invasion processes of tumor cells in vitro 

by putting higher concentration serum on one side of 

the gel and cells on the other. Migration and invasion 

abilities are evaluated by counting the number of cells 

that traversed the 8-μm pore [29]. As previously 

illustrated [27], Transwell chambers (Corning, USA) 

with or without Matrigel (Corning, USA) were adopted 

for the invasion or migration assay. Finally, cells 

traversed from the pore were stained with modified 

Giemsa solution (Beyotime, China) and photographed 

under three random fields. 

 

Wound healing assay 

 

The wound healing assay provides a cheap, simple, and 

convenient way to implement cell migration ability in 
vitro [30]. Linear scratches were made on each group of 

cells with a 200 μl sterilized pipette tip, and photographs 

were taken by microscope (Leica Microsystems GmbH, 

Germany) at the same location of scratches 0 h and 48 h 

later. Three cell scratch sites were randomly selected in 

each group, and the scratch areas were calculated by 

Image J software (version 2.9.0, Java 1.8.0_322). 

 

MTT cell proliferation assay 

 

PC-3 and DU-145 cells were digested and counted after 

modeling successfully. Then the cells were seeded into 

a 96-well plate (2×103 cells/well) and cultured at 37° C 

in an atmosphere of 5% CO2. Finally, the absorbance 

value was determined at 0 h, 24 h, 48 h, and 72 h using 

the MTT assay kit (Beyotime, China) following the 

instructions. 

 

Statistical analysis 

 

The majority of statistical bioinformatics work was 

executed via R statistical software (version 4.2.1), 

comprising processing and normalization of bulk RNA 

sequence, DEG analysis, GO and KEGG enrichment 
analysis, CIBERSORT, survival analysis, ROC analysis, 

as well as Spearman correlation analysis. For univariate 

and multivariate Cox regression analysis, the function 

“coxph” in the “survival” package (version 3.4.0) was 

adopted. 
 

The data for the in vitro validation experiment were 

exhibited as the mean ± standard deviation of three 

independent experiments. The GraphPad Prism 

software (version 8.0.2 for Windows) was deployed to 

conduct an unpaired student’s t test or one-way 

ANOVA to determine the differences between two or 

more groups and draw the statistical plots. Each 

experiment was repeated in triplicate for each sample. 

It was considered significant in statistics when the  

p-value was less than 0.05. 

 

RESULTS 
 

Differentially expressed IRGs in bone metastasis of 

PCa 
 

GSE32269 from the GEO database was selected for 

DEGs analysis, containing 29 cases of PCa bone 

metastatic marrow and four normal bone marrow cases. 

A heat map of differentially expressed IRGs relative 

expression was exhibited in Figure 2A. Eventually, 

there were 209 IRGs that were differentially expressed; 

159 of them were down-regulated, and 50 of them were 

up-regulated (Figure 2B and Supplementary Table 2). 

 

GO and KEGG pathway enrichment analysis 
 

To better investigate the role of the above differentially 

expressed IRGs and potential mechanisms in the 

metastasis of PCa, GO enrichment analysis and KEGG 

functional enrichment analysis were conducted on those 

down- or up-regulated IRGs. The top six GO-enriched 

down- and up-regulated IRGs for each part are 

exhibited in Figure 2C. As for BP, 159 down-regulated 

IRGs were mainly involved in leukocyte migration, the 

immune response-regulating signaling pathway, 

leukocyte-mediated immunity, cell chemotaxis, the 

immune response-regulating cell surface receptor 

signaling pathway, and leukocyte chemotaxis. Fifty up-

regulated IRGs were enriched in the regulation of cell 

development, epithelial cell proliferation, positive 

regulation of kinase activity, regulation of epithelial cell 

proliferation, and positive regulation of protein kinase 

activity and epithelial cell proliferation. Regarding the 

CC, down-regulated IRGs primarily constituted the 

external side of the plasma membrane, the secretory 

granule, the cytoplasmic vesicle lumen, the vesicle 

lumen, the specific granule, and the specific granule 

lumen. The up-regulated IRGs main components were 

focal adhesion, cell-substrate junction, endoplasmic 
reticulum lumen, glutamatergic synapse, melanosome, 

