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ABSTRACT 
 

This study aimed to investigate the common molecular mechanism between obesity and papillary thyroid 
cancer (PTC), the most common pathological type of thyroid cancer. In this study, we obtained gene expression 
datasets for obesity (GSE151839) and PTC (GSE33630) from the Gene Expression Omnibus (GEO). We used the 
Perl program and R software to identify differentially expressed genes (DEGs) and common genes, perform GO 
function and KEGG pathway enrichment analysis, construct a protein-protein interaction (PPI) network, identify 
hub genes, and perform transcription factors (TFs) analysis. After undergoing validation in external datasets 
and in vitro experiments, common targets for both diseases were ultimately identified. A total of 23 genes that 
were differentially expressed (DEGs) between obesity and papillary thyroid carcinoma (PTC) were identified in 
our study. Among these DEGs, 17 genes were up-regulated while 6 genes were down-regulated. Then the top 
ten key genes were identified from the PPI network using cytoHubba and MCODE plug-in. Further evidence 
from external datasets revealed that MMP9, MNDA, TNC, and CHIT1 were identified as hub genes for both 
diseases. The study utilized Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining 
(TRRUST) to perform an enrichment analysis of TFs. This analysis identified ELF4 and STAT3 as common TFs for 
both diseases. Additionally, in vitro experiments were conducted to further analyze the clinical significance and 
biological functions of these TFs. The identification and investigation of hub genes and their corresponding TFs 
that regulate abnormalities in obesity and PTC can enhance our comprehension of the underlying connection 
between these two diseases, thus leading to the development of novel diagnostic approaches. 
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INTRODUCTION 
 

According to the World Health Organization (WHO), 

obesity is characterized by an abnormal or excessive 

accumulation of fat that can cause health problems. It is 

considered a chronic metabolic disease caused by a 

combination of factors and is often linked to weight 

gain and metabolic abnormalities. The commonly used 

international standard for measuring obesity is the body 

mass index (BMI). A BMI of 25.0-29.9 kg/m2 is 

considered overweight, while a BMI of ≥30.0 kg/m2 is 

considered obese [1]. According to research, one-third 

of the global population is either overweight or obese, 

resulting in 3.4 million deaths annually due to obesity-

related complications [2]. Furthermore, studies have 

shown that obesity is a significant risk factor for various 

types of cancer, such as colorectal, postmenopausal 

breast, endometrial, thyroid, esophageal, pancreatic, and 

liver cancer [3]. In a meta-analysis of 21 studies 

comprising 12,199 cases of thyroid cancer, overweight 

individuals had a 25% increased risk of thyroid cancer 

while obese individuals had a 55% increased risk 

compared to individuals with normal weight [4].  

 

Thyroid cancer (TC) is a rapidly growing malignancy 

[5], representing 3.8% of all diagnosed tumors annually 

[6]. The most prevalent pathological type is papillary 

thyroid cancer (PTC), accounting for 86% of all thyroid 

cancers [7]. Although obesity has been identified as a 

high-risk factor for PTC, the molecular mechanisms 

linking obesity and PTC remain unclear [8]. The MAPK 

pathway is believed to be the main pathway in the 

development of thyroid cancer, specifically PTC. This 

pathway is responsible for a variety of secondary 

molecular alterations that work together to enhance the 

oncogenic activity of the pathway, ultimately leading to 

the upregulation of several oncogenic proteins [9]. 

Obesity is characterized by chronic inflammation, 

which can disrupt the normal functioning of mito-

chondria and lead to an overproduction of reactive 

oxygen species (ROS). These ROS can then activate the 

MAPK pathway, ultimately promoting the development 

and invasion of PTC [10, 11]. 

