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ABSTRACT

Objective: HNRNPA2B1, one of the regulator of m6A methylation, is involved in a wide range of physiological
processes. However, the aberrant expression of HNRNPA2B1 in Breast Cancer (BC) and its clinical significance
still need to be further studied.

Methods: We used related databases to analyze the relationship between HNRNPA2B1 and BC by bioinformatics.
Then, we further detected the expression of HNRNPA2B1 by immunohistochemical method, and analyzed the
relationship between it and the prognosis of breast cancer by COX regression method.

Results: In the study, we found that the expression level of HNRNPA2B1 in breast cancer (BC) was significantly
higher than that in normal breast tissues. In addition, the expression level of HNRNPA2B1 in BC samples was
significantly correlated with clinical indexes such as TNM stage. The Cox analysis revealed that the expression
of HNRNPA2B1 in BC had significant clinical prognostic value. The results of immune infiltration of HNRNPA2B1
showed that there was a significant correlation between HNRNPA2B1 and immune cell subsets.

Conclusion: Our results show that the expression of HNRNPA2B1 in BC has important clinical diagnostic
significance and high expression may be related with poor clinical outcome of BC. This helps to provide us with
a new direction of BC targeted therapy.

INTRODUCTION RNA processing and metabolism, and was also
complicated in cancer development [6]. Methylation
Recently, the incidence of breast cancer has been modification accounts for more than 2/3 of various
increasing minimally. According to the latest World types of RNA modification, and these modifications
Health Organization report, the prevalence of this cancer exist widely in various RNA types [7, 8]. N6-
accounts for the highest proportions among malignancies, methyladenosine (m6A), which happens at the N6
and it also the most prevalent women cancers (24.5%) position of adenosine, is the most common internal
[1]. The etiology of breast cancer was complicated with modification of eukaryotic RNA [9]. HNRNPA2BL is
genetic and environmental events [2]. And the genetic one of the important members of m6A.
background usually determines therapeutic effect,
prognosis of patients, and even the tumorigenesis [3]. HNRNPA2B1, the RNA nuclear binding protein,
mainly involved in RNA splicing, mRNA processing
Our previous studies demonstrated that BRCA1/2 [4] modification, synthesis of telomeres, repair of DNA
and PALB2 [5] mutation increases the risk of breast damage, regulation of gene expression and protein
cancer. The post-transcriptional modification involved translation and other complex biological processes [10].
in a plethora aspects of physiological processes, such as It is suggested that driven cancer initiation through
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interaction with other proteins [11]. It also leads to
tumor progression by regulating the expression of
malignant tumor genes, improving the proliferation and
migration of cancer cells, and inhibiting tumor cell
apoptosis [12].

In this study, we utilized multi-dimensional investigation
to explore the underlying oncogenic mechanism of
HNRNPAZ2B1 in breast cancer, including bioinformatical
analysis and human tissues examination. The results of
this study presented that HNRNPA2B1 is a potential
diagnostic and prognostic marker of breast cancer.

MATERIALS AND METHODS
Data source
Use GDC APl (https://portal.gdc.cancer.gov/) to

download TCGA-BRCA’s RNAseq data in level 3
HTSeq-FPKM format on April 20, 2021, including
1099 cancer  samples and 114 normal
samples. Exclusion criteria: (1) there is no complete
RNA sequencing data in the sample; (2) samples
treatment naive; (3) advanced breast cancer. Finally,
1092 cases of breast cancer and 113 cases of normal
breast tissue were included Supplementary Table 1.

Selection and differential expression analysis of m6A
methylation regulators

According to the related literature [8, 11, 13], we
selected 28 m6A methylation regulators that regulate
RNA methylation, including 10 writers, and 2
erasers, 11 readers. The differential expression
analysis of 28 m6A regulators Supplementary Table 2
in breast cancers and normal controls was compared
by the “limma” package in R, heatmap was assessed
by the “Complex Heatmap” package, and violin map
was drawn by the “ggplot2” package.

Construction and validation of diagnostic score
model by m6A methylation regulator

Lasso regression analysis was used to screen the most
valuable factors from the candidate m6A regulators. All
samples from TCGA were randomly classified into
training group and test group. Lasso regression analysis
was performed with training group to construct the
diagnostic score (DS) model, DS = exp gene (1) x Bl +
exp gene (2) x B2 + ... exp gene (n) x Pn. The
diagnostic signature of the model was validated by
receiver operating characteristic (ROC) curve in test
group and GEO datasets. Meanwhile, the tumor samples
were divided into high-score group and low-score group
by median diagnostic score, to indicated the distinguish
between high score groups and normal controls.