and pigment granule. A difference in CC indicates a 

different MF. Down-regulated IRGs influence immune 
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Figure 2. Differentially expressed IRGs and their functional enrichment analyses. Heat map (A) and volcano map (B) for 
differentially expressed IRGs in 4 normal bone marrow samples and 29 bone metastases of prostate cancer samples from GSE32269. GO (C) 
and KEGG (D) enrichment analysis for 159 down-regulated IRGs and 50 up-regulated IRGs. 
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receptor activity, receptor ligand activity, signaling 

receptor activator activity, cytokine receptor activity, 

cytokine binding, and C-C chemokine binding, whereas 

up-regulated IRGs influence receptor ligand activity, 

signaling receptor activator activity, ubiquitin protein 

ligase binding, ubiquitin-like protein ligase binding, 

cadherin and cytokine binding. Furthermore, KEGG 

pathway enrichment analysis revealed various pathways 

that IRGs enriched between up- and down-regulation 

(Figure 2D). The down-regulated IRGs are enriched in 

cytokine-cytokine receptor interaction, natural killer cell-

mediated cytotoxicity, the chemokine signaling pathway, 

neutrophil extracellular trap formation, and viral protein 

interaction with cytokine and cytokine receptor. As for 

up-regulated IRGs, are enriched in proteoglycans in 

cancer, the B cell receptor signaling pathway, antigen 

processing and presentation, PD-L1 expression, and the 

PD-L1 checkpoint pathway (Figure 2D). 

 

Establishment of biological network and identified 

hub genes 

 

The STRING website was used to import 209 

differentially expressed IRGs, which were then redrawn 

and optimized using the Cytoscape software (version 

3.9.1, java 11.0.6). Genes were ordered by betweenness 

centrality using the CytoNCA plugin (Figure 3A). There 

are three key modules, which are degree, betweenness, 

 

 
 

Figure 3. Hub genes and the biology network for differentially expressed IRGs in GSE32269. (A) A total of 197 IRGs were used for 
drawing the PPI network. Red indicated up-regulated, and green indicated down-regulated IRGs in bone metastasis tissues of prostate 
cancer. (B, C) Confirmation of the top 20 IRGs and establishment of the PPI network by degree and betweenness topological methods. (D) 
Venn diagram to determine 12 hub IRGs. 
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and MCODE. The top 20 genes selected by the 

betweenness or degree method and their corresponding 

networks were mapped (Figure 3B, 3C). Twelve genes 

were determined as hub genes by taking the intersection 

of the three methods, which were: FCGR3A, CD8A, 

CXCR4, VCAM1, HRAS, CCL5, MMP9, CXCL12, 

ITGB2, PTPRC, TLR2, and TNF (Figure 3D). 

 

Establishment and validation of a prognostic model 

 

For investigating the effect of IRGs on the prognosis of 

PCa patients with bone metastases, univariate Cox 

regression analysis was implemented to determine the 

link between IRGs and OS in the training cohort. 15 

OS-related IRGs were filtered out when the standard 

was set at P < 0.0001 (Figure 1). We selected the top 6 

IRGs for further multivariate COX regression analysis. 

Finally, MAVS, HSP90AA1, FCGR3A, CTSB, 

FCER1G, and CD4 were obtained for the characters of 

the OS prediction model. Definition of the model as 

follows: risk score = (-3.123*exp (MAVS)) + (5.341 

*exp (HSP90AA1)) + (6.283 *exp (FCGR3A)) + 

(4.356* exp (CTSB)) + (3.124*exp (FCER1G)) + 

(4.252 * exp (CD4)). Each sample in the training 

cohort was divided into a low- or high-risk group 

according to the median risk score. Survival analysis 

illustrated that patients assigned to the high-risk group 

had a poorer OS than patients assigned to the low-risk 

group (p < 0.001, Figure 4A). To further verify the 

validity of these prognosis-related genes, a time-

dependent ROC analysis was conducted. The areas 

under the curve (AUCs) at 1, 3, and 5 years were 0.855, 

0.936, and 0.95, respectively (Figure 4A). The Survival 

status diagram and expression heat map were exhibited 

in Figure 4A. 