 

This study aims to accurately understand the 

relationship between obesity and PTC by identifying 

their potential molecular regulatory mechanisms and 

targets through a combination of bioinformatics and 

experimental validation. The datasets of obesity and 

PTC were downloaded from the Gene Expression 

Omnibus (GEO), and the differentially expressed genes 

(DEGs) of both were screened to obtain the common 

DEGs of both. These results offer novel insights into the 

shared pathogenesis of obesity and PTC. To identify the 

targets linking obesity and PTC, we conducted GO and 

KEGG enrichment analysis, protein-protein interaction 

(PPI) network analysis, and transcription factors (TFs) 

enrichment analysis. Experimental validation was then 

performed to confirm the identified targets. Our study 

ultimately yielded a list of key genes and TFs that can 

aid in predicting and diagnosing patients with both 

diseases. 

 

RESULTS 
 

Identification of DEGs 

 

In GSE151839, a total of 197 DEGs were identified, 

consisting of 136 up-regulated genes and 61 down-

regulated genes. These DEGs were visualized in both 

the heatmap and volcano map (Figure 1A, 1B). 

Likewise, in GSE33630, a total of 762 DEGs were 

identified, with 436 up-regulated genes and 326 down-

regulated genes, which were also visualized in both the 

heatmap and volcano map (Figure 1C, 1D). By taking 

the intersection of the two groups of DEGs, a total of 23 

common DEGs were obtained, with 17 being up-

regulated (Figure 1E) and 6 being down-regulated 

(Figure 1F). 

 

GO and KEGG functional enrichment analysis for 

DEGs 

 

The results of GO analysis show that DEGs are 

primarily involved in three categories: biological 

process (BP), cellular component (CC), and molecular 

function (MF). Specifically, the BP category indicates 

that the DEGs are mainly involved in ossification, 

amino sugar catabolic process, and response to 

macrophage colony-stimulating factor. In the MF 

category, the DEGs are mainly associated with cell 

membrane-related functions, such as collagen-

containing extracellular matrix, endoplasmic reticulum 

lumen, and secretory granule lumen. According to the 

CC analysis, the enrichment of DEGs was significant in 

extracellular matrix structural constituent, heparin 

binding, and glycosaminoglycan binding, as shown in 

Figure 2A. The top 20 GO enrichment results were 

further visualized using GO circle plots in Figure 2B. 

The KEGG pathway analysis revealed that these genes 

were mainly involved in ECM-receptor interaction, 

focal adhesion, and human papillomavirus infection 

pathways. The findings indicate that these pathways 

could be pivotal in the development and progression of 

obesity and PTC (Figure 2C, 2D). 

 

The construction of PPI network, module analysis 

and identification of hub genes 

 

To analyze the PPI networks of common DEGs, we 

utilized STRING and Cytoscape, as depicted in Figure 

3A. The PPI network was composed of 22 nodes and 39 
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Figure 1. Identification of DEGs. (A) Heatmap of DEGs in GSE151839. (B) Volcano plot of DEGs in GSE151839. (C) Heatmap of DEGs in 
GSE33630. (D) Volcano plot of DEGs in GSE33630. (E) Venn diagram shown the 17 up-regulated DEGs between GSE151839 and GSE33630 
datasets. (F) Venn diagram shown the 6 down-regulated DEGs between GSE151839 and GSE33630 datasets. 
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edges. We further used the MCODE plug-in in 

Cytoscape to decompose the PPI network and obtain 2 

tightly connected modules, as shown in Figure 3B. 

Additionally, we employed the cytoHubba plug-in of 

Cytoscape to identify the top 10 hub genes based on 

degree-ranking, which were MMP9, CXCL8, SPP1, 

CHI3L1, CHIT1, COMP, COL11A1, TNC, MNDA, 

and DCSTAMP. 

 

In this study, the 10 hub genes and 20 interacting genes 

were subjected to functional analysis and a co-expression 

network was constructed using the GeneMania database. 