Comprehensive evaluation

STRING is an online platform for searching known
protein-protein interactions and integrating corres-
ponding protein-protein interaction data. STRING was
used to evaluate the PPI network of m6A regulators in
breast cancer.

CCLE covers the gene expression of thousands of tumor
cell lines from dozens of tissues and is a sharp tool for
tumor research [14]. The corresponding CCLE data
were selected and R software (version 4.1.0) was used
to analyze the expression of HNRNPA2B1 in various
tumor cell lines.

The Kaplan-Meier plotter is a commonly used tool for
tumor survival analysis [15, 16]. To evaluate the
prognostic value of HNRNPA2B1 mRNA in breast
cancer. Survival outcomes included OS and DMFS. The
KM plotter algorithm was used to determine the best
cut-off value.

Immunohistochemistry and result judgement

145 cases of breast cancer and 30 cases of para-
cancerous normal tissues archived in the Affiliated
Tumor Hospital of Xinjiang Medical University from
January to December 2016. The clinical features are
shown in Table 1. Related paraffin specimens were
collected. All of them were female, and their average
age is 45.8 + 10.2 years. All of them were operated for
BC for the first time. This experiment was approved by
the Medical Ethics Committee of our hospital
(K-2021054) and agreed by these 145 patients.

Immunohistochemical SP method was used to detect
the expression of HNRNA2B1 protein in breast cancer
and benign breast adenosis. The procedure was
performed strictly according to the instructions of the
kit. Paraffin blocks of breast cancer and benign
adenosis of the breast were cut into 4 um thick tissue,
made into white sections, dewaxed, hydrated, heat-
fixed, sealed, and added with antibodies; The cells
were stained with DAB Kit, dehydrated, transparent,
sealed, and observed under a microscope. The
expression of HNRNA2B1 was mainly localized in the
nucleus. IHC results were interpreted by two
pathologists in a double-blind manner. The percentage
of positive cells and staining intensity were observed:
(1) staining intensity: no positive staining or cell
chromogenic indistinguishability from the surrounding
stroma was 0, light yellow was 1, yellow or brownish
yellow was 2, and brown was 3 and (2) percentage of
positive cells: the number of positive cells <5% as 0,
5~25% as 1, 25~75% as 2, and >75% as 3. The above
two scores were multiplied as the final score of HSPA8
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Table 1. The clinical features of patients.

HNRNPA2B1

Characteristics All cases - OR p value
Low (n =75) High (n =70)

Age 45.8 +10.2 46.3+9.26 452 +11.2 0.99 (0.96; 1.02) 0.5

Menstruation

No 104 (71.7%) 51 (68.0%) 53 (75.7%) ]

Menopause 41 (28.3%) 24 (32.0%) 17 (24.3%) 068 (0.32;1.42) 0.397
ER 38.2+26.7 52.1+22.0 23.4+23.3 0.95 (0.93; 0.97) <0.001
PR 18.8+19.3 27.8+19.2 9.20+14.2 0.94 (0.91; 0.96) <0.001
HER2

No 112 (77.2%) 62 (82.7%) 50 (71.4%) )

Yes 33 (22.8%) 13 (17.3%) 20 (28.6%) 189 (0.86; 4.29) 0.157
Ki67 34.1+£18.9 23.3+14.0 458+ 16.4 1.10 (1.07; 1.14) <0.001
Lymph node metastasis

No 60 (41.4%) 48 (64.0%) 12 (17.1%) )

Yes 85 (58.6%) 27 (36.0%) 58 (82.9%) 8.38 (393, 19.1) <0.001
AJCC stage

I 27 (18.6%) 23 (30.7%) 4 (5.71%) Ref.

I 89 (61.4%) 45 (60.0%) 44 (62.9%) 5.40 (1.87; 20.1) <0.001

Il 29 (20.0%) 7 (9.33%) 22 (31.4%) 16.5 (4.56; 74.8)

Histologic grade

1 11 (7.59%) 9 (12.0%) 2 (2.86%) Ref.

