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INTRODUCTION 
 

Osteoporosis is a significant global health concern 

characterized by low bone mineral density (BMD), 

heightened bone fragility, and an increased risk of 
fracture [1]. Postmenopausal osteoporosis (PMOP), in 

particular, imposes a considerable physical and financial 

burden on aging women, with an estimated one-third of 

women over fifty experiencing fractures induced by 

osteoporosis [2]. Additionally, osteoporosis-related 

fractures, predominantly in the hip, spine, and wrist, 

resulting in more hospitalization days for women over 

45 than other chronic diseases, including diabetes, heart 
disease, and breast cancer [2]. After a hip fracture, the 

quality of life significantly declines, with 40% of 

patients unable to walk independently, and 20-24% of 
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ABSTRACT 
 

Background: Postmenopausal osteoporosis (PMOP) is a prevalent bone disorder with significant global impact. 
The elevated risk of osteoporotic fracture in elderly women poses a substantial burden on individuals and 
society. Unfortunately, the current lack of dependable diagnostic markers and precise therapeutic targets for 
PMOP remains a major challenge. 
Methods: PMOP-related datasets GSE7429, GSE56814, GSE56815, and GSE147287, were downloaded from the 
GEO database. The DEGs were identified by “limma” packages. WGCNA and Machine Learning were used to 
choose key module genes highly related to PMOP. GSEA, DO, GO, and KEGG enrichment analysis was 
performed on all DEGs and the selected key hub genes. The PPI network was constructed through the 
GeneMANIA database. ROC curves and AUC values validated the diagnostic values of the hub genes in both 
training and validation datasets. xCell immune infiltration and single-cell analysis identified the hub genes’ 
function on immune reaction in PMOP. Pan-cancer analysis revealed the role of the hub genes in cancers. 
Results: A total of 1278 DEGs were identified between PMOP patients and the healthy controls. The purple 
module and cyan module were selected as the key modules and 112 common genes were selected after 
combining the DEGs and module genes. Five Machine Learning algorithms screened three hub genes (KCNJ2, 
HIPK1, and ROCK1), and a PPI network was constructed for the hub genes. ROC curves validate the diagnostic 
values of ROCK1 in both the training (AUC = 0.73) and validation datasets of PMOP (AUC = 0.81). GSEA was 
performed for the low-ROCK1 patients, and the top enriched field included protein binding and immune 
reaction. DCs and NKT cells were highly expressed in PMOP. Pan-cancer analysis showed a correlation between 
low ROCK1 expression and SKCM as well as renal tumors (KIRP, KICH, and KIRC). 
Conclusions: ROCK1 was significantly associated with the pathogenesis and immune infiltration of PMOP, and 
influenced cancer development, progression, and prognosis, which provided a potential therapy target for 
PMOP and tumors. However, further laboratory and clinical evidence is required before the clinical application 
of ROCK1 as a therapeutic target. 
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patients passing away within the first year [2]. 

Consequently, early diagnosis and treatment of 

osteoporosis are critical, particularly for postmenopausal 

women who face a high risk of developing the condition. 

 

Currently, the most widely used diagnostic method for 

osteoporosis is the bone mineral density (BMD) test, 

which employs dual-energy X-ray absorptiometry 

(DXA). Other diagnostic techniques include radiological 

assessments and Bone Turnover Markers (BTM) [3]. 

However, due to the absence of systemic symptoms until 

the occurrence of a fracture, these approaches may not 

detect early or atypical cases of PMOP. Recently, the 

advent of genome-wide association studies (GWAS) and 

multi-omics techniques has enabled the identification of a 

variety of genes, such as RANKL and ESR1, associated 

with PMOP susceptibility. This discovery has expanded 

early diagnostic strategies for the disease, including 

specific gene testing [4, 5]. 

 

The treatment for PMOP should be selected based on the 

severity of bone mass loss and the risk of fracture. For 

low-risk women, non-pharmacological interventions 

such as calcium and vitamin D supplementation, regular 

exercise, and abstaining from smoking and drinking are 

recommended [6, 7]. For patients requiring drug therapy, 

anti-resorptive agents, including bisphosphonates, ralo-

xifene, and denosumab, can decrease bone destruction, 

while anabolic agents, such as teriparatide, promote 

bone formation [1, 8, 9]. Nevertheless, these drugs have 

significant adverse effects that can pose considerable 

risks to patients’ health. As such, the optimal therapeutic 

options for PMOP are still under further investigation 

[10]. Therefore, there is an urgent need to explore the 

hallmark genes that are closely associated with the onset 

and progression of PMOP to enhance the precision of 

therapy for this condition. 

