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INTRODUCTION 
 

Neurosurgery frequently encounters intracranial glioma 

as the prevailing malignant tumor of primary origin [1]. 

The prognosis and survival of patients are significantly 

inversely correlated with the degree of malignancy [2]. 

This negative correlation is obviously in primary high-

grade glioma (Grade III-IV) patients [3]. Nevertheless, 

the management of glioma remains highly restricted 

given the present state of technology, and a total 

recovery is still unattainable. The treatment approach 

for glioma primarily involves surgical intervention, with 

radiation therapy and chemotherapy serving as 

adjunctive treatments [4]. Nevertheless, as a result of 

the distinctive positioning and invasive growth 

attributes of brain gliomas, the treatment results 

frequently prove to be dissatisfactory [4]. Glioma, with 

its high rates of recurrence and mortality, poses a 

significant challenge in terms of prognosis. Certainly, 

an enhanced comprehension of the cause and 

development of glioma would aid in the prevention  

and advancement of innovative targeted therapies, 

ultimately enhancing the prognosis of patients [5]. 

 

The m7G gene is responsible for producing the enzyme 

N7-methylguanosine methyltransferase (N7-MTase), 
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ABSTRACT 
 

Based on 29 m7G regulators, glioma patients were categorized into three groups using data from the Chinese 
Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets. Distinct characteristics were 
observed in immune cell infiltration, functional enrichment, and clinical prognosis for every glioma subtype. 
Analyzing the differentially expressed genes (DEGs) confirmed the distinction among the three m7G clusters. A 
predictive tool for overall survival (OS) in high-grade glioma patients was developed and confirmed, consisting 
of 13 m7G regulators forming a prognostic signature. Elevated m7G levels were found to be associated with 
increased tumor mutation burden and immune activation, indicating a tumor microenvironment characterized 
by inflammation and a lower overall survival rate. In contrast, reduced m7G scores were linked to a deficiency 
in immune infiltration, a low burden of mutations, and a non-inflamed phenotype, suggesting a more positive 
clinical outlook. Additionally, the m7G risk scores were found to impact chemotherapy sensitivity. The m7G 
predictive pattern shows potential as a marker for the overall survival of patients with high-grade glioma. By 
significantly improving our comprehension of the functional role of m7G regulators in the advancement of 
glioma and their impact on clinical results, this study offers valuable perspectives for precision therapy in the 
management of high-grade glioma. 
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which has a vital function in RNA molecules. The 

formation of methylated guanosine (m7G) in RNA is 

catalyzed by N7-MTase [6]. Methylated guanosine, a 

type of RNA modification, is crucial for preserving 

RNA stability, contributing to protein synthesis, and 

controlling gene expression in healthy cells. Extensive 

research has been conducted on the role of the m7G 

gene in tumors [7]. Studies indicate that the activity of 

the m7G gene in cancerous cells is strongly linked to 

the occurrence, progression, and treatment results of 

tumors [8]. Methylated guanosine formation is crucial 

for regulating gene expression, with the m7G gene 

playing a significant part. RNA stability can be affected 

by the presence of methylated guanosine, which can 

also hinder protein synthesis and regulate the interaction 

of transcription factors [9]. Modifications can 

potentially affect crucial mechanisms in cancerous cells, 

including growth, infiltration, and spread [10]. 

Dysregulated tumor cell proliferation and survival may 

occur due to abnormal expression of the m7G gene. In 

particular, the excessive expression of the m7G gene 

could enhance the proliferation and division of cancer 

cells, while decreasing the rates of programmed cell 

death, thus facilitating the progression of tumors [11]. 

Several studies have suggested that the excessive 

expression of the m7G gene is linked to the resistance 

of tumors towards therapy [12–15]. Additional 

investigation into the regulatory mechanisms and roles 

of the m7G gene could potentially enhance the 

advancement of innovative approaches for tumor 

therapy and enhance prognosis. This study extensively 

investigated the biological role and predictive 

significance of m7G RNA methylation regulators  

in advanced glioma, potentially offering novel 

perspectives for personalized therapy of high-grade 

glioma. 