The 10 hub genes are represented in the inner circle, while 

the outer circle represents the genes that are connected to 

the hub genes. Figure 3C demonstrates that these genes 

are primarily enriched in amino sugar catabolic process, 

glucosamine-containing compound metabolic process, 

amino sugar metabolic process, aminoglycan catabolic 

process, hydrolase activity, hydrolyzing O-glycosyl 

compounds, hydrolase activity (hydrolyzing O-glycosyl 

compounds), and hydrolase activity (acting on glycosyl 

bonds). The GO enrichment analysis results showed that 

hub genes were predominantly enriched in ossification, 

extracellular matrix structural constituent, amino sugar 

catabolic process, among other processes (Figure 3D). 

This was further supported by the results of KEGG 

enrichment analysis, which also showed significant 

enrichment of these genes in pathways related to ECM-

receptor interaction, focal adhesion, bladder cancer, etc. 

(Figure 3E). 

 

Validation of hub genes expression in external 

datasets 

 

To validate the reliability of Hub Genes, we selected 

additional datasets related to obesity and PTC. In the 

 

 
 

Figure 2. Biological functional enrichment research of DEGs. (A) GO enrichment analysis of DEGs. (B) GO circle plots showed the 

enrichment results of the top 20 GOs. (C, D) KEGG enrichment analysis of DEGs. 
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GSE44000 dataset, we observed a significant 

upregulation of MNDA, TNC, CHIT1, and MMP9 in 

obese tissues (Figure 4A–4D). In the GSE3467 dataset, 

we found that the expression of MMP9, MNDA, TNC, 

CHI3L1, CHIT1, COL11A1, COMP, CXCL8, and 

DCSTAMP was significantly upregulated in PTC as 

compared to normal tissues (Figure 4E–4M). In 

conclusion, these four genes (MNDA, TNC, CHIT1, 

MMP9) may serve as a link between obesity and PTC 

and should be further examined in subsequent analyses. 

P < 0.001 was denoted as “***”, P < 0.01 as “**”, P < 

0.05 as “*”, and P > 0.05 as “ns”. 

 

Identification and validation of TFs 

 

This study utilized the TRRUST database to predict the 

TFs in DEGs. A total of 16 TFs were identified to play 

a role in DEGs (Figure 5A). These TFs were further 

validated in both obesity (GSE151839) and PTC 

(GSE33630) datasets. Figure 5B–5E depicted that both 

datasets had high expression levels of ELF4 and 

STAT3, which were responsible for regulating three 

hub genes (MMP9, CXCL8, CHI3L1). P < 0.001 was 

denoted as “***”, P < 0.01 as “**”, P < 0.05 as “*”, and 

P > 0.05 as “ns”. 

 

Experimental validation 

 

The analysis of the patient’s serum revealed high 

expression levels of MNDA, TNC, CHIT1, and MMP9 

in patients with obesity combined with PTC, as shown 

in Figure 6A–6D. Moreover, the expression of these 

genes was found to be higher in tumor tissues compared 

to normal tissues, as depicted in Figure 6E–6I. P < 

0.001 was denoted as “***”, P < 0.01 as “**”, P < 0.05 

as “*”, and P > 0.05 as “ns”. 

 

 

 

Figure 3. The construction of PPI network, module analysis and identification of hub genes. (A) The PPI network of common 

DEGs. (B) Two tightly connected modules. (C) The 10 hub genes and 20 interacting genes were functionally analyzed by the GeneMania 
database. (D) GO enrichment analysis of hub genes. (E) KEGG enrichment analysis of hub genes.  
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DISCUSSION 
 

The prevalence of obesity is increasing globally due to 

improvements in living standards and changes in 

lifestyle. According to the World Health Organization 

(WHO), in 2014 there were over 1.9 billion overweight 

individuals worldwide, with more than 600 million 

being classified as obese. Among adults aged 18 and 

above, the proportion of overweight and obese 

individuals was 39% and 13%, respectively [12]. Over 

the past decade, TC has become one of the most 

prevalent malignancies of the endocrine system, with its 

incidence increasing annually [13]. Accounting for 

about 70% of TC cases, PTC is the most common 

histological type [14]. Recently, obesity and TC have 

become hot topics in the field of endocrinology. 