 

The conventional theory regarding the pathogenesis of 

PMOP suggests that it is primarily caused by aging and 

estrogen deficiency, which results in a phenotype of 

increased bone loss and decreased bone remodeling [11]. 

Nonetheless, the immune system’s role in the 

development of PMOP has garnered significant 

attention, leading to the introduction of a novel term, 

immunoporosis, to examine the intricate relationship 

between the skeletal and immune systems in osteo-

porosis pathogenesis [12]. Research has suggested that 

aging or low estrogen levels result in the continuous 

activation of the immune system at low levels, causing 

immune balance disturbance, promoting osteoclast 

activation, and ultimately leading to bone loss [13, 14]. 

Conducting a comprehensive analysis of immune cell 
activity and function in PMOP, particularly changes in 

immune-related molecular markers, can contribute to the 

expansion of the scope of PMOP etiology research, thus 

advancing the application of immunotherapy for the 

disease. Cancer is a severe disease with high morbidity 

and mortality [15]. The possible shared etiology of 

aging, disturbed hormone levels, and immune infiltration 

has prompted an exploration of the relationship between 

cancers and PMOP. Recent studies have reported that 

PMOP patients have a higher incidence of cancer, such 

as breast cancer, while impaired bone health and a 

heightened risk of fracture are frequently observed in 

advanced cancer, resulting in a poor prognosis [16–18]. 

However, few studies have investigated the shared 

molecular mechanisms of the two diseases. Further 

investigation into potential PMOP biomarkers, putative 

pathogenesis, and shared treatment targets between 

PMOP and cancer is thus warranted. 

 

Bioinformatics has emerged as a promising cross-

disciplinary tool for investigating pathophysiological 

mechanisms of diseases. One such tool is Weighted 

Gene Co-expression Network Analysis (WGCNA), 

which can identify gene modules with similar expression 

patterns and screen out modules containing key 

regulatory genes that are highly correlated with disease 

phenotypes [19]. Furthermore, Machine Learning 

algorithms, which possess powerful computing and 

sorting capabilities, can be utilized to select disease-

related genes [20]. Another bioinformatics technique, 

xCell, can evaluate immune cell composition in diseases 

[21]. While some studies have identified hub genes 

associated with primary osteoporosis (PMOP) [22, 23], 

few have combined WGCNA and Machine Learning to 

select hub genes and focus on immune infiltration levels 

and related biomarkers. 

 

In this study (Figure 1), we utilized the Gene Expression 

Omnibus (GEO) database to download the mRNA 

expression datasets GSE56815 and GSE7429 from 

PMOP patients and identified differential expression 

genes (DEGs). By employing the cross-disciplinary tools 

of WGCNA and Machine Learning, we further screened 

for hub genes common with DEGs. To elucidate key 

biological functions and pathways related to PMOP, we 

conducted functional enrichment analyses using GO, 

KEGG, and GSEA. Additionally, we validated the 

expression and diagnostic values of hub genes in PMOP 

using external datasets GSE56814 and GSE147287. 

Furthermore, we assessed the immune infiltration levels 

in PMOP and investigated the correlation between hub 

genes and immune cell expression. Our pan-cancer 

analysis revealed the potential involvement of PMOP-

related genes in cancer development, progression, and 

prognosis. This is the first study to apply a combined 

approach of WGCNA and machine learning to identify 
potential diagnostic and therapeutic markers for PMOP, 

explore the mechanism of its immune response 

involvement in pathogenesis, and evaluate the functional 
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significance of candidate genes at the level of pan-cancer. 

Our findings offer a strong theoretical foundation for 

future development of novel gene or molecular therapies 

for PMOP and provide new insights into a potential 

association between PMOP and cancer. 

 

RESULTS 
 

Identification of the DEGs in PMOP 

 

After removing batch effects, mRNA expression levels 

in Peripheral blood mononuclear cells (PBMC) were 

obtained from PMOP patients and healthy controls in 

two GEO datasets (GSE56815 and GSE7429). The 

screening criteria of DEGs was |log2(fold change) |≥ 0 

and adjusted p value< 0.05 [24]. Totally 1278 DEGs 

were identified with 715 up-regulated genes and 563 

down-regulated genes. Sorted by the values of log2(fold 

change), the top 10 up-regulated genes were SUPV3L1, 

PCNT, DHTKD1, ADRB1, DHX35, FAM222B, 

MRPL48, ADGRF5, GRIP2, and NIF3L1 while the top 

10 down-regulated genes were KCNJ2, TBC1D2, 

ATP5l, UBE3C, C1D, ARID4B, NDUFC1, GMEB1, 

HIPK1, and FAM65B. Volcano plot (Figure 2A) 

visualized the results. Both top 10 up-regulated and 

down-regulated genes are highlighted in the heatmap 

(Figure 2B). 