 

Importantly, the OS model was applied to the 

validation cohort from the 30% integrated dataset to 

validate this. In the validation cohort, the OS was 

worse in the high-risk group than in the low-risk group 

(Figure 4B). The AUCs were 0.844, 0.808, and 0.773 

for 1, 3, and 5 years (Figure 4B). Finally, the survival 

status of low- and high-risk patients and expressions of 

character genes are shown in Figure 4B. In sum, six 

OS-related IRGs were discerned, and the model for 

predicting the prognosis of PCa patients with bone 

metastases was credible. 

 

Construction and assessment of nomogram for 

clinical prediction 

 

Nomograms were mapped to establish a practical model 

that would assist therapists in predicting the OS of PCa-
related bone metastases. In the training cohort, six IRGs 

were integrated, and the nomogram was built to predict 

patients’ 1-, 3-, and 5-year OS (Figure 5A). A calibration 

plot was shown to evaluate the accuracy of the predictive 

model (Figure 5A). Meanwhile, the nomograms and 

calibration plots for predicting survival rate in the 

validation cohort were also exhibited in Figure 5B. As we 

can see from the result, MAVS and FCGR3A play roles 

in predicting the outcome of patients in the training and 

validation cohorts (Figure 5A, 5B). 

 

Tumor-infiltrating immune cells analysis based on 

the CIBERSORT algorithm 

 

For exploring the status of TIICs in bone metastases of 

PCa and the influence of risk scores on TIICs, the 

GSE32269 and GSE77930 datasets were conducted to 

calculate the proportion of 22 types of TIICs in 

metastatic bone tissues of PCa by CIBERSORT. 

Training and validation cohorts were also adopted to 

investigate the correlation between risk scores and 

TIICs using this method. For metastatic bone tissues of 

PCa, M0 and M2 macrophages and plasma cells ruled 

supreme (Supplementary Figure 1) in the training set. 

This result was further confirmed in the GSE32269 and 

GSE77930 datasets (Supplementary Figure 2). 

Regulatory T cells (Tregs) (p=0.002) and M2 

macrophages (p<0.001) were significantly increased. In 

contrast, naïve B cells (p<0.001), CD4 memory resting 

T cells (p<0.001) and M1 macrophages (p<0.001) were 

significantly decreased in metastatic bone samples of 

PCa compared to patients with primary PCa (Figure 

6A). Further analysis was conducted on the correlation 

between OS and TIICs. The results indicated that 

patients with higher naïve B cells (p=0.00089, Figure 

6B), M1 macrophages (p=0.013, Figure 6B), and CD4 

memory resting T cells (p=0.011, Figure 6B) 

infiltration ratios had better OS than patients with a 

lower infiltration ratio. However, patients with a higher 

M2 macrophage infiltration ratio had worse OS when 

compared with those with a lower infiltration level, but 

there was no statistical difference (p=0.077, Figure 6B). 

In the training cohort, compared with the low-risk 

group, the infiltration ratios of plasma cells (p=0.077, 

Figure 6C) and M2 macrophages (p<0.001, Figure 6C) 

were significantly increased. In contrast, naïve B cells 

(p=0.002, Figure 6C), CD4 memory resting T cells 

(p<0.001, Figure 6C), activated NK cells (p=0.011, 

Figure 6C) and M1 macrophages (p=0.011, Figure 6C) 

were significantly reduced. We also compared the ratio 

of immune cell infiltration between low- and high-risk 

groups in the validation cohort. The results reflected 

that naïve B cells (p=0.036, Figure 6D), CD4 memory 

resting T cells (p=0.02, Figure 6D), and M1 

macrophages (p=0.041, Figure 6D) were significantly 

decreased in the high-risk group when compared with 
the low-risk group. However, the role that these TIICs 

play in bone metastases of PCa still needs to be further 

explored. 
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Potential immunotherapy targets of prostate cancer 

bone metastasis 

 

FCGR3A was screened as a hub gene and prognosis-

related gene; therefore, it was investigated further. The 

FCGR3A expression in PCa bone metastatic tissues was 

higher than that in the primary PCa tissues (p=0.0487, 

Figure 7A), and higher FCGR3A was unfavorable to the 

prognosis of PCa patients in the training set (p=0.004, 

Figure 7B) and the validation set (p=0.037, Figure 7B). 