Adequate evidence has shown that obesity is a risk 

factor for thirteen malignant tumors, including thyroid 

cancer [15]. Research has shown that as BMI increases, 

the malignancy of tumors in PTC patients also 

increases. This is evident pathologically through an 

increased risk of tumor invasion and is strongly 

correlated with both tumor size and stage. Patients with 

higher BMI tend to have larger tumor volumes and are 

more likely to be diagnosed with stage III or IV PTC 

[16, 17]. 

 

Based on current clinical and basic research, there are 

several potential mechanisms through which obesity 

may promote the onset and progression of PTC. These 

mechanisms involve hyperinsulinemia, heightened 

aromatase activity, abnormal secretion of obesity 

factors, chronic inflammatory response, immune 

response, and oxidative stress [18, 19]. This study 

utilized bioinformatics and experimental validation to 

identify the common DEGs and TFs between obesity 

 

 
 

Figure 4. Validation of hub genes expression in external datasets. (A–D) The expression of MNDA, TNC, CHIT1, and MMP9 in 

GSE44000 dataset ((A) P < 0.05, (B) P < 0.01, (C) P < 0.05, (D) P < 0.01). (E–M) The expression of MMP9, MNDA, TNC, CHI3L1, CHIT1, COL11A1, 
COMP, CXCL8, and DCSTAMP in GSE3467 dataset ((E) P < 0.05, (F) P < 0.01, (G) P < 0.001, (H) P < 0.001, (I) P < 0.01, (J) P < 0.05, (K) P < 0.001, 
(L) P < 0.05, (M) P < 0.001). P < 0.001 was denoted as “***”, P < 0.01 as “**”, P < 0.05 as “*”, and P > 0.05 as “ns”. 
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and PTC for the first time. This discovery has 

significant implications as it can aid in the development 

of new biomarkers and effective therapeutic targets for 

both diseases, ultimately improving patient prognosis. 

 

This study utilized bioinformatics to identify hub genes 

associated with both obesity and PTC, and conducted a 

comprehensive analysis to elucidate the potential 

molecular mechanisms linking the two conditions. The 

analysis of the GSE151839 and GSE33630 datasets 

revealed 23 common DEGs, comprising of 17 up-

regulated and 6 down-regulated genes. The subsequent 

GO and KEGG enrichment analysis indicated that these 

genes were predominantly enriched in inflammation-

related pathways. To construct the PPI network, we 

selected 10 central genes (MMP9, CXCL8, SPP1, 

CHI3L1, CHIT1, COMP, COL11A1, TNC, MNDA, 

DCSTAMP) that have a close relationship to both 

obesity and PTC. We then verified their diagnostic 

efficiency in external datasets (P < 0.05). Our results 

indicate that in the GSE44000 obesity-related dataset, 

the expression levels of MNDA, TNC, CHIT1, and 

MMP9 exhibited significant differences. The GSE3467 

PTC-related dataset revealed significant differences in 

the expression of MMP9, MNDA, TNC, CHI3L1, 

CHIT1, COL11A1, COMP, CXCL8, and DCSTAMP. 