 

Functional enrichment analysis of DEGs 

 

We next perform the functional enrichment analysis on 

the 1278 DEGs. The results shown by bar plots were 

sorted by p-value and dot plots were ranked based on 

the counts of enriched genes. GO enrichment analysis 

indicated that the top 10 biological enriched functions 

were “actin binding”, “nuclear receptor binding”, “RNA 

polymerase Il-specific DNA-binding transcription factor 

binding”, “DNA-binding transcription factor binding”, 

“ion channel regulator activity”, “protein serine kinase 

activity”, “G protein beta-subunit binding”, “channel 

regulator activity”, “nucleocytoplasmic carrier activity”, 

and “heme transmembrane transporter activity” 

(Supplementary Figure 1A, 1B). With KEGG 

enrichment analysis, the key enriched pathways for 

 

 
 

Figure 1. The flowchart of the study process. 
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DEGs were “PI3K-Akt signaling pathway”, “Regulation 

of actin cytoskeleton”, “cAMP signaling pathway”, 

“Coronavirus disease – COVID-19”, “Tight junction”, 

“Transcriptional misregulation in cancer”, “Thyroid 

hormone signaling pathway”, “Alcoholic liver disease”, 

“Platelet activation”, and “Autophagy - animal” 

(Supplementary Figure 1C, 1D). 

 

Weighted gene co-expression network analysis and 

construction 

 

A total of 58 samples (30 PMOP patients and 28 

healthy controls) were included in the WGCNA after 

clustering and excluding two outliers with the cut-off 

value =31 (Figure 3A, 3B). Depending on the curve of 

scale independence, the soft threshold was set to 7 

when R2 >0.9 and the mean connectivity remained low 

(Figure 3C). Cluster Dendrogram was constructed, and 

18 modules were identified with different features 

(Figure 3D). Then we explore the relationship between 

modules and clinical groups (high BMD and low 

BMD) to find the key module genes that may correlate 

greatly with PMOP. As shown in Figure 3E, the 

salmon module had a positive association with PMOP 

(r =0.36, p= 0.006) while the purple module (r =-0.32, 

p= 0.02), the cyan module (r= -0.44, p= 6E-04), and 

the green module (r= -0.31, p= 0.02) were negatively 

correlated with PMOP. Among the four modules, the 

purple module (cor=0.25, p=2.5e-11) and cyan module 

(cor=0.55, p=1.4e-06) showed a great correlation with 

PMOP in the MM versus GS scatterplot (Figure 3F, 

3G). A total of 522 genes in these two modules were 

selected for further analysis. 

Functional enrichment analysis of the common genes 

 

The genes identified through the employment of limma 

and WGCNA analyses have potential significance in 

the pathogenesis of PMOP. Subsequently, an inter-

section of the genes derived from both methods was 

conducted to identify key genes that exhibit consistent 

role in PMOP for the further analyses. We collected 

522 genes from the key modules identified by WCGNA 

and Venn plot show a total of 112 common genes 

between 522 module genes and 1278 DEGs (Figure 

4A). DO enrichment analysis showed the possible 

common genes-related diseases, including “arterio-

sclerosis”, “atherosclerosis”, “arteriosclerotic cardio-

vascular disease”, “acute myocardial infarction”, 

“inflammatory bowel disease”, “COVID-19”, 

“cystitis”, “pancreatitis”, and “bacterial meningitis” 

(Figure 4B, 4C). We also perform GO and KEGG 

functional enrichment analyses. The top five biological 

processes were “serine-type endopeptidase activity”, 

“calcium-dependent protein binding”, “serine-type 

peptidase activity”, “serine hydrolase activity”, and 

“actin binding” (Figure 4D, 4E). Pathways highly 

related to the 112 common genes included “Renin 

secretion”, “Human cytomegalovirus infection”, 

“Oxytocin signaling pathway”, “SNARE interactions in 

vesicular transport”, “Neutrophil extracellular trap 

formation”, “Transcriptional misregulation in cancer”, 

“Proteoglycans in cancer”, and “Sphingolipid 

metabolism” (Figure 4F, 4G). The results of GSEA for 

112 common genes were visualized by ridge plots in 

Supplementary Figure 2A, 2B. Top three GO Cell 

Component (CC) contained “immunoglobulin complex 

 