 

 
 

Figure 4. Establishment and validation of an immune-related gene prediction model for the OS of prostate cancer bone 
metastases. (A) K-M, ROC, and risk factor analysis were performed to access the association among risk score, mortality, and characteristic 
gene expression in the training cohort. (B) K-M, ROC, and risk factor analysis were performed to access the association among risk score, 
mortality, and characteristic gene expression in the validation cohort. 
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Figure 5. The nomogram of the OS predictive model for 1, 3, and 5 years. Nomogram and calibration plot for predicting 1, 3, and 5 
years OS model in the training (A) and validation (B) cohorts. 
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Figure 6. Immune cells infiltration analysis based on CIBERSORT in PCa bone metastases. (A) The percentage of 22 immune 

infiltration cells in the training cohort was compared between PCa in situ (n =58) and PCa bone metastases (n=58). (B) The OS analysis of 
naive B cells, CD4 memory resting T cells, and M1, M2 macrophages in the training cohort. In the training cohort (C) and validation cohort (D), 
the percentages of 22 immune infiltration cells divided into low- or high-risk groups designated by the OS predicted model were compared. 
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To further investigate the correlation between FCGR3A 

and TIICs, correlation analysis was conducted in the 

training set. Results exhibited that FCGR3A expression 

was remarkably connected with some TIICs 

(Supplementary Figure 3), such as M1 macrophages 

(R=0.52, p<0.001, Figure 7C), gamma delta T cells 

(R=0.34, p<0.001, Figure 7C), CD4 memory activated 

T cells (R=0.2, p=0.029, Figure 7C), CD4 memory 

resting T cells (R=0.26, p=0.0046, Figure 7C), resting 

dendritic cells (R=0.31, p<0.001, Figure 7C) and 

plasma cells (R=-0.34, p<0.001, Figure 7C). PD-1 

(PDCD1) and CTLA4 are two major immune 

checkpoints on T cells, and they exert their block effect 

via interacting with PD-L1 (CD274) ligand on PCa cells 

and CD80/CD86 on antigen-present cells, respectively 

[31]. Therefore, correlations between FCGR3A 

expression and PD-1, PD-L1, and CTLA4 expression 

were analyzed in the training cohort and the TIMER2.0 

database (Figure 7D and Supplementary Figure 4). The 

results reflected FCGR3A expression was positively 

correlated with PD-L1 (CD274) (R=0.46, p<0.001, 

Figure 7D), CTLA4 (R=0.6, p<0.001, Figure 7D) and 

PD-1 (PDCD1/CD279) (R=0.43, p<0.001, Figure 7D) 

in the training set. We also validated these results in the 

TIMER 2.0 database. The results were nearly consistent 

with those in the training set: FCGR3A was positively 

connected to PD-L1 (CD274) (R=0.577, p<0.001), PD-

1 (PDCD1/CD279) (R=0.454, p<0.001) and CTLA4 

(R=0.517, p<0.001) (Supplementary Figure 4). All these 

results exhibited the close relationship between 

FCGR3A and TIICs; further studies are still urgently 

needed to investigate the immunologic efficacy of 

FCGR3A in advanced PCa. 

 

Up-regulation of MAVS suppressed the proliferation 

and metastasis of PCa cells 

 

Mitochondrial antiviral-signaling protein (MAVS) has 

been shown to be associated with OS and a protective 

factor in patients with bone metastases of PCa. 

However, its role in PCa is currently obscure. As a 

result, we validated the effect of MAVS on PCa cell 

lines. MAVS mRNA expression was much lower in 

bone metastatic tissues when compared to tissues of 

primary PCa (p<0.001, Figure 8A). Patients with high 

MAVS mRNA expression had better OS than those 

with low expression in the training cohort (p=0.028, 

Figure 8B), but there was no significant statistical 

difference in the validation cohort (p=0.13, Figure 8B). 