 

MATERIALS AND METHODS 
 

Patients and samples 

 

The training and validation datasets were provided by 

the Chinese Glioma Genome Atlas (CGGA, 

cgga.org.cn, The CGGA database contains clinical and 

sequencing data of over 2,000 brain tumor samples 

from Chinese cohorts, and is equipped with a user-

friendly web application for data storage and 

exploration.) and the Cancer Genome Atlas (TCGA, 

https://portal.gdc.cancer.gov/). Prior to performing 

further analyses, the normalization of both datasets took 

place, and samples lacking follow-up or clinical data 

were eliminated. Gliomas classified as WHO III and IV 

were of high grade [16]. After conducting a thorough 

analysis of the literature, we discovered 29 genes 

responsible for the regulation of m7G RNA methylation 

(Supplementary Table 1). As the information was 

obtained from publicly accessible databases, there was 

no need for ethical approval. 

 

Bioinformatic analyses 

 

Molecular clustering and differentially expression 

genes 

Consensus analysis was performed using the 

“Consensus Clustering” package to identify potential 

molecular subtypes [17]. To decrease the data 

dimension, the utilization of Principal component 

analysis (PCA) was implemented [18]. DEGs were 

identified through differential expression analysis using 

the R software package ‘limma’. 

 

GSEA and GSVA analyses 

 

GSEA v4.2.3 was utilized to perform the gene set 

enrichment analysis (GSEA) [19]. Gene-set variation 

analysis (GSVA) was conducted using the R package 

called ‘GSVA’ [20]. 

 

Development and verification of a predictive model 

 

To build and validate a model, as well as determine the 

final number of genes, we employed the LASSO 

regression, which is known as the least absolute 

shrinkage and selection operator [21]. Multivariate Cox 

regression modeling was subsequently conducted.  

The risk score for each sample was calculated using  

the following formula: coef1 multiplied by 

geneExpression1, plus coef (2) multiplied by gene 

Expression (2), and so on, up to coef (n) multiplied by 

gene Expression [22, 23]. Based on the median risk 

score value, the glioma patients were categorized into 

either a high-risk or low-risk group. Survival curves of 

these groups were compared using Kaplan-Meier (KM) 

analyses, and their ability to predict was assessed using 

a receiver operating characteristic curve (ROC). To 

establish a risk classification, the utilization of principal 

component analysis (PCA) was implemented. An 

individual risk assessment nomograph was generated. 

Furthermore, a comparison was made between the high-

risk and low-risk groups in terms of the tumor 

microenvironment and levels of immune infiltration. 

The correlation between signature genes and drug IC50 

values was evaluated. 

 

Statistical analysis 

 

Differences in categorical variables were examined 

using a Chi-squared test, whereas the t-test was 

employed to compare means. Multiple groups were 
compared using one-way ANOVA, and Dunnett's 

method was used for making multiple comparisons. To 

examine the associations between two continuous 

https://portal.gdc.cancer.gov/
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variables, a Spearman correlation analysis was 

conducted. The hazard ratio (HR) and its 95% 

confidence intervals (CIs) were calculated using both 

univariate and multivariate Cox regression. Statistical 

analyses were conducted using R version 4.0.1, and 

statistical significance was reported with a significance 

level of p < 0.05. 

 

Data availability statement 

 

The public dataset used in this study can be found in 

CGGA (http://www.cgga.org.cn/) and TCGA 

(https://portal.gdc.cancer.gov/). 

RESULTS 
 

Characteristics at the molecular level of regulators 

of m7G in high-grade glioma 

 

The entire study flow was depicted in Figure 1. High-

grade glioma exhibited high expression levels of twelve 

genes involved in m7G regulation (METTL1, WDR4, 

NSUN2, DCPS, NUDT4B, CYFIP1, NCBP1, NCBP2, 

EIF3D, EIF4A1, LSM1, and SNUPN), while eight 

genes (NUDT10, NUDT11, NUDT3, EIF4E1B, 

EIF4E3, LARP1, EIF4G3, and NCBP2L) showed low 

expression levels. The remaining genes did not display 

 

 
 

Figure 1. The flow chart of the study. 

http://www.cgga.org.cn/
https://portal.gdc.cancer.gov/
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significant differences between tumor and normal 

samples (Figure 2A, 2B). The levels of gene alterations 

in m7G genes were below 1%, encompassing CYFIP1, 

GEMIN5, EIF4G3, IFIT5, NSUN2, AGO2, and NCBP2 

(as shown in Figure 2C). The frequency of gain was 

higher than loss for eight genes, while the frequency of 

gain for 21 genes was lower (Figure 2D). The 

distribution of these genes occurred on chromosomes 2, 

3, 5, 6, 8, 9, 10, 11, 12, 15, 17, 21, 22, and X can be 

observed in Figure 2E. 