2 94 (64.8%) 60 (80.0%) 34 (48.6%) 2.40 (0.56; 18.1) <0.001

3 40 (27.6%) 6 (8.00%) 34 (48.6%) 22.1 (4.36; 190)

protein expression: 0 as negative, >1 as positive, 1~3 as
low expression, and 4~12 as high expression.

HNRNPA2B1 and immune response

Based on the RNAseq data of TCGA-BRCA, the
correlation between HNRNPA2B1 and immune
infiltration was analyzed. TIMER2.0 gene module was
used to study the relationship of HNRNPA2B1 and
tumor-Infiltrating Immune Cells [17]. The immune
infiltration was calculated by using the ssGSEA
algorithm provided in the GSVA package [18] and
referring to the 24 kinds of immune cells provided by
the Immunity article [19], and the analysis results were
visualized with ggplot2 package. Then, we assessed the
correlations between the expression of HNRNPA2B1
and immunoregulators (including immunoinhibitors,
immunostimulator, and MHC molecules) by using
TISIDB database (http://cis.hku.hk/TISIDB/).

Statistical analysis

All statistical analyses were performed using R software
(version 4.0.5). The code script was supplied
(Supplementary File 1). The Wilcoxon’s test was
applied to contrast the expression of m6A regulators
between cancer and normal tissues. Lasso regression

was performed by the “glmnet” package in R. The
chi-square test was used to compare the relationship
between m6A and Immune Response. Wilcoxon signed
rank test was utilized for comparison the IHC score
between tumor and the normal counterparts. And the
log-rank test was employed to compare the survival
probabilities between the low and high expression of
target gene. The validation of the diagnostic models was
assessed by receiver operating characteristic (ROC)
curve. For all the analyses, a P-value less than 0.05 was
regarded as statistically significant. The abbreviation
list was shown in Supplementary Table 3.

RESULTS

Amplification, deletion, and mutation analysis of
mM6A regulators

In this study, firstly, we compared the genetic changes
of top 10 m6A regulators in pan cancer (Figure 1A). We
found that 28 m6A regulatory factors had different
degrees of genetic change (Figure 1B). In this CNV
module, we calculate the percentage of CNV, CNV
correlation with mRNA of gene in each cancer type.
The CNV was divided into 2 subtypes, heterozygous
CNV and homozygous CNV, which represent the
occurrence of CNV on only one chromosome or both
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Figure 1. Amplification, deletion, and mutation analysis of m6A regulators. (A) The waterfall plot showed a mutation
distribution of top 10 mutated genes and a SNV classification of SNV types in pan-cancer (B) Methylation module explores the
differential methylation between tumor and paired normal, the correlation between methylation with expression and the OS affe cted
by methylation level for selected cancer types. (C, D) Heterozygous/Homozygous CNV profile show you percentage of
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each cancer. Only genes with >5% CNV in cancers will show corresponding points on the figure (Abbreviations: Hete Amp: heterozygous
amplification; Hete Del: heterozygous deletion; Homo Amp: homozygous amplification; Homo Del: homozygous deletion; None: no
CNV). (E) cBioPortal focus on homozygous CNV in the present.
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two. Percentage statistic based on subtypes of CNV
used GISTIC processed CNV data, and calculation of
correlation used raw CNV data and mRNA RSEM data
(Figure 1C, 1D). And we also found amplification,
deletion and mutation of most m6A regulators in pan
cancer, with KIAA1429 having the highest incidence
(17%) (Figure 1E).

The expression of M6A regulators was different in
breast cancer

In order to evaluate the role and expression differences
of m6A in breast cancer, we conducted a comparative
study on the expression of 28 m6A regulators in breast
cancer by using TCGA database. As shown in Figure
2A, we found differences in 20 m6A regulators
expression in breast cancer. Using these differentially
expressed m6A factors, we further analyzed and found
that HNRNPA2B1, HNRNPC, YTHDF1, PRRCRA
expression are upregulated. FTO expression is reduced
in breast cancer (Figure 2B).