Based on our findings, it can be concluded that these 

four genes (MNDA, TNC, CHIT1, and MMP9) may 

have important biological roles in preventing and 

treating obesity and PTC. Furthermore, our analysis of 

the TRRUST database identified 16 TFs that play a role 

in the differentially expressed genes. Further validation 

revealed that in obesity and PTC, only ELF4 and 

STAT3 showed high expression levels. These genes 

were found to regulate three hub genes, namely MMP9, 

CXCL8, and CHI3L1. Among these hub genes, MMP9 

 

 
 

Figure 5. Identification and validation of TFs. (A) The TFs regulatory network. Red represents the hub genes and yellow represents the 
TFs. (B, C) The expression of ELF4 and STAT3 in GSE151839 dataset ((B) P < 0.05, (C) P < 0.001). (D, E) The expression of ELF4 and STAT3 in 
GSE33630 dataset ((D) P < 0.001, (E) P < 0.001). P < 0.001 was denoted as “***”, P < 0.01 as “**”, P < 0.05 as “*”, and P > 0.05 as “ns”. 
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Figure 6. Experimental validation of hub genes. (A–D) MNDA, TNC, CHIT1 and MMP9 were found to be highly expressed in patients’ 
serum with obesity combined with PTC ((A) P < 0.01, (B) P < 0.05, (C) P < 0.01, (D) P < 0.001). (E–I) The expression of four hub genes in the 
patient tissues and the normal tissues (F) patient1: P < 0.01, patient2: P < 0.01, patient3: P < 0.01; (G) patient1: P < 0.01, patient2: P < 0.05, 
patient3: P < 0.05; (H) patient1: P < 0.01, patient2: P < 0.01, patient3: P < 0.05; (I) patient1: P < 0.01, patient2: P < 0.01, patient3: P < 0.05). P < 
0.001 was denoted as “***”, P < 0.01 as “**”, P < 0.05 as “*”, and P > 0.05 as “ns”. 
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was the only one that was differentially expressed and 

regulated by TFs in both obesity and PTC datasets. 

 

MMP9 is a member of the matrix metalloprotein 

(MMP) family and is located on chromosome 

20q11.1~13.1, spanning 26~27kbp with 13 exons and  

9 introns [20]. It plays a crucial role in various 

physiological processes including embryonic develop-

ment, reproduction, vascular formation, skeletal 

development, wound healing, cell migration, learning, 

and memory. Additionally, it is involved in pathological 

processes associated with extracellular matrix 

degradation [21]. Multiple studies have demonstrated 

that MMP9 is notably increased in malignant tumors, 

including colon cancer, gastric cancer, lung cancer, 

breast cancer, and cervical cancer. As a result, it has 

become a potential target for anti-tumor drugs [22–26]. 

In a study conducted by Maryam et al. in Iran, 60 

patients with PTC and 30 patients with benign 

multinodular goiter (MNG) were compared, and it was 

found that the levels of MMP9 protein in tumor tissues 

were significantly higher than in adjacent non-tumor 

tissues (P < 0.001). Compared to patients with benign 

multinodular goiter, those with papillary thyroid cancer 

(PTC) showed a significant increase (P = 0.004) in 

MMP9 levels [27]. Additionally, research by Marecko 

et al. suggests that MMP9 not only serves as a 

biomarker for PTC, but also plays a role in promoting 

the migration and invasion of thyroid cancer cells [28]. 

Taken together, these studies suggest that MMP9 is a 

biomarker for TC and may contribute to its high 

aggressiveness and poor prognosis. Schaschkow et al. 

reported an enhanced cytoplasmic expression of STAT3 

in severely obese individuals with diabetes. Further-

more, a meta-analysis incorporating eight studies, 

encompassing 448 thyroid cancer patients and 227 

controls, revealed a significant correlation between 

STAT3 protein expression and susceptibility to thyroid 

cancer, as well as clinical-pathological characteristics. 

These findings suggest that STAT3 may serve as a 

potential predictive factor for the clinical progression of 

thyroid cancer [29, 30]. To the best of our knowledge, 

the literature has not reported on the role of ELF4 in 

thyroid cancer and obese patients. Investigating the 

involvement of ELF4 in these contexts represents a 

future research direction for our study. 