 

 
 

Figure 2. The landscape of m7G regulators in glioma. (A) Expression levels of m7G regulators between tumor and normal samples. 

(B) PCA of m7G regulators between tumor and normal samples. (C) The gene alterations of m7G regulators in advanced glioma. (D, E) Copy 
number variation frequencies and chromosomal location of m7G regulators in high-grade glioma. 
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m7G clusters and their characteristics in high-grade 

glioma 

 

Using 29 m7G genes, we conducted a consensus matrix 

analysis and acquired three m7G clusters (Cluster 1, 

Cluster 2, and Cluster 3, as shown in Figure 3A). 

According to the individual political action committee 

(PAC), three evident distributions were observed (as 

shown in Figure 3B). Additionally, the overall survival 

(OS) displayed notable disparities, as depicted by the 

 

 
 

Figure 3. Clustering of advanced glioma based on m7G regulators. (A) Consensus clustering identified three subtypes. (B) PCA 

showed three distinct clusters. (C) Kaplan-Meier analysis indicated significant differences in overall survival among three clusters. (D–F) 
GSVA indicated the enriched pathways in three m7G clusters. (G–J) The differences in ESTIMAT score, stromal score, immune score, and 
tumor purity across three m7G clusters. (K, L) Comparisons of immune cell infiltrations level function among three m7G clusters. (M) 
Comparisons of Immune checkpoint-related genes expression among three m7G clusters. 
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Kaplan-Meier curve (Figure 3C). According to the 

GSVA results, cluster 1 showed significant enrichment 

in oxidative phosphorylation, arachidonic acid 

metabolism, xenobiotic metabolism by cytochrome 

P450, and cytochrome P450 drug metabolism. Cluster 

2, on the other hand, exhibited enrichment in ubiquitin-

mediated proteolysis, progesterone-mediated oocyte 

maturation, oocyte meiosis, adherents’ junction, ERBB 

signaling pathway, and TGF beta signaling pathway. 

Lastly, cluster 3 demonstrated enrichment in lysosome, 

GPI anchor biosynthesis, protein export, pyrimidine 

metabolism, spliceosome, lysosome, and glycolate and 

dicarboxylate metabolism (Figure 3D–3F). 

 

Immune status in three m7G clusters 

 

Initially, we assessed the tumor microenvironment in 

three m7G clusters. Significant variations were 

observed in the ESTIMATE, stromal, immune scores, 

and tumor purity. Cluster 1 exhibited elevated 

ESTIMATE, stromal, and immune scores in comparison 

to cluster 2 (Figure 3G–3I). Additionally, a similar trend 

was observed in tumor purity (Figure 3J). Moreover, 

notable variations in immune function exist among the 

three clusters. Cluster A exhibited elevated levels of 

APC co-stimulation, CCR, check-point, cytolytic 

activity, inflammation-promoting, T cell co-stimulation 

and inhibition, as well as type I IFN response. Cluster C 

exhibited greater APC co-inhibition, T cell co-

inhibition, and type II IFN response, with cluster B 

ranking second (Figure 3K). The levels of infiltration by 

immune cells exhibited a comparable pattern across the 

three clusters (Figure 3L). Cluster 1 exhibited elevated 

levels of aDCx, mastocytes, NK cells, pDCs, Tfh, and 

Th1 cells. Cluster 2 exhibited elevated levels of CD8+ T 

cells and neutrophils. Cluster 3 exhibited elevated levels 

of B cells, dendritic cells (DCs), immature dendritic 

cells (iDCs), T helper cells, Th2 cells, and regulatory T 

cells (Treg). After assessing the genes related to 

immune check points, we noticed significant variations 

among the three clusters for all genes. Cluster 2 

exhibited the greatest level of CD274 expression, while 

cluster 1 followed closely. On the other hand, cluster 3 

displayed the lowest expression level. Additionally, the 

remaining genes demonstrated comparable patterns 

(Figure 3M). 