MAVS mRNA, followed by detection by RT-qPCR in 

PCa cell lines. MAVS mRNA expression was relatively 

low in PC-3 and DU-145 cells compared to the other 

types of PCa cells (Figure 8C). Following this, MAVS 
mimics and controls were transfected into PC-3 and 

DU-145 cells. RT-qPCR and Western blotting indicated 

MAVS expression was significantly increased in PCa 

cells (PC-3 and DU-145) transfected with MAVS 

mimics compared with those transfected with control 

mimics (Figure 8D, 8E and Supplementary Figure 5). 

MTT assay showed that the proliferation of PC-3 and 

DU-145 with MAVS mimics was inhibited when 

compared with the control group (Figure 8F). 

 

The effect of up-regulated MAVS on PC-3 and DU-145 

cell metastasis was also investigated by Transwell and 

wound healing assays. Results showed that the number 

of migration and invasion cells with MAVS mimics was 

markedly decreased in the Transwell assay (Figure 9A). 

Wound healing assay confirmed that MAVS over-

expression could suppress the migration ability of PC-3 

and DU-145 cells significantly (Figure 9B). 

Furthermore, Western blotting showed that up-regulated 

MAVS could prominently inhibit Akt and increase 

Capase-3 (Figure 9C and Supplementary Figure 5). 

 

DISCUSSION 
 

Immunotherapy has employed multiple methods to 

manipulate or activate natural human immunity, 

involving the transfusion of specific monoclonal 

antibodies or immune cells as well as the use of cancer 

vaccines and cytokines, with the aim of eliminating 

tumor cells [15]. To date, tumor immunotherapies have 

achieved great promise in various tumors, offering new 

and effective choices for patients [15]. Despite the 

encouraging therapeutic effects of immune checkpoint 

inhibitors against PD-1, PD-L1, and CTLA-4 across 

multiple tumor types, the prognosis of metastatic PCa 

remains unsatisfactory mainly because of drug resistance 

[32]. Meanwhile, bone metastases are the most 

significant complication among advanced PCa patients, 

are ineligible for immunotherapy. Accordingly, further 

exploration into the role of specific molecular functions 

and TIICs in PCa bone metastases may suggest new 

therapy directions for advanced PCa. 

 

In this study, we conducted an integrated analysis of 

differentially expressed and prognosis-related IRGs in 

PCa bone metastasis. First, a total of 209 differentially 

expressed IRGs were filtrated from 2483 IRGs in 

GSE32269, which concluded that 50 were up-regulated 

and 159 were down-regulated. We used GO and KEGG 

enrichment analyses to investigate the function of these 

IRGs in PCa bone metastases. It turned out that  

the down-regulated IRGs affected cytokine-cytokine 

receptor interaction and NK cell-mediated cytotoxicity 

via cytokine and receptor ligand binding, while the up-

regulated IRGs mainly involved T cell leukemia virus 

infection, antigen processing and presentation, PD-L1 

expression, and the PD-1 checkpoint pathway through 

receptor ligand and cytokine binding. In general, down- 

or up-regulated IRGs may function differentially in bone 
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Figure 7. The linkage between FCGR3A and TIICs. (A) Relative FCGR3A expression level in the normal bone marrow and PCa bone 
metastases samples in the training set. (B) The OS analysis of FCGR3A expression in the training and validation sets. (C) Correlation between 
FCGR3A expression and infiltration of M1 macrophages, gamma delta T cells, CD4 memory activated T cells, CD4 memory resting T cells, 
resting dendritic cells, and plasma cells in the training set. (D) Correlation analysis between FCGR3A expression and immune checkpoints of 
CD274 (PD-L1), PDCD1 (PD-1), and CTLA4 in the training set. 
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Figure 8. Up-regulation of MAVS suppressed PCa cells’ proliferation and metastasis. (A) MAVS expression of primary (n=22) and 
bone metastasis (n=20) of PCa in GSE77930. (B) The OS analysis of MAVS expression in the training and validation cohorts. (C) Relative MAVS 
mRNA expression in the PCa cell line. (D, E) Overexpression efficiency of MAVS in PC-3 and DU-145 cells by RT-qPCR and capillary 
immunoblotting. (F) Assessment of proliferation ability in PC-3 and DU-145 cells with MAVS (controls and mimics) via MTT assay. The original 
blots are provided in Supplementary Figure 5. *P <0.05, **P <0.01, *** P < 0.001. 
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Figure 9. Up-regulation of MAVS suppressed PCa cells’ proliferation and metastasis. (A) Evaluation of migration and invasion 
abilities in PC-3 and DU-145 cells with MAVS (control and mimics) via Transwell assay. (B) Confirmation of the inhibitory effect of MAVS 
mimics on PC-3 and DU-145 cells via wound healing assay. (C) Capillary immunoblotting analysis of Akt and Capase-3 in PC-3 cells with MAVS 
(controls and mimics). The original full blots are provided in Supplementary Figure 5. *P <0.05, **P <0.01, *** P < 0.001. 
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metastases of PCa, and they both engage in receptor 