 

In this study, we investigated the expression patterns 

and regulatory mechanisms of a specific diagnostic 

gene. While our research has provided valuable insights 

into the gene’s characteristics, it is important to 

acknowledge certain limitations that should be 

considered. One major limitation of our study is the 
absence of experimental validation for the predicted 

TFs corresponding to the gene. Although we described 

these factors based on computational analysis and 

existing literature, their direct binding to the gene was 

not experimentally verified. Consequently, alternative 

interpretations and variations in their regulatory 

interactions remain possible. Future research should 

prioritize experimental validation of the predicted TFs. 

This experimental validation will provide robust 

evidence and enhance our understanding of the gene’s 

regulatory network. 

 

This study presents the first exploration of the common 

hub genes and TFs of obesity and PTC using 

bioinformatics and experimental validation. The 

expression of four common hub genes (MNDA, TNC, 

CHIT1, and MMP9) in both patients’ serum and tissues 

was validated in vitro. Further research is needed to 

investigate the mechanisms between these hub genes 

and TFs. 

 

CONCLUSIONS 
 

In this study, we constructed a co-expression network 

between obesity and PTC and identified four common 

hub genes (MNDA, TNC, CHIT1, MMP9) and two 

common TFs (ELF4, STAT3), which might provide 

new diagnostic and therapeutic strategies for obesity-

related PTC.  

 

MATERIALS AND METHODS 
 

The flow chart of this study is shown in Figure 7. 

 

Dataset collection and process 

 

Gene expression profiles were searched in the GEO 

database using the keywords “obesity” and “papillary 

thyroid carcinoma”, respectively. Inclusion criteria for 

the datasets: (1) gene expression analysis must include 

both case and control groups; (2) the tissue used for 

sequencing is whole blood from humans; (3) raw or 

processed data must be available for re-analysis. Four 

datasets (GSE151839, GSE44000, GSE33630, 

GSE3467) were ultimately downloaded. GSE151839 

(obesity: 10 cases; control: 10 cases) was executed on 

the GPL570 platform and GSE44000 (obesity: 7 cases; 

control: 7 cases) was executed on the GPL6480 

platform. GSE33630 (PTC: 49 cases; control: 45 cases) 

and GSE3467 (PTC: 9 cases; control: 9 cases) were 

both executed on the GPL570 platform. GSE151839 

and GSE33630 were used as the training group, while 

the external validation group consisted of GSE44000 

and GSE3467. 

 

For gene expression profiling, the series matrix files of 
the dataset underwent log2 transformation. Then, the 

probes were matched to their respective gene symbols 

using the annotation files of the corresponding 
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platforms. This resulted in gene matrices with column 

names for genes and row names for samples, which 

were used for subsequent analysis. 

 

Identification of DEGs 

 

DEGs between the case and control groups for obesity 

and PTC were obtained using the “limma” package in 

R software (version 4.2.2). Cutoff conditions for 

adjusted P < 0.05 and |logFC| > 1 were set. DEGs were 

identified separately for each dataset, and the common 

DEGs were identified using a Venn diagram. 

(https://goodcalculators.com/venn-diagram-maker/).  

 

Functional enrichment analysis of DEGs 

 

To analyze the shared differentially expressed genes, we 

used the R package ‘Clusterprofiler’ to perform GO 

functional enrichment analysis and KEGG pathway 

enrichment analysis. For the GO functional enrichment 

analysis, we divided the analysis into three parts: gene 

ontology process (BP), cellular component (CC), and 

molecular function (MF). We visualized the GO term 

using the ‘GOplot’ package, and adjusted P value  

< 0.05 was considered significant.  