Construction of diagnostic signature based on m6A
regulators

We included m6A regulators with significant
differential expression into the Lasso-logistic model and
analyzed their expression in TCGA-BRCA samples to
screen candidate molecules with potential diagnostic
value for breast cancer. The samples were randomly
divided into train (Tumor 843 and normal 78) group and
test (Tumor 362 and normal 35) group. The model was
constructed by training group, and three potential m6A
regulators were screened out in lasso regression analysis
(Figure 3A, 3B). We constructed a diagnostic signature
of Dbreast cancer: DS (Diagnostic Score) =

A | group
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expKIAA1429 x 0.0015761555 + expHNRNPA2B1 x
0.0017949063 + expMETTL16 x —0.0015140717 +
expHNRNPC x 0.0036807689 +  expMETTL14 x
—0.0021035106 + expZC3H13 x —0.0009608338 +
expWTAP x —0.0026646221 + expYTHDF1 x
0.0018432470 + expYTHDC1 x —0.0109597582 +
expFTO x —0.0070609102.

We evaluated the diagnostic predictive value of DS.
The DS scores of high and low groups were
significantly different from normal control group
(Figure 3D). According to the DS score, Figure 3C
shows the distribution of DS in normal and tumor. The
DS score showed a high diagnostic predictive value
(AUC = 0.978, Figure 3E).

We used STRING website (https://string-db.org/) and
CytoScape software (National Resource for Network
Biology, USA) to analyze the protein-protein interactions
of the 10 m6A regulators (Figure 3F). Protein-protein
interaction (PPI) analysis showed that HNRNPA2B1 was
the key regulator. At the same time, The DS scores of
the 10 key factors screened by the above method were
plotted as a bar graph, showing that HNRNPA2B1
expression was most significantly different (Figure 3G).

Pan-cancer analysis of HNRNPA2B1

By analyzing the expression of HNRNPA2B1 in the
majority of tumor cells in the CCLE database
Supplementary Table 4, it was confirmed that
HNRNPA2B1 expression was significantly higher in
breast cancer (Figure 4A). HNRNPA2B1 was expressed
at higher levels in breast cancer cell lines (e.g., COLO824,
MDAMB468, DU4475) than in other BC molecular
subtypes (e.g. HCC2218, SUM185PE) (Figure 4B).
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Figure 2. Comparison of the expression of m6A regulators in breast cancer and normal controls. (A) There were showed
expression of m6A regulators in normal and tumor sample by heatmap (Red, high expression; Blue, low expression). (B) Vio-plot showed
the significant differential expression of 20 m6A regulator genes in normal and tumor sample. The asterisks represented the statistical

p value ("P<0.05; "*P<0.01; "*P<0.001).
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Immunohistochemical of

HNRNPA2B1

(IHC)  expression

We analyzed the differences in HNRNPA2B1

was mainly found in the nucleus and partially in
the cytoplasm. The positive criterion was obvious
brown particles found under the microscope (Figure
5A). HNRNPA2B1 protein was highly expressed in

expression between the immunohistochemical results cancer tissues compared with normal tissues
of 30 normal and 40 breast cancers. HNRNPA2B1 (Figure 5B).
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Figure 3. Construction of diagnostic Signature based on m6A regulators. The binomial deviance curve was plotted versus log (),
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Correlation analysis HNRNPA2B and clinical

parameters

The expression of HNRNPA2B1 among Caucasian,
Asian, and African American races, clinical stage,
lymph node stage, and tumor subtypes, TP53-mutation
were further analyzed. Notably, HNRNPA2B1
expression was increased to varying degrees in various
clinical data of breast cancer patients (Figure 6A—6F).

HNRNPAZ2B1 and prognosis analysis

Online database, showing a poor prognosis with high
HNRNPA2B1 expression. Kaplan-Meier Plotter online
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©

@

HNRNPA2B1 expression
Log2(TPM+1)

~

website, OS results, showed that 2465 cases of high
expression/2464 cases of low expression, the prognosis
of high expression was poor, and the difference was
statistically significant Figure 7A. Compared with the
low expression group, the high expression group
increased the risk of death by 1.2 times. At the same
time, 5 data sets of GEO database were found, DMFS:
Distant metastasis-free survival rates all showed poor
prognosis with high expression Figure 7B—7F.