ligand and cytokine binding. Receptor ligand and 

cytokine binding are essential processes in the cancer 

immune response, including PCa [33]. However, the 

molecular mechanisms underlying PCa bone metastases 

still need to be explored. 

 

Cytoscape was then used to screen twelve hub genes: 

FCGR3A, CD8A, CXCR4, VCAM1, HRAS, CCL5, 

MMP9, CXCL12, ITGB2, PTPRC (CD45), TLR2, and 

TNF. CXCR4, VCAM1, MMP9, and CXCL12 are 

involved and play an important role in the peripheral 

blood NK cells of PCa patients [34]. Significantly, 

VCAM1 expression was elevated in vascular 

endothelial cells under the stimulation of IL-17 and 

insulin/IGF1, which strengthened the adhesion between 

PCa cells and vascular endothelial cells and promoted 

prostate cancer metastasis [35]. CCL5 [36], VCAM1, 

and TLR2 [37] have been demonstrated to be associated 

with the tumor immune microenvironment and promote 

PCa cell metastasis. CD8A [38], FCGR3A [39], and 

PTPRC [40] are identified as candidate biomarkers in 

various cancers or important molecules in PCa patients 

with bone metastases. Recent studies have indicated that 

HRAS alterations in patients with PCa lymph node 

metastasis demonstrated worse overall survival and 

disease-free survival [41]. Further studies are still 

needed to determine how these hub genes contribute to 

PCa bone metastases. 

 

For studying the effect of differentially expressed IRGs 

on prognosis, Cox regression analysis was implemented, 

and an OS model was constructed using the training 

cohort. First, MAVS, HSP90AA1, FCGR3A, CTSB, 

FCER1G, and CD4 were selected as characters of the 

OS prediction model. Then ROC analysis verified that 

the OS model was reliable when grouping the patients 

with PCa bone metastases. After that, the OS model was 

further verified by the validation cohort. Additionally, 

OS-prediction nomograms were established to make it 

easier for clinicians to forecast patients’ 1-, 3-, and 5-

year survival rates. These results point to the clinical 

application of the OS prediction model for PCa patients 

with bone metastases. 

 

Recent studies have demonstrated a strong link between 

IRGs and TIICs in several tumor types, notably 

osteosarcoma [16], breast cancer [42], and ovarian 

cancer [43]. Thus, we looked deeper into the proportion 

of TIICs and how the risk score affected TIICs in PCa 

metastatic bone tissues. Results reflected that M0 and 

M2 macrophages were the main TIICs in metastatic 

bone tissues of PCa, and M2 macrophages were 
markedly higher in metastatic bone tissues than in PCa 

in situ. This point can be verified by specific states in 

which macrophages appear in PCa bone metastases 

[44]. Additionally, M1 macrophages, naïve B cells, and 

CD4 memory resting T cells were positively related to 

OS, which inspired us to activate these TIICs and may 

contribute to a better prognosis. Some TIICs also 

correlated with the risk score designated by the OS 

predictive model, which indicated that these IRGs had 

an influence on the proportion of TIICs. Even so, 

further exploration is still needed for these prognosis-

related IRGs. 