 

The construction of PPI network and identification 

of hub genes 

 

To observe the common functional characteristics of 

hub genes for DEGs, we established a PPI network 

using STRING (https://cn.string-db.org/), a search tool 

for interacting genes. The minimum required interaction 

score was set at a low confidence level of 0.150. The 

resulting network was visualized using Cytoscape 3.9.1 

(https://cytoscape.org). We utilized the MCODE plug-in 

within Cytoscape to filter and identify functional 

modules within the PPI network. Our degree cutoff was 

set to 2, node score cutoff to 0.2, k-core to 2, and max 

depth to 100. The topological parameters of each node 

within the PPI network were then calculated using the 

cytoHubba plug-in, and we filtered the top 10 hub genes 

 

 
 

Figure 7. Flow chart of the study. 

https://goodcalculators.com/venn-diagram-maker/
https://cn.string-db.org/
https://cytoscape.org/
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Table 1. Primer list. 

Gene Primers 

MNDA 
Forward: 5’- ACTGACATCGGAAGCAAGAGGG -3’ 

Reverse: 5’- TGCAGATGTGCTGGCTCCTGAG -3’ 

TNC 
Forward: 5’- ATGTCCTCCTGACAGCCGAGAA -3’ 

Reverse: 5’- AGTCACGGTGAGGTTTTCCAGC -3’ 

CHIT1  
Forward: 5’- AGCACCACTGAGTGGAATGACG -3’ 

Reverse: 5’- TGAGTGCCGAAATTCCAGCCTC -3’ 

MMP9 
Forward: 5’- GCCACTACTGTGCCTTTGAGTC -3’ 

Reverse: 5’- CCCTCAGAGAATCGCCAGTACT -3’ 

GAPDH 
Forward: 5’- GTCTCCTCTGACTTCAACAGCG -3’ 

Reverse: 5’- ACCACCCTGTTGCTGTAGCCAA -3’ 

 

based on degree. To construct a gene-gene interaction 

network of 10 hub genes and their neighboring genes, 

we utilized the GeneMania online database 

(http://www.genemania.org). Subsequently, we 

performed GO functional enrichment analysis and 

KEGG pathway enrichment analysis for the 10 hub 

genes by employing the “Clusterprofiler” package.  

 

Validation of hub genes expression in external datasets 

 

To investigate the potential use of the ten hub genes as 

biomarkers for patients with obesity and PTC, we will 

verify their mRNA expression in two datasets, GSE44000 

(obesity: 7 cases; control: 7cases) and GSE3467 (PTC: 9 

cases; control:9 cases). The mRNA expression data will 

be visualized through box plots, which will be created 

using the ‘ggpubr’ package in R software. 

 

Identification and validation of TFs 

 

The transcriptional regulatory relationships unraveled by 

sentence-based text mining (TRRUST) database version 

2.0 (https://www.grnpedia.org/trrust/) is a human and 

mouse transcriptional regulatory network that contains 

information on TFs and their regulated hub genes. The 

TRRUST database was utilized in our study to analyze 

TFs linked to hub genes. Subsequently, we created a 

gene-TFs network through Cytoscape. To verify the 

expression of TFs in GSE151839 and GSE33630 

datasets, we utilized the ‘ggpubr’ package in R software. 

 

Patients and samples 

 

25 pairs of matched PTC and adjacent normal tissues 

were collected during the initial operation of obese 

patients with thyroid cancer in this study 

(Supplementary Table 1). Prior to surgery, 5 ml of 
blood samples were collected from all fasting subjects 

and placed directly into tubes containing sodium citrate. 

The blood samples were then centrifuged at 4,000 × g 

for 10 minutes at 4° C. All serum and tissue samples 

were snap-frozen in liquid nitrogen and stored at -80° C 

until extraction. All tissue specimens were confirmed 

through postoperative histopathological examination. 

The Ethics Committee of the First Affiliated Hospital of 

Jinan University approved all procedures involving 

human subjects in this study. Additionally, all patients 

provided informed consent prior to participation. 

 

RT−qPCR  

 

In this study, we extracted total RNA from the serum of 

patients with obesity combined with PTC. Subsequently, 

the RNA was reverse-transcribed into complementary 

DNA (cDNA) employing the SuperScript VILO cDNA 

Kit from Thermo Fisher Scientific, Inc. We analyzed the 

results using the 2-ΔΔCt technique and the primers used 

are listed in Table 1. 