Cox analysis of HNRNPA2B1 expression

High HNRNPA2B1 expression is associated with poor
prognosis of breast cancer, P < 0.001 (Figure 8A, 8B).
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Figure 4. The expression analysis of HNRNPA2B1. (A) HNRNPA2B1 expression in pan-cancer cells. (B) HNRNPA2B1 expression in

breast cancer cells. p value was calculated Kruskal-Wallis H Test.
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Figure 5. IHC expression of HNRNPA2B1. IHC expression of HNRNPA2B1 in normal and tumor tissues (A), and box-plot showed IHC
expression score between tumor and normal (B). (P <0.05; **P<0.01; **"P < 0.001).
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By Cox analysis, HNRNPA2B1 was a risk factor for the
prognosis of breast cancer (Figure 8C-8F).

HNRNPAZ2B1 and immune

Based on TIMER database, we examined the correlation
between m6A regulators and the level of immune cell
infiltration in breast cancer. HNRNPA2B1 (Figure 9A)

was associated with purity (cor = 0.203, p = 1.11e-10),
B cell (cor = 0.169, p = 1.01e-07), CD8+ T cell (cor =
0.14, p = 1.22e-05), CD4+ T cell (cor = 0.152, p =
2.22e-06), Neutrophil (cor = 0.173, p = 8.32e-08),
Dendritic Cell (cor = 0.135, p = 2.87e-05). As shown in
Figure 9B, HNRNPA2BP1 was positively correlated
with Th2 and T helper cells, and negatively correlated
with pDC, iDC, T cell and B cell.
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To further explore the effects of m6A regulators on
tumor immune response, we calculated the correlation
between the expression of m6A regulators and immune
regulators. As shown in Figure 9C, the expression level
of HNRNPA2B1 was negatively correlated with
immunoinhibitors, immunostimulators, and MHC
molecules expressions in breast cancer.

DISCUSSION

Breast cancer is heterogeneous, and genetic
epigenetic factors play an indispensable role in
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messenger RNAs as well as in non-coding RNAs. m6A limited to individual molecules [10]. HNRNPA2B1 by

methylation regulatory protein plays crucial part in recognition and binding Specific RNA substrates and
nearly all vital bioprocesses [22]. The dysregulation of DNA motifs are involved in RNA transcription,
m6A is involved in the occurrence and progression of splicing, stability, and translation, and regulate the
cancer [23]. A great number of studies revealed that expression of a variety of genes [28]. Elevated
dysregulated m6A methylation modulators were closely HNRNPAZ2B1 levels in tumors accelerate pre-mRNA
related to the occurrence and development of tumors in processing through RNA binding, suggesting a critical
different types of cancer [9, 24, 25]. m6A methylation role for HNRNPA2B1 in cancer development.
regulatory proteins are important regulatory factors and HNRNPAZ2B1 is highly expressed in multiple types of
play a key part in tumorigenesis and development [26], tumor  tissues. Heterogeneous  ribonucleoprotein
its expression level often directly determines the (HNRNP) A2B1 has two isoforms, A2 and B1, which
pathological process of the tumor [27]. So it provides are the products of alternative splicing of the precursor
more possibilities for early diagnosis and treatment of MRNA of the same gene. As an RNA-binding protein,
cancer [13, 14]. Previous studies on the correlation HNRNPAZ2B1 is involved in carcinogenesis through
between m6A methylation and breast cancer are mostly its interaction with other proteins. HNRNPA2B1 is
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Figure 9. Immune infiltration analysis with HNRNPA2BP1. (A) Examine the correlation between HNRNPA2BP1 and the level of
immune cell infiltration in breast cancer based on TIMER database. (B) The correlation analysis with 24 immune cells and HNRNPA2BP1
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upregulated in multiple tumors and affects their
biological processes, and is involved in various cellular
processes such as cancer cell metabolism, migration,
invasion, proliferation, survival and apoptosis by RNA
processing, splicing, trafficking, and the stability of
many downstream target genes. HNRNPAZ2BL1 is highly
expressed in many cancers, such as pancreatic, breast
and prostate cancers, and malignant gliomas, where
HNRNPA2B1 plays an important role in carcino-
genesis, invasion and metastasis.

In recent years, several studies have revealed the role of
m6A regulators in breast cancer. Studies have shown
that m6A “eraser” FTO is significantly up-regulated in
breast cancer, which can promote breast cancer cell
proliferation, colony formation and reduce apoptosis
[29]. We systematically analyzed the expression of
28 m6A regulators in breast carcinoma, established a
diagnostic prediction model by lasso regression
analysis, and well validate with GEO datasets to predict
the risk of breast cancer.