 
 

Figure 2. DEGs screening. Volcano plot (A) and heatmap (B) for the DEGs identified from the integrated PMOP dataset. Top regulated genes 
were texted in the volcano plot. The top 10 up-regulated genes are highlighted in bold red on the heatmap while the top 10 down-regulated 
genes are in bold blue. 
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circulating”, “secretory granule membrane”, and 

“vesicle lumen” and top three Biological Process (BP) 

included “respond to bacterium”, “response to 

molecule of bacterial origin”, and “innate immune 

response in mucosa” (Supplementary Figure 2A). 

KEGG pathway analysis by GSEA resulted in “alanine 

aspartate and glutamate metabolism”, “one carbon pool 

by folate”, and “chemokine signaling pathway” 

(Supplementary Figure 2B). Supplementary Figure 2C 

and Figure 5D were GSEA plots showing the top- and 

down-regulated GO terms respectively. For KEGG 

enrichment analysis, the top- and down-regulated 

pathways were also visualized by the GSEA plot 

(Supplementary Figure 2E, 2F). 

 

Screen of the hub genes by machine learning 

 

Five machine-learning algorithms were used to identify 

the hub genes. SVM-RFE screened 112 PMOP-related 

feature genes (Figure 5A). LASSO coefficient spectrum 

 

 
 

Figure 3. Construction of WGCNA co-expression network. (A) Sample clustering dendrogram and the samples whose height > 31 were 
identified as outliers. (B) Sample clustering dendrogram after cutting the outliers. (C) Soft threshold b = 7 and scale-free topological fit index 
(R2). (D) Shows the modules with different colors under the clustering tree. (E) Heat map of module-trait correlations. (F) MM vs. GS scatter 
plot of the purple module. (G) MM vs. GS scatter plot of the cyan module. Red represents positive correlations and blue represents negative 
correlations. 
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(Figure 5B) and coefficient profile (Figure 5C) show the 

results of LASSO regression analysis that 8 hub genes 

were selected. Figure 5D shows how the RandomForest 

algorithm correlates the mistake rate with the number of 

classification trees. The relative importance of 30 genes 

was sorted for choosing the hub genes (Figure 5E), and 

16 feature genes were identified. GBM (Figure 5F) and 

xGBoost (Figure 5G) algorithms sorted the 112 genes 

by feature gene importance while 73 and 58 hub genes 

were screened respectively. We used a Venn plot to find 

the common genes between the five machine-learning 

methods and three hub genes (KCNJ2, HIPK2, 

ROCK1) were identified for further study (Figure 5H). 

With the hub gene expression values in PMOP, HIPK1 

was positively correlated with KCNJ2 (p <0.05) and 

ROCK1 (p <0.001) (Figure 5I). 

 

Protein-protein interaction network construction 

 

Figure 6A showed the interaction between 3 hub genes 

and a total of 20 highly related genes. Then we perform 

GO and KEGG analysis to further explore the GO terms 

 

 
 

Figure 4. Functional enrichment analysis of the common key genes. (A) The Venn plot identified 112 shared genes among 522 

module genes and 1278 DEGs. Bar plot (B) and dot plot (C) showed the results of DO enrichment analysis of 112 common genes. Bar plot (D) 
and dot plot (E) showed the results of GO enrichment analysis of 112 common genes. Bar plot (F) and dot plot (G) showed the results of KEGG 
enrichment analysis of 112 common genes. 
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Figure 5. Machine learning identified three hub genes of PMOP. (A) SVM-RFE screening of candidate diagnostic genes. (B, C) LASSO 
screening of candidate diagnostic genes. (D) Random forest error rate versus the number of classification trees. (E) Random forest calculated 
the top 30 relatively important genes of PMOP. (F) GBM screening of candidate diagnostic genes and the bar chart showed the genes ranked 
by importance. (G) XGboost screening of candidate diagnostic genes and he bar chart showed the genes ranked by importance. (H) Venn plot 
between five machine learning methods resulted in three common hub genes. (I) Correlation between three hub genes. Blue 
represents positive correlations and red represents negative correlations. *, p < 0.05, **, p < 0.01, ***, p < 0.001. 



www.aging-us.com 8880 AGING 

and KEGG pathways which were enriched by the 23 

genes. GO functional enrichment analysis mostly 

focuses on the channel activity, including “Inward 

rectifier potassium channel activity”, “Voltage-gated 

potassium channel activity”, and “Ligand-gated cation 

channel activity” (Figure 6B). As shown in Figure 6C, 

“Regulation of actin cytoskeleton”, “Tight junction”, 

“Oxytocin signaling pathway”, and “Axon guidance” 

were identified as the enriched pathways of the hub 

genes. 