 

Detecting gene clusters by comparing the overlap of 

differentially expressed genes within m7G clusters 

 

Among the three m7G clusters, we identified genes that 

were expressed differently (DGEs), resulting in a total 

of 440 DGEs (Figure 4A). The GO function enrichment 
analysis showed that these differentially expressed 

genes (DGEs) were enriched in the detoxification of 

copper ions, stress response to copper ions, cellular 

response to copper ions, response to zinc ions, cellular 

response to zinc ions, and detoxification of inorganic 

compounds (Figure 4B). According to the KEGG 

pathway, these genes were found to be enriched in 

protein processing in the endoplasmic reticulum, 

proteasome, focal adhesion, oxidative phosphorylation, 

phagosome, human papillomavirus infection, and cell 

cycle, as shown in Figure 4C. 

 

By utilizing the 440 DGEs, we successfully conducted 

the clustering process and acquired three gene clusters 

(as depicted in Figure 4D). Figure 4E showed that the 

PCA revealed three distinct components. According to 

Figure 4F, the Kaplan-Meier curve showed that gene 

cluster 2 had the lowest overall survival (OS), followed 

by gene cluster 3, in comparison to gene cluster 1. 

Prognosis outcomes, m7G clusters, age, and 1p19q 

codeletion status exhibited distinct distributions in the 

clinical characteristics, as depicted in Figure 4G, 4H. 

 

In addition, we assessed the tumor microenvironment 

and levels of immune infiltration. No significant 

variations were observed in ESTIMATE, stromal, and 

tumor purity across gene clusters 1, 2, and 3. However, 

a notable distinction was found in the immune score, 

with gene cluster 1 exhibiting a higher immune score 

compared to gene cluster 2 (Figure 4I–4L). Three gene 

clusters also exhibited notable variations in immune 

function and immune cells. Cluster 1 exhibited elevated 

levels of aDCs, mastocytes, natural killer cells, pDCs, 

Tfh, Th1 lymphocytes, and tumor-infiltrating 

lymphocytes. In Figure 4M, gene cluster 2 exhibited 

elevated levels of CD8+ T cells and neutrophils, while 

gene cluster 3 showed increased levels of B cells, DCs, 

iDCs, T helper cells, Th2 cells, and Treg. The highest 

check-point, cytolytic activity, T cell co-stimulation, 

and type I IFN response were observed in gene cluster 

1, while gene cluster 3 had a slightly lower level, and 

gene cluster 2 exhibited the lowest immune function. In 

Figure 4N, gene cluster 3 exhibited the greatest APC 

co-inhibition, CCR, T cell co-inhibition, and type II IFN 

response, while gene cluster 2 followed closely behind. 

On the other hand, gene cluster 1 displayed the lowest 

levels. All genes exhibited significant differences in the 

immune check-related gene, as depicted in Figure 4O. 

 

Creation and verification of a forecasting model 

relying on m7G regulators 

 

Initially, we conducted the univariate Cox regression 

analysis and discovered 17 m7G genes that are linked to 

prognosis. In high-grade glioma (Figure 5A), EIF4E1B 

and NUDT11 acted as protective factors for OS, while 
the remaining factors posed a risk for Spatterwares, we 

conducted the LASSO regression analysis and 

discovered 13 genes that were incorporated into the 
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Figure 4. Identification of gene clusters-based DEGs among three m7G clusters. (A) Venn diagram indicating 440 DEGs among 

three m7G clusters. (B, C) GO and KEGG enrichment analyses based on 440 DEGs. (D) Consensus matrix identified the number of gene 
clustering. (E) PCA indicated three distinct gene clusters. (F) Kaplan-Meier analysis indicated significant differences in overall survival among 
three gene clusters. (G) Correlations of expression profiling, m7G clusters and gene clusters and clinical features. (H) Ggalluvial analysis 
indicated changes from m7G clusters to survival outcomes. (I–L) Differences in stromal, immune, estimate, and tumor purity. (M, N) 
Comparisons of immune cell infiltrations and immune functions. (O) Comparisons of immune checkpoint-related genes among three gene 
clusters. 
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ultimate prognostic model (AGO2, CYFIP1, DCP2, 

EIF4E1B, EIF4G3, GEMIN5, METTL1, NCBP1, 

NUDT11, NUDT16, SNUPN, WDR4, LARP1, (Figure 

5B, 5C, Supplementary Table 2). Within the CGGA 

training cohort, we computed the risk score and 

subsequently categorized the participants into groups of 

high and low risk. According to the Kaplan-Meier plot, the 

high-risk category exhibited a less favorable prognosis 

 