 

Immunohistochemistry (IHC) 

 

The tissues were initially stored in 4% para-

formaldehyde for 15 minutes, then soaked in paraffin 

and cut into 4 μm sections. Antigens were extracted 

after the process of dewaxing and dehydration. Next, 

the sections were fixed with 3% hydrogen peroxide and 

blocked with 5% bovine serum albumin (BSA) for 15 

minutes at room temperature. The anti-MNDA 

(ab188566; 1:300; Abcam), anti-TNC (#93029; 1:500; 

CST), anti-CHIT1 (PA5-109528; 1:100; Invitrogen) and 

anti-MMP9 (#13667; 1:400; CST) were then incubated 

overnight at 4° C. Finally, after 3 to 15 minutes of color 

development with chromogen, the sections were 

photographed under a light microscope.  

 

Statistical analysis 

 
Bioinformatics analysis was conducted using the Perl 

(version 5.30.0) program and R software (version 

4.2.2). SPSS 25.0 software and GraphPad Prism 8.0.1 

http://www.genemania.org/
https://www.grnpedia.org/trrust/
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were utilized for statistical analyses. Differences were 

assessed using One-way analysis of variance (ANOVA) 

and Student’s t-test. Each experiment was indepen-

dently repeated three times. A significance level of P < 

0.05 was used for all statistical analyses. 
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SUPPLEMENTARY MATERIALS 

 

 

 

Supplementary Table 
 

Supplementary Table 1. Patients’ characteristics. 

Patient ID Age (year) Sex  Height (cm) Weight (kg) BMI (kg/m2) Pathological stage Clinical stage 

1 23 Female 158.3 88.3 '35.2369957328517 T1bN1M0 I 

2 29 Female 160.3 93.6 '36.4257752833213 T1aN1M0 I 

3 32 Male 180.3 105.3 '32.3919368993995 T2N1M1 II 

4 57 Female 165.7 97.3 '35.4378873628785 T4aN1M0 III 

5 25 Male 171.4 144.8 '49.2886504032275 T1bN1M0 I 

6 58 Male 180.7 137.4 '42.0794861280105 T3N1M0 II 

7 59 Male 174.2 134.8 '44.4215379870057 T4aN1M0 III 

8 50 Female 150.7 86.7 '38.1761908263538 T3aN1M1 II 

9 62 Female 155.6 108.2 '44.6897654654674 T4bN1M0 IVA 

10 34 Male 171.2 104.6 '35.6881605380383 T2N1M0 I 

11 66 Female 166.1 90.2 '32.6939408558636 T4aN1M0 III 

12 37 Female 162.3 123.4 '46.8466047031106 T1bN1M1 II 

13 26 Male 170.8 101.8 '34.8957105013465 T2N1M1 II 

14 63 Female 158.7 91.1 '36.1713338010593 T4bN1M1 IVB 

15 56 Female 158.1 82 '32.8057606915774 T4aN1M0 III 

16 27 Male 180.6 137.1 '42.0341203003646 T1aN1M0 I 

17 27 Female 157.4 93.4 '37.699658846342 T1aN0M0 I 

18 55 Male 184.5 130.5 '38.336968735541 T4bN1M0 IVA 

19 44 Female 168 84.2 '29.8327664399093 T4aN1M1 II 

20 19 Male 166.2 91 '32.9442294018921 T1aN0M0 I 

21 27 Female 162.8 111.6 '42.1071059891699 T3bN1M1 II 

22 34 Female 156.6 82.4 '33.6003418753232 T1aN0M0 I 

23 35 Female 163.6 101.2 '37.8106300177546 T3aN1M1 II 

24 21 Male 174.7 111.5 '36.5333129751583 T1aN0M0 I 

25 23 Female 166.2 94.1 '34.0665053485499 T2N1M0 I 

 