 

FCGRs constitute the receptor for the Fc segment of 

immunoglobulin, which is composed of three important 

parts: FCGR I, FCGR II, and FCGR III. The genes 

encoding FCGRs are highly polymorphic and involved 

in various biological processes, including aggregating 

immunoglobulin, phagocytosis, and antibody-dependent 

cellular cytotoxicity [45, 46]. FCGR3A is a crucial 

component of the FCGRs family, and it is restricted  

to being expressed in natural killer (NK) cells  

and monocytes/macrophages [45]. It encodes a trans-

membrane receptor that allows the immune cells to 

recognize and kill targeted cells [47]. Recently, 

researchers have found that FCGR3A is highly 

expressed in pan-cancer, including PCa, and it could be 

an independent biomarker for PCa patients [39, 48]. In 

this study, FCGR3A was identified as a hub gene and 

prognosis-related gene via PPI and Cox regression 

analyses. Further, we found that, when compared to the 

PCa primary tissues, FCGR3A was highly expressed in 

bone metastatic tissues. Interestingly, results suggest 

FCGR3A was markedly positively correlated with M1 

macrophages and T cells but not with NK cells and 

monocytes in PCa bone metastatic tissues, which may 

indicate that NK cells and monocytes were not 

dominant and FCGR3A may be mainly expressed in 

macrophages in bone metastases of PCa. It is also vital 

to note that FCGR3A positively correlates with other 

biomarkers and is a key target for medications like 

rituximab [49]. This study discovered a substantial 

relationship between FCGR3A and immune checkpoints, 

including PD-1, PD-L1, and CTLA4, suggesting 

FCGR3A would be a promising immunotherapy target 

for patients with advanced PCa. 

 

While developing an OS predictive model for patients 

with bone metastasis, we observed that MAVS acted as 

a prognostic protective factor while other IRGs acted as 

prognostic risk factors. The function of MAVS in PCa 

bone metastases remains unknown. Thus, preliminary 

experiments were conducted to explore the effect of 

MAVS on PCa cells. Results revealed that MAVS 

inhibited the proliferation, migration, and invasion of 

PCa cells. Accordingly, MAVS may play an important 
role in PCa progression and can be a practical 

biomarker for predicting the prognosis of PCa patients 

with bone metastases. Previous studies have reported 
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that MAVS can be activated by exogenous virus RNA 

and exert its anti-tumor effect by up-regulating the 

downstream pro-apoptotic genes TRAIL and Noxa to 

induce apoptosis in PCa cells [50, 51]. To verify this, 

we also detected the expression level of apoptosis-

related proteins. The results showed that up-regulated 

MAVS could also promote the expression of apoptosis-

related protein Capase-3 in PC-3 cells. Previous studies 

have illustrated that the PI3K/AKT pathway is 

completely deregulated in advanced PCa [52], and this 

pathway also serves as a key player in the anti-apoptotic 

role [53]. We hypothesized that MAVS could exert its 

role in the PI3K/AKT pathway in PCa cells. The finding 

suggests that activation of MAVS could suppress the 

expression of Akt in PC-3 cells. 

 

Although we used bioinformatics analysis to identify 

hub IRGs and constructed a prognostic prediction 

model, this study is subject to some limitations. First, 

more experimental research should be implemented at 

the cellular level, such as using flow cytometry to 

explore the role of MAVS in the cell cycle and 

apoptosis of PCa. Second, animal models are 

indispensable for researching the etiology of cancer 

bone metastases and facilitating effective treatment 

strategies [54]. Currently, the most commonly used in 

vivo models for studying the bone metastasis of PCa 

include animal models, cell line injection models, and 

bone-implant models [55], while cell line injection 

models are the most commonly used in vivo models 

[55]. Therefore, in a follow-up experiment, cell line 

injection models will be adopted to explore the 

underlying mechanisms of MAVS for PCa bone 

metastasis in vivo. Last but not least, limited to the 

number of samples from patients with PCa bone 

metastasis in the cBioPortal database, this study only 

enrolled 83 patients with bone metastasis; thus, more 

datasets with clinical prognostic information need to be 

analyzed to make the prediction model more accurate. 

 

In summary, we conducted a comprehensive study of 

the role of hub genes in bone metastasis of PCa and 

their potential immunotherapy values. The OS 

prediction model that can accurately predict the OS of 

PCa patients with bone metastasis was established by 

the training cohort and verified via the validation set. 