 

Validation of the expression levels and the diagnostic 

values of the hub genes 

 

In the combined training datasets of PMOP (GSE56815 

and GSE7429), the expression levels of KCNJ2, 

HIPK1, and ROCK1 were significantly lower in low 

BMD group (PMOP) than high BMD group (healthy 

controls) (p =1.5E-05, 2.2E-04, and 1.1E-03, 

respectively) (Figure 7A). We further downloaded the 

GSE56814 as the validation dataset, microarray 

analyses of monocytes from postmenopausal females 

with low or high BMD. Only ROCK1 showed 

decreased expression in PMOP group compared with 

controls (p =5.3E-04) (Figure 7B). Then we performed 

ROC analysis and calculated the AUC values to identify 

the diagnostic value of the hub genes. KCNJ2, HIPK1, 

and ROCK1 all have great abilities to diagnose PMOP 

in the training dataset with the AUC value >0.7 (AUC 

=0.80, 0.78, and 0.73, respectively) (Figure 8A–8C). 

However, like the same result as the expression data, 

the AUC value of ROCK1 was 0.81 while both KCNJ2 

and HIPK1 have no significant value on PMOP 

diagnosis (Figure 8D–8F). 

 

Analysis of the role of ROCK1 in PMOP using 

GSEA 

 

Since ROCK1 had reduced expression and brilliant 

diagnostic ability in PMOP, we additionally divide the 

training dataset into two categories (high-ROCK1 

group, and low-ROCK1 group) by the median values  

of the gene expression among the population to  

further identify the possible role of ROCK1 in PMOP. 

We first set GSEA for all the gene expression data  

of 30 healthy controls and 30 PMOP patients. 

 

 
 

Figure 6. PPI network construction. (A) Interaction analysis of hub genes and the construction of gene co-expression network. (B) Dot 

plot showed the results of GO enrichment analysis of three hub genes and 20 related genes. (C) Dot plot showed the results of KEGG 
enrichment analysis of three hub genes and 20 related genes. 
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GO enrichment analysis identified “immunoglobulin 

complex”, “immunoglobulin complex circulating”, 

“adaptive immune response”, and “lymphocyte-

mediated immunity” as the top terms related to PMOP 

(Figure 9A). For KEGG analysis, the top enriched 

pathways were “hematopoietic cell lineage”, “primary 

immunodeficiency”, “alanine aspartate and glutamate 

metabolism”, “glycolipid metabolism”, and “cytokine 

 

 
 

Figure 7. Validation of the hub genes expression. The expression of three hub genes in high BMD group and low BMD (PMOP) group of 
the training datasets (A) and the validation datasets (B). 
 

 
 

Figure 8. The three hub genes’ diagnostic value in PMOP training datasets (A–C) and validation datasets (D–F). ROC curves and AUC statistics 

are used to evaluate the capacity to discriminate PMOP from healthy controls with excellent sensitivity and specificity. 
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receptor interaction” (Figure 9B). The genes of samples 

in the high-ROCK1 group enriched in “modification 

dependent macromolecule catabolic process”, “mRNA 

processing”, “ribonucleoprotein complex biogenesis”, 

“RNA catabolic process”, and “ribonucleoprotein 

complex” (Figure 9C). “proteasome”, “ribosome”, and 

“spliceosome” were the top three results analyzed by 

KEGG (Figure 9E). The genes in the low-ROCK1 

 

 
 

Figure 9. GSEA of high and low ROCK1 subgroup. Ridge map showed the GO (A) and KEGG (B) enrichment analysis results of all DEGs 

by GSEA. GSEA plot with DEGs and the top five GO terms enriched in high ROCK1 (C) and low ROCK1 (D) subgroup. GSEA plot with DEGs and 
the top three KEGG terms enriched in high ROCK1 (E) and low ROCK1 (F) subgroup. 



www.aging-us.com 8883 AGING 

group may have a positive association with PMOP, and 

the enriched biological terms were “adaptive immune 

response”, “regulation of cell activation”, “external 

side of plasma membrane”, “plasma membrane protein 

complex”, and “side of membrane” (Figure 9D). 