 
 

Figure 5. Development and validation of m7G regulator-based prognostic signatures. (A) Forest plot of univariate cox regression 

in CGGA. (B, C) Parameter selection tuning by cross-validation using LASSO regression. (D, E) Kaplan-Meier curves of risk groups and 
distribution of risk score and patients in CGGA. (F) Display of two components by PCA in CGGA. (G) Kaplan-Meier curves of two risk groups 
and distribution of risk score and patients in TCGA. (H, I) Display of two components by PCA in TCGA. (J, K) GO and KEGG enrichment 
analyses based on 440 DEGs between high- and low-risk groups. 
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compared to the low-risk category (Figure 5D, 5E). 

Additionally, PCA demonstrated distinct distributions 

for two different individuals (Figure 5F). Significant 

and comparable findings were also observed in the 

TCGA validation cohort (Figure 5G–5I). 

 

In order to examine the disparity in function, we 

acquired the differentially expressed genes (DEGs) 

between the high-risk and low-risk groups 

(Supplementary Table 3). The enrichment analysis 

using the GO function revealed that the high-risk groups 

showed enrichment in regionalization, regulation of the 

process that specifies patterns in the postsynaptic 

membrane potential, GABA-ergic synapse, GABA-A 

receptor complex, and activity (Figure 5J). 

Additionally, the KEGG analysis indicated that the 

high-risk group exhibited enrichment in GABAergic 

synapse, retrograde endocannabinoid signaling, 

interaction between neuroactive ligand receptors, and 

interaction between cytokines and cytokine receptors 

(Figure 5K). 

 

The immune landscape and tumor micro-

environment of various risk categories 

 

The findings from our study showed that the high-risk 

group exhibited elevated ESTAMTE score, stromal 

score, and immune score, whereas the tumor purity was 

lower in the high-risk group (Figure 6A–6D). These 

results imply the presence of distinct tumor 

microenvironments in the high-risk and low-risk 

groups. In the high-risk group, there was a notable 

increase in the immune function (APC co-inhibition, 

APC c0-stimulation, CCR, Check-point, cytolytic 

activity, HLA, inflammation promoting, MHC class I, 

Para inflammation, T cell co-inhibition and stimulation, 

type I and II IFN response, Figure 6E). Likewise, the 

high-risk group exhibited elevated levels of immune 

cells such as aDCs, B cells, CD8+T cells, iDCs, 

macrophages, neutrophils, pDCs, T helper cells, Th1 

and Th2 cells, and TIL Treg, compared to the low-risk 

group (Figure 6F). The correlation analysis showed that 

the risk score had a positive correlation with T cells 

gamma delta, M2 and M0 macrophages, and neutrophils 

(Figure 6G–6J). Conversely, the risk score exhibited an 

inverse correlation with B cells memory, B cells naïve, 

NK cell activated, and monocytes (as shown in Figure 

6K–6N). The immune-regulated checkpoint genes 

showed a significant increase in the high-risk category 

(Figure 6O), suggesting a heightened immune status 

within this group. 

 

Independent analysis and risk assessment 

 

To confirm the autonomy of the risk score in predicting 

outcomes, both univariate and multivariate cox 

regression analyses were conducted. The risk score in 

the training group showed a significant association with 

overall survival (univariate hazard ratio (HR) of 3.021, 

95% confidence interval (CI) 2.453–3.722, P < 0.001; 

multivariate HR of 1.836, 95% CI 1.425–2.366, P < 

0.001, as depicted in Figure 7A, 7B). Prognosis in high-

grade glioma was also influenced by factors such as 

PRS categories, histological characteristics, patient age, 

chemotherapy treatment, presence of IDH mutation, and 

1p19q status. Prognosis was not linked to the risk score 

in the validating group (Figure 7C, 7D). However, the 

age appears to be a separate prognostic factor in high-

grade glioma. Figure 7E–7G displayed a calibration plot 

showing a precise match between the observed overall 

survival (OS) and the predicted probability from the 

nomogram for 1-year, 3-year, and 5-year OS. 

 

Using risk score, age, IDH mutation status, 

chemotherapy status, 1p19q codeletion status, histology, 

and PRS type, we developed a personalized risk 

evaluation tool. According to this tool, the projected 

overall survival rates for high-grade glioma at 1-year, 3-

year, and 5-year were 0.423, 0.069, and 0.017 

respectively (Figure 7H). 