We found that there were essential differences in the
expression of the m6A regulators between breast cancer
and normal controls. The relationship between m6A
regulators and Breast Cancer have been reported in
studies [20, 27, 29]. It was found that the abnormal
expression of HNRNPA2B1 was considerably related to
the occurrence of breast cancer by lasso regression
analysis. The diagnostic model has been constructed
with the three m6A regulators, and the diagnostic value
of Breast Cancer was well validated In TCGA (AUC =
0.964), GEO datasets also verified the potential
signature of HNRNPA2B1 in the diagnosis of Breast
Cancer. m6A dynamically regulates the modification
level through the activities of methyltransferase and
demethylase, and recruits RNA-binding protein to
complete biological functions. The m6A reader
HNRNPAZ2B1 directly bind to m6A modification site
and regulate alternative splicing and pri-miRNA
processing [30]. HNRNPA2B1 promotes the
progression of Esophageal Cancer by up-regulating
ACLY and ACC1 [31], contributes to epithelial-to-
mesenchymal transition by MST1R-Akt axis in head
and neck cancer [32], promotes apoptosis by regulating
Lin28B in ovarian cancer [33], In breast cancer,
HNRNPA2BL1 is regulated by MIR-204 and affects the
invasion and metastasis of breast cancer cells [34].

The protection of harmful pathogens depends on the
activation of the immune system, which relies on the
strict regulation of gene expression. Recently, RNA-
modified N6-methyladenosine (m6A) has been found
to play a vital role in this regulation. m6A controls

responses, and determination of cell fate [35]. FTO
plays critical roles in cancer stem cell maintenance and
immune evasion [36]. In this study, it was found that
HNRNPA2B1 was significantly correlated with the
level of immune cell infiltration in breast cancer, as
well as with the Stromal Score, ESTIMATE Score and
immune Score. Through TISIDB database, we found
that the three m6A regulators had closely connection
with immunoinhibitors, immunostimulators and MHC
molecules in breast cancer. It is also suggested that the
occurrence of breast cancer is related to the immune
disorder caused by the abnormal expression of m6A.

CONCLUSION

Systematic analysis of 28 m6a regulators identified
10 key genes and constructed a diagnostic score.
We found that HNRNPA2B1 was significantly
differentially expressed in breast cancer and correlated
with breast cancer prognosis and immune infiltration.
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SUPPLEMENTARY MATERIALS
Supplementary Materials

Supplementary File 1.

i N
data<-read.table(file="TCGA_BRCA_1222samples_FPKM.txt" ,header = TRUE,sep = "\t")

#1808 MBA HOGIEA

M6A<-
c("METTL3""METTL14","METTL16","WTAP","ZC3H13","RBM15","RBM15B","KIAA1429","CBLL1","ZCCHC4"
,"FTO""ALKBH5","YTHDC1","YTHDC2","YTHDF1","YTHDF2","YTHDF3","HNRNPA2B1","HNRNPC","RBMX"
V' IGF2BP1" " IGF2BP2","IGF2BP3","FMR1","SRSF2""ELAVL1","LRPPRC","PRRC2A" "ELF3","SampleType","Vita
I","Followup™)

### LI MBA
data<-data[data$GeneName%in%m6A,]
head(data[,1:10])

data<-data[,-c(2,3,4)]
rownames(data)<-data$GeneName
data<-data[,-1]

ittt G2l

group<-data[1,]

group<-group[,-c(1)]

group<-as.data.frame(t(group))

group$group<-ifelse(group$SampleType=="Solid Tissue Normal","Normal"," Tumor")
group$sample<-rownames(group)

group<-group[,-c(1)]

sum(group$group=="Normal")

i 2 AT

library(limma)

dim(group)

BRCA_T_P_des<-as.factor(group$group)#4ti534H charater ¥4t factor

## FJEEY design R
designl<-model.matrix(~0+factor(BRCA_T_P_des),levels=levels(BRCA_T P _des))
colnames(designl)<-c("P", "T")

rownames(designl) <- group$sample

setequal(colnames(data),rownames(designl))
sapply(data,list)

class(data[,1222])

dim(data)

for (i in 1:1222) {data[,i]<-as.numeric(data[,i])}

fit_subl <- ImFit(data, designl)

cont.matrix_subl <- makeContrasts(T-P, levels=designl)#Designing Contrast Matrix for group Differentiation
fit2_subl <- contrasts.fit(fit_subl, cont.matrix_subl)

fit3_subl <- eBayes(fit2_subl)
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allGenes_subl <- topTable(fit3_subl,number=Inf)
dim(allGenes_subl)
colnames(allGenes_subl)

diff_m6A<-subset(allGenes_subl,adj.P.Val <0.05)
write.table(allGenes_subl,file="m6A_diff.txt" ,sep="\t") #{~ 17
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Supplementary Tables

Please browse Full Text version to see the data of Supplementary Tables 1 and 4.