KEGG functional enrichment analysis indicated that 

“cytokine receptor interaction”, “hematopoietic cell 

lineage”, and “primary immunodeficiency” were 

greatly correlated with samples of the low-ROCK1 

group (Figure 9F). 

 

Immune infiltration analysis and the correlation 

between genes and immune 

 

According to the above GSEA results for 112 

overlapped genes, three hub genes, and low-ROCK1 

group genes, both the GO and KEGG functional 

enrichment analyses showed a probable association 

between immunization and PMOP, such as “innate 

immune response in mucosa”, “adaptive immune 

response”, “lymphocyte-mediated immunity”, and 

“primary immunodeficiency”. We then perform an 

immune infiltration analysis by xCell to find the content 

and effect of 33 immune cell types on PMOP. As shown 

in Figure 10A, DCs (Dendritic cells), cDCs 

(conventional DCs), iDCs (immature DCs), and NKT 

(Natural Killer T) cells were elevated (p <0.05) while 

Basophils and Mast cells show a significant decrease (p 

<0.05 and <0.001, respectively) in PMOP patients. Bar 

plot showed the different compositions and immune 

scores of immune cells in each sample (Figure 10B). 

The correlations between the expression levels of 33 

immune cells were calculated. DC had a negative 

relationship with the T cells family, including Th2  

cells, Tgd cells, CD4+ T cells, and CD8+ T cells 

(Figure 10C). For NKT cells, it was inversely related to 

 

 
 

Figure 10. Immune cell infiltration analysis on PMOP. The proportion of 33 kinds of immune cells in PMOP patients and controls was 

visualized from the box plot (A) and the bar plot (B). (C) Correlation of 33 immune cell type compositions in PMOP. (D) Correlation between 
the expression of 33 immune cells and three hub genes in PMOP. *, p < 0.05, **, p < 0.01, ***, p < 0.001. 
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Th2 cells but positively related to Th1 cells and 

Macrophages M2 (Figure 10C). Basophils and Mast 

cells have a positive correlation with Monocytes and B 

cells while Mast cells also had a positive association 

with T cells and Neutrophils (Figure 10C). The 

correlation between three hub genes and immune cells 

expression was shown in Figure 10D, and ROCK1 was 

inversely related to CD4+ TEM (Effector memory T 

Cells), Macrophages M2, aDC, cDC, iDC, DC, NKT, 

Th1 cells, naïve B cells, pro B cells, and memory B 

cells. Conversely, Tgd cells, Mast cells, CD4+ memory 

T cells, CD4+ T cells, Tregs, CD8+ Tcm, and Th2 cells 

were negatively correlated with ROCK1 in PMOP 

patients (Figure 10D). 

 

Single-cell analysis 

 

The single-cell RNA sequencing data was from a 67-

year-old postmenopausal woman’s bone marrow 

derived mononuclear cells (BM-MNCs). The UMAP 

(Figure 11A) showed the 13 clusters of whole cells after 

dimension and clustering. We then used the “SingleR” 

 

 
 

Figure 11. Single-cell RNA analysis on bone marrow-derived mesenchymal stem cells (BM-MNCs) from PMOP patients.  
(A) UMAP plot showed 13 clusters of BM-MNCs from PMOP patients. (B) UMAP distributions of single cells from the 10 defined cell types 
annotated by SingleR. Feature plot (C) and dot plot (D) showed the expression of three hub genes in identified clusters and cell types. 
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package to annotate the 13 clusters into biological cell 

types, and the 13 clusters were B cells, BM (Bone 

Marrow), Erythroblasts, GMP (Ganulocyte-Monocyte 

Progenitor), Macrophages, Monocytes, Myelocytes, 

Neutrophils, T cells, and Tissue stem cells (Figure 11B). 

The distribution of three hub genes (KCNJ2, HIPK1, 

ROCK1) in each cluster was shown in Figure 11C by 

feature plot. As shown in Figure 11D, ROCK1 was 

highly expressed in Neutrophils, and the percent 

expressed of ROCK1 seemed more in GMP and 

Monocytes. 