 

Chemotherapy sensitivity 

 

In order to investigate the small molecular compound, 

we conducted a comparison of the IC50 levels of certain 

compounds between the high-risk and low-risk groups. 

In Figure 8A–8L, it was discovered that glioma cells 

may exhibit resistance to AZD7762, Paclitaxel, 

Nilotinib, JNK inhibitor VIII, JNK.9L, GSK269962A, 

Gefitinib, FTI.277, Doctaxel, Cyclopamine, 

Camptothecin, and Bicalutamide. The other potential 

compounds could be seen in the Supplementary Table 4. 

 

DISCUSSION 
 

As per the World Health Organization's classification, 

gliomas can be categorized into two primary groups: 

low-grade and high-grade. Grade I or grade II gliomas 

are primarily categorized as low-grade gliomas, 

whereas grade III or grade IV glioblastomas are 

considered high-grade gliomas [24]. The most 

prevalent primary malignant brain tumors in adults are 

high-grade gliomas, which encompass anaplastic 

astrocytoma and glioblastoma multiforme [25]. 

Glioblastoma multiforme alone constitutes 50% of all 

gliomas. Diffuse infiltration of the surrounding brain 

tissue by high-grade gliomas frequently extends across 

the midline to invade the contralateral brain tissue [26]. 

Patients have a variety of choices for treatment, 

including surgical procedures, radiation therapy, and 

chemotherapy, yet their life expectancy is still 

relatively limited [27]. Hence, it is imperative to seek 
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Figure 6. Immune infiltration analysis of two risk groups. (A–D) Boxplot showing the comparative analysis of Estimation, stromal, 
immune scores, and tumor purity between two risk groups. (E, F) Comparisons of immune-related cells and functions of two risk groups. 
(G–N) Scatter plot showing risk score’s association with regulatory T cells gamma delta, Macrophages M2, M0, Neutrophils, B cells memory 
and naïve, NK cells activated, and monocytes. (O) Comparisons of immune checkpoint-related genes between high- and low-risk groups. 
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out efficient predictive biomarkers and investigate the 

underlying molecular mechanisms. 

 

We mainly had the following several findings: (1) By 

utilizing m7 regulators, glioma patients can be classified 

into three molecular subtypes. These subtypes exhibit 

distinct biological functions, pathway enrichments, 

survival prognoses, and immune status. A prognostic 

model signature was created using 13 m7G regulators, 

and its accuracy was verified using an independent 

dataset. The prognostic risk score, obtained from this 

gene expression pattern, effectively forecasts the 

 

 
 

Figure 7. Independent prognosis analysis of risk score. (A, B) Univariate and multivariate cox forest plot of the risk score in CGGA. 

(C, D) Univariate and multivariate cox forest plot of the risk score in TCGA. (E–G) Calibration plots of the nomogram to predict OS over one, 
three, and five years in the CGGA. (H) Nomograph predicting one, three, and five-year OS probabilities as per the m7G prognostic signature. 
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likelihood of survival for individuals with glioma. Three 

sets of genes, derived from differentially expressed 

genes (DEGs) within the three m7G clusters, exhibit 

various immune characteristics. Immune infiltration and 

functioning vary among different risk groups. 

Discrepancies exist in the enrichment of functions and 

pathways, as well as in the levels of gene alterations. 

Several low-mass compounds linked to m7G regulators 

were detected, potentially providing valuable 

information on therapeutic approaches. Our research 

offers new perspectives on the biological processes and 

immunotherapy for glioma. 

 

 
 

Figure 8. Effect of m7G risk score on chemotherapy sensitivity. (A–L) AZD7762, Paclitaxel, Nilotinib, JNK Inhibitor VIII, JNK.9L, 