Six OS-related IRGs and twelve hub genes were 

recognized. FCGR3A and MAVS could be effective 

therapeutic targets in the bone metastasis of PCa. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. The proportion of 22 types of TIICs was compared between primary and bone metastases of PCa in 
the training set. 
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Supplementary Figure 2. The proportions of 22 TIICs in each sample of GSE32269 (A) and GSE77930 (B) are exhibited. 
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Supplementary Figure 3. Correlation analysis between FCGR3A expression and 22 types of TIICs in the training set. 

 

 
 

Supplementary Figure 4. In the TIMER2.0 database, correlations were analyzed between FCGR3A expression and CD274 (PD-
L1), PDCD1 (PD-1), and CTLA4 expression, respectively. 
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Supplementary Figure 5. The full images of the original immunoblots. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 3, 4.  

 

 

Supplementary Table 1. Primer sequences. 

Gene Primer sequences (5’-3’) 

MAVS 
Forward: CAGGCCGAGCCTATCATCTG 

Reverse: GGGCTTTGAGCTAGTTGGCA 

GAPDH 
Forward: CACCATCTTCCAGGAGCGAG 

Reverse: TCACGCCACAGTTTCCCGGA 

 

 

Supplementary Table 2. 209 differentially expressed IRGs in GSE32269. 

 

50 up-regulated IRGs in bone metastasis of prostate cancer. 

CALR PDIA3 HSPA5 HSPA8 HSP90AB1 PSMC5 PSMD8 TMSB15A S100A10 LMBR1L 

COLEC12 ISG15 JUN ITGAV CD81 WNT5A AHNAK TNFRSF10B CLDN4 NDRG1 

PRDX1 CDH1 MIF PPP3CA HRAS MALT1 PIK3R3 SLIT2 PLXNB2 ROBO1 

CSPG5 FAM3C FGF13 INHBB MDK AIMP1 SPP1 STC2 ACVRL1 SDC2 

AR BMPR1A EGFR IL13RA1 IL20RA LGR4 LTBR NR2F6 NRP1 SDC4 

 
159 down-regulated IRGs in bone metastasis of prostate cancer. 

CD1C CD1D CD8A CTSE CTSS FCER1G HLA-A HLA-DRB4 HLA-E CIITA 

MICB CAMP PPBP CXCL1 CXCL12 PF4 ELANE DEFA1 DEFA4 LCN2 

BPI S100A9 S100A8 S100A12 CCR10 TMSB4X PGLYRP1 S100A6 S100P AZU1 

TINAGL1 PF4V1 MMP9 APOBEC3G TLR2 LBP LTF FABP4 TNF CTSG 

PRTN3 MAPK1 CYBB ISG20 TFRC ADIPOQ CHIT1 FCN2 LYZ CCL5 

MAPK14 NOD1 TLR1 MPO DCK KCNH2 RNASE3 IL18 LTB4R APOBEC3A 

MASP2 IL7R BACH2 AQP9 BIRC5 VCAM1 CXCR1 CCL22 CCR5 CXCR4 

PTK2B FGR HCK OLR1 RNASE2 CD79B LYN SYK BTK VAV1 

NFATC IKBKG CD19 PIK3CD INPP5D PTPN6 LILRB3 PLCG2 PRKCB IGHA1 

IGHD IGHG1 IGHM IGKC IGKV1-17 IGLC1 IGLJ3 IGLV1-44 C5 SEMA4A 

C5AR1 CCRL2 CX3CR1 CXCR3 ACKR1 FPR1 FPR2 CXCR2 PLAUR BDNF 

CAT CGB1 GMFG HDGF IL16 IL36A IL1RN IL25 LTB MLN 

OXT RETN TG C3AR1 CRLF3 CSF2RB CSF3R EPOR FGFR1 FLT3 

HTR3B IL10RA IL15RA IL2RB IL17RA IL18RAP IL1R2 MC3R NR2E3 PTGER2 

TNFRSF1B ITGAL ITGB2 FCGR3A FCGR3B CD247 ZAP70 LCP2 FYN CD48 

CD244 GZMB PRF1 CD3D PTPRC RASGRP1 PRKCQ TRAC TRBC1  

 

Supplementary Table 3. Information of 2483 immune-related genes. 

 

Supplementary Table 4. The reference document for the CIBERSORT algorithm. 

 