 

Pan-cancer ROCK1 expression 

 

Several studies have found the important role of 

ROCK1 in cancers [25–28]. Since PMOP patients had a 

higher risk to get some types of cancer, we were greatly 

interested in whether the low expression of ROCK1 

made great importance to increasing the cancer risk, 

accelerating the cancer progression, or worsening the 

cancer prognosis [29, 30]. 

 

We then calculated the difference in expression 

between normal and tumor samples in each tumor. In 

TCGA datasets of 26 tumors, eight tumors showed 

significantly higher expression, including Glioma 

(GBMLGG), Brain Lower Grade Glioma (LGG), 

Stomach and Esophageal carcinoma (STES), Stomach 

adenocarcinoma (STAD), Head and Neck squamous 

cell carcinoma (HNSC), Kidney renal clear cell 

carcinoma (KIRC), Liver hepatocellular carcinoma 

(LIHC), and Cholangiocarcinoma (CHOL), while the 

expression of ROCK1 in 10 tumors was lower than 

normal controls: Lung adenocarcinoma (LUAD),  

Colon adenocarcinoma/Rectum adenocarcinoma 

Esophageal carcinoma (COADREAD), Breast invasive 

carcinoma (BRCA), Kidney renal papillary cell 

carcinoma (KIRP), Prostate adenocarcinoma (PRAD), 

Uterine Corpus Endometrial Carcinoma (UCEC),  

Lung squamous cell carcinoma (LUSC), Rectum 

adenocarcinoma (READ), Bladder Urothelial Carcinoma 

(BLCA), and Kidney Chromophobe (KICH)  

(Figure 12A). To further validate the results,  

we add normal control data from GTEx datasets and 

perform difference analysis combined with TCGA  

and GTEx. As shown in Figure 12B, ROCK1 in 13 

types of tumors was highly expressed: GBM 

(p=4.8E-12), GBMLGG(p=1.3E-73), LGG(p=1.5E-

74), Esophageal carcinoma (ESCA)(p=2.9E-05), 

STES(p=4.0E-05), STAD(p=8.0E-22), HNSC(p=2.8E-

07), KIRC(p=2.6E-06), High-Risk Wilms Tumor 

(WT)(p=5.1E-22), Pancreatic adenocarcinoma 

 

 
 

Figure 12. The expression of ROCK1 in Pan-cancer. (A) Pan-cancer expression levels of ROCK1 in the TCGA dataset. (B) Pan-cancer 

expression levels of ROCK1 in the TCGA and GTEx datasets. *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001, -no significance. 
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(PAAD)(p=7.7E-40), Acute Lymphoblastic Leukemia 

(ALL)(p=9.1E-44), Acute Myeloid Leukemia 

(LAML)(p=3.1E-74), CHOL(p=1.6E-05), and totally 

18 cancers were low-ROCK1 expression: UCEC 

(p=5.1E-05), BRCA(p=3.0E-46), Cervical squamous 

cell carcinoma and endocervical adenocarcinoma 

(CESC)(p=7.7E-06), LUAD(p=8.4E-90), KIRP(p=2.7E-

15), Colon adenocarcinoma (COAD)(6.8E-40), 

COADREAD(p=7.9E-47), PRAD(p=4.3E-16), LUSC 

(p=3.5E-103), Skin Cutaneous Melanoma (SKCM) 

(p=7.3E-24), BLCA(p=3.1E-08), Thyroid carcinoma 

(THCA)(p=1.5E-56), READ(p=0.02), Ovarian serous 

cystadenocarcinoma (OV)(p=6.8E-40), Testicular 

Germ Cell Tumors (TGCT)(p=3.0E-15), Uterine 

Carcinosarcoma (UCS)(p=1.6E-22), Adrenocortical 

carcinoma (ACC)(p=3.0E-24), KICH(p=2.6E-04). 

According to the results, we found that the tumors in 

the central nervous system (GBM and LGG), in the 

digestive tract (STAD, LIHC, CHOL, ESCA, PAAD), 

and the hematological malignancies including ALL 

and LAML had a higher level of ROCK1 expression 

significantly. Interestingly, consistent with the low 

expression of ROCK1 in PMOP, ROCK1 was down-

regulated in all women’s tumors (BRCA, UCEC, 

CESC, OV, and UCS) in the database. Moreover, lung 

cancers (LUAD, LUSC) and tumors in the large 

intestine (COADREAD, READ, and COAD) also had 

a lower expression of ROCK1 than the normal tissues. 