Supplementary Table 1. The clinical information of BRCA in TCGA database.

Supplementary Table 2. The differentially expressed genes of 28 m6A regulators in breast cancers.

logFC AveExpr t P.Value adj.P.val B

ELAVL1 —2253.9 5999.799 —10.3422 4.42E-24 1.24E-22 —4.53448
HNRNPA2B1 —16651.9 46840.95 —9.72001 1.49E-21 2.08E-20 —4.54111
HNRNPC —8674.39 28268.85 —9.11379 3.21E-19 3.00E-18 —4.54729
FTO 3697.178 4789.598 8.87077 2.56E-18 1.79E-17 —4.54968
YTHDF1 —1933.6 5154.266 —6.98663 4.64E-12 2.60E-11 —4.56649
PRRC2A —5579.43 21267.07 —6.37175 2.65E-10 1.24E-09 —4.57126
SRSF2 —1947.59 8291.673 —5.90573 4.56E-09 1.82E-08 —4.57461
KIAA1429 —2750.08 8268.055 —4.62723 4.10E-06 1.44E-05 —4.58263
METTL16 527.5715 2539.268 4.530494 6.47E-06 2.01E-05 —4.58316
ZC3H13 1515.896 6110.634 4.221042 2.61E-05 7.32E-05 —4.5848
METTL14 327.0938 1920.021 3.724829 0.000204 0.00052 —4.58719
RBM15 —137.619 855.7333 —3.54791 0.000403 0.000941 —4.58798
ZCCHC4 91.72787 560.0438 3.519403 0.000449 0.000966 —4.5881
LRPPRC —2388.43 13240.86 —3.32246 0.000919 0.001777 —4.58892
FMR1 —646.323 3732.624 —3.31247 0.000952 0.001777 —4.58896
YTHDF2 —688.938 6016.962 —2.81331 0.004983 0.00872 —4.59084
WTAP 595.766 5206.888 2.667432 0.007745 0.012757 —4.59133
RBM15B —484.218 5392.743 —2.63439 0.008536 0.013279 —4.59144
IGF2BP3 —58.6925 63.97688 —2.31847 0.02059 0.030343 —4.59241
YTHDC1 515.9573 5896.497 2.253596 0.0244 0.03416 —4.59259
YTHDF3 —696.151 6453.121 -1.91027 0.056334 0.075112 —4.59348
CBLL1 —229.844 2518.998 -1.81126 0.070348 0.089534 —4.5937
IGF2BP2 156.2446 461.379 1.567333 0.117298 0.142798 —4.59421
YTHDC2 —242.96 2933.263 -1.47107 0.141532 0.16512 —4.5944
IGF2BP1 —47.6794 47.29232 —1.33748 0.181316 0.203074 —4.59463
ALKBH5 —280.059 6332.652 —1.07442 0.282847 0.304605 —4.59502
RBMX —269.398 11703.21 —0.63531 0.525346 0.544803 —4.59549
METTL3 —3.84894 2251.994 —0.0375 0.970094 0.970094 —4.59574

Supplementary Table 3. The abbreviation list.
mM6A N6-methyladenosine
HNRNPA2B1 Heterogeneous nuclear ribonucleoprotein A2/B1
TCGA The Cancer Genome Atlas (https://cancergenome.nih.gov/)
BRCA Breast Cancer
GEO Gene Expression Omnibus
DEG Differentially expressed gene
KM Kaplan-Meier plotter (https://kmplot.com/analysis/)
ROC Receiver operating characteristic
CNV Copy number variations
IHC Immunohistochemical
(OF] Overall survival
DMFS Distant metastasis-free survival rates

Supplementary Table 4. The information of cell lines from CCLE database.
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