GSK269962A, Gefitinib, FTI.277, Docetaxel, Cyclopamine, Camptothecin, Bicalutamide. 
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The process of m7G RNA methylation entails the 

addition of a methyl group to the seventh nitrogen (N7) 

position of the guanine (G) base in RNA, facilitated by 

methyltransferase enzymes [28]. This alteration has 

been observed in different RNA molecules, such as the 

mRNA 5′ cap formation, the middle of mRNA, primary 

microRNA (pri-miRNA), transfer RNA (tRNA), and 

ribosomal RNA (rRNA). Methylation of m7G RNA has 

a regulatory function in various cellular processes, 

encompassing mRNA transcription, miRNA generation 

and operation, tRNA durability, and the processing and 

maturation of 18S rRNA [28]. Following the 

identification of the m6A modification, m7G RNA 

methylation has emerged as a relatively new and 

important focus of study in the realm of epigenetic 

transcriptomics. In the past few years, increasing proof 

has emphasized the strong connection between 

modifications in post-transcriptional methylation and 

the development of tumors. Nevertheless, the 

knowledge regarding the characteristics of M7G-altered 

mRNA in gliomas and its possible contribution to drug 

resistance remains limited. Additional research is 

necessary to clarify the influence of m7G RNA 

methylation on gliomas and its significance for 

therapeutic strategies [29]. The investigation focused on 

the analysis of m7G regulators' expression levels to 

determine the molecular subtypes of glioma. After our 

investigation, it was discovered that high-grade glioma 

can be categorized into three separate groups with 

notably diverse expression patterns and clinical 

features. Furthermore, distinct subcategories exhibited 

contrasting clinical outcomes, suggesting the possible 

effectiveness of m7G regulators in molecular grouping 

of glioma, thereby implying the potential application of 

m7G genes in molecular clustering of high-grade 

glioma. Afterwards, we developed a prognostic model 

based on m7G that can forecast the overall survival of 

high-grade glioma. This model was then tested and 

confirmed using a separate dataset. 

 

Microglia can express some macrophage-related surface 

markers, including MHC antigens. Therefore, microglia 

in brain tissue can function as antigen-presenting cells 

(APCs) 2 [30]. Furthermore, even with the blood-brain 

barrier in place, activated T cells can penetrate the 

central nervous system. Most glioma tissues exhibit 

tumor-infiltrating lymphocytes (TILs), which often 

indicate a better prognosis for patients. Revealed tumor-

specific antigen lymphocytes, indicating that gliomas 

have a relatively mature acquired immune response 

in vitro cultivation of TILs [31]. Gliomas exhibit 

specific deficiencies in immune responsiveness due to 

the following factors: (1) Tumor expansion induces an 
upsurge in regulatory T cells, impairing APC function 

and opposing T cell-driven immune reactions. 

Glioma cells release substances like transforming 

growth factor-B (TGF-B) and interleukin-10 (IL-10) 

that hinder the immune response [32]. The proliferative 

activity of T cells in peripheral blood lymphocytes from 

glioma patients is reduced when stimulated with T cell 

mitogens, possibly due to the release of TGF-13 and IL-

10. Due to these immune reactivity deficiencies, glioma 

patients struggle to generate a successful immune 

reaction against the tumor, consequently enabling the 

tumor’s uninterrupted growth. In our battle against 

tumors, it has become crucial to improve the specific 

response of the immune system to glioma cells using 

diverse methods as a significant therapeutic strategy 

[33]. According to our research, it was found that m7G 

genes may have a correlation with the infiltration of the 

immune system in high-grade glioma. Cluster 1 

exhibited greater ESTIMATE, stromal score, and 

immune score compared to cluster 2. The status of 

immune cells and immune function differed. 

Furthermore, the genes associated with immune 

checkpoints exhibited varying levels of expression. The 

presence of antibodies against PD1/PDL1 can 

strengthen the ability of tumor-infiltrating lymphocytes 

to kill cancer cells by counteracting the interference of 

immune functions caused by PD-L1 on the surfaces of 

cancer cells [34, 35]. Moreover, the PD1/PDL1 

signaling pathway diminishes the susceptibility of 

tumor cells to T cell-induced cell death, suggesting the 

extensive occurrence of PDL1 in tumor cells [36]. Some 

clues may be provided by the variations in immune 

status among the three clusters. 

 

Patients with glioma were categorized into high- and 

low-risk categories based on their median risk scores, 

which uncovered notable differences in levels of 

immune infiltration. Individuals in the more vulnerable 

category displayed increased stromal, immune, and 

estimated scores in comparison to those in the less 

vulnerable category. There was a positive correlation 

between the risk score and M0 macrophages, resting 

NK cells, activated CD4 memory T cells, and regulatory 

T cells. Furthermore, an analysis of gene expression 

related to immune checkpoints in various risk groups 

demonstrated a noticeable inclination towards higher 

expression in individuals with elevated risk. 

 

This study possesses some limitations. Initially, 

although the training and validation datasets utilized a 

substantial sample size, it is necessary to obtain 

supplementary external cohort data in order to verify the 

precision and consistency of the developed model. 

Moreover, the TCGA dataset solely contained a 

restricted set of clinical parameters, and the 

incorporation of supplementary clinical attributes could 
potentially influence the results. Lastly, the further 

experiments are necessary. The development and 

progression of high-grade glioma are extremely 
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complex, encompassing numerous regulatory pathways 

and networks. Therefore, these discoveries necessitate 

additional verification via further in vivo and in vitro 

experiments. 

 

In summary, this research presents a unique scientific 

exploration into the expression trends of m7G 

controllers in high-grade glioma and their influence on 

survival. The potential of the m7G prognostic signature 

to function as a biomarker for the overall survival of 

patients with high-grade glioma and its potential 

implications for immunotherapy. Through the 

modulation of immune responses, extensive analysis 

suggests that m7G regulators contribute to the 

advancement of glioma. The results of this research 

enhance comprehension regarding the participation of 

m7G regulators in the advancement of high-grade 

glioma and their impact on medical results, illuminating 

the possibility of precise therapy in the treatment of 

high-grade glioma. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 3 and 4. 

 

Supplementary Table 1. The 29 m7G genes used for classification. 

Genesymbol Entrez Gene ID Description 

METTL1 4234 Methyltransferase 1 

WDR4 10785  WD Repeat Domain 4 

NSUN2 54888 NOP2/Sun RNA Methyltransferase 2 

DCP2 167227 Decapping MRNA 2 

DCPS 28960 Decapping Enzyme, Scavenger 

NUDT10 170685 Nudix Hydrolase 10 

NUDT11 55190 Nudix Hydrolase 11 

NUDT16 131870 Nudix Hydrolase 16 

NUDT3 11165 Nudix Hydrolase 3 

NUDT4 11163 Nudix Hydrolase 4 

NUDT4B 440672 Nudix Hydrolase 4B 

AGO2 27161 Argonaute RISC Catalytic Component 2 

CYFIP1 23191 Cytoplasmic FMR1 Interacting Protein 1 

EIF4E 1977 Eukaryotic Translation Initiation Factor 4E 

EIF4E1B 253314 Eukaryotic Translation Initiation Factor 4E Family Member 1B 

EIF4E2 9470 Eukaryotic Translation Initiation Factor 4E Family Member 2 

EIF4E3 317649 Eukaryotic Translation Initiation Factor 4E Family Member 3 

GEMIN5 25929 Gem Nuclear Organelle Associated Protein 5 

LARP1 23367  La Ribonucleoprotein 1 

NCBP1 4686 Nuclear Cap Binding Protein Subunit 1 

NCBP2 22916 Nuclear Cap Binding Protein Subunit 2 

NCBP3 55421 Nuclear Cap Binding Protein Subunit 3 

EIF3D 8664 Eukaryotic Translation Initiation Factor 3 Subunit D 

EIF4A1 1973 Eukaryotic Translation Initiation Factor 4A1 

EIF4G3 8672 Eukaryotic Translation Initiation Factor 4 Gamma 3 

IFIT5 24138 Interferon Induced Protein with Tetratricopeptide Repeats 5 

LSM1 27257 LSM1 Homolog 

NCBP2L 392517 Nuclear Cap Binding Protein Subunit 2 Like 

SNUPN 10073 Snurportin 1 

 

Supplementary Table 2. 13 identified m7G signature genes in prognostic model. 

Gene Coef HR 

AGO2 −0.153769169 0.8574699  

CYFIP1 0.779436234 2.1802428  

DCP2 1.011340434 2.7492838  

EIF4E1B −0.291125099 0.7474222  

EIF4G3 1.386559685 4.0010614  
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GEMIN5 −0.855099724 0.4252408  

METTL1 0.342305441 1.4081904  

NCBP1 0.167862761 1.1827743  

NUDT11 −0.259625133 0.7713407  

NUDT16 0.126875855 1.1352761  

SNUPN 0.022629193 1.0228872  

WDR4 0.374922952 1.4548793  

LARP1 −0.193499115 0.8240706  

 

Supplementary Table 3. Differentially expressed genes from CGGA based on risk score. 

 

Supplementary Table 4. Results of drug sensitivity based on 13 prognostic signature genes. 

 