However, the ROCK1 level in bone-related tumors 

like osteosarcoma is similar to the normal tissues. To 

further validate the results in protein level, the protein 

expression level of ROCK1 from HPA was consistent 

with the mRNA results, both in women-specific 

cancers (Figure 13A) and the skin cancers, renal 

cancers, and lung cancers (Figure 13B) which were 

mentioned above. We selected patients who is woman 

and at the age of postmenopause, the details of patient 

information were shown in Supplementary Table 2. 

 

We also calculated the variation in ROCK1 expression 

in each tumor at different clinical phases to assess the 

impact of ROCK1 on tumor progression and severity. 

For the T stage (Supplementary Figure 3A), we  

found a significant difference in 5 tumors: BRCA 

(p=0.04), STAD (p=1.1E-03), PRAD (p=0.02), KIRC 

(p=4.3E-03), TGCT (p=0.02). ROCK1 expression in 

two tumors, STAD (p=0.01) and THCA (p=1.2E-03) 

were significant differences between N stages 

(Supplementary Figure 3B). Among 25 tumors for 

analysis, only KIRC M1 stage had lower ROCK1 

expression than M0 stage (p=7.2E-03, Supplementary 

Figure 3C). Moreover, ROCK1 expression among 

Stage I to IV was significantly different in STAD 
(p=2.4E-03) and KIRC(p=2.5E-03) (Supplementary 

Figure 3D), while KIPAN (p=9.8E-07), HNSC 

(p=0.04), and KIRC (p=9.8E-07) had different ROCK1 

expressions among Grade I to IV (Supplementary 

Figure 3E). 

 

The relationship between ROCK1 and tumor prognosis 

in pan-cancer should be explored, which may help 

further understand the role of low-ROCK1 expression 

in PMOP patients’ cancer risk. Among several pan-

cancer, we calculated the survival time including 

Overall survival (OS), Disease-specific survival (DSS), 

Disease-free interval (DFI), and Progression-free 

interval (PFI). TCGA-LGG (HR= 1.39, 95%CI = 1.01-

1.90), TARGET-LAML (HR =1.46, 95%CI =1.20-1.77) 

had lower OS time and worse prognosis with high 

ROCK1 expression (Figure 14A). In contrast, low 

expression of ROCK1 in TCGA-GBMLGG (HR= 0.82, 

95%CI =0.68-1.00), TCGA-KIRC (HR= 0.75, 95%CI 

=0.62-0.90), TCGA-SKCM (HR= 0.84, 95%CI =0.73-

0.98), TARGET-NB (HR =0.74, 95%CI =0.56-0.99), 

TARGET-ALL (HR= 0.83, 95%CI =0.69-0.99) was 

related to bad prognosis and high death risk (Figure 

14A). TCGA-LGG, TCGA-LUSC, and TCGA-ACC 

had lower DSS time while the ROCK1 expression was 

higher, and lower DSS time was also connected to 

lower ROCK1 expression in TCGA-KIRC, TCGA-

THYM, TCGA-SKCM-M, and TCGA-OV (Figure 

14B). The data of DFI and PFI were also calculated and 

shown in Figure 14C, 14D. We then draw the Kaplan–

Meier (K-M) curve of tumors which significantly 

affected the OS time and cancer prognosis, and further 

demonstrate that TCGA-GMBLGG, TCGA-KIRC, 

TCGA-SKCM, and TARGET-ALL had worse 

prognosis with low-ROCK1 expression while the high 

expression of ROCK1 in TCGA-LGG, TARGET-

LAML, and TARGET-NB was correlated to the low 

survival probability (Supplementary Figure 4). 

 

RNA modification, including m1A, m5C, and m6A, had 

been extensively investigated due to its significant 

association with both cancers and bone metabolism 

[31–34]. We further investigate the correlation between 

ROCK1 expression and RNA modification genes in 

pan-cancer. The 44 RNA modification genes for 

analysis included 10 m1A-related genes, 13 m5C-

related genes, and 21 m6A-related genes, which were 

divided into writer, reader, and eraser. Most RNA 

modification gene expression was positively correlated 

to the ROCK1 (Supplementary Figure 5). 

 

Using TIMER, six immune cell infiltration scores were 

obtained for 9406 tumor samples from 38 tumor types. 

Moreover, the immune infiltration score with a 

significant correlation was determined using Pearson’s 

correlation coefficient of gene and immune cell 
infiltration scores in each tumor. The full results were 

shown in Figure 15A. To further validate the TIMER 

results, we then perform ESTIMATE immune score 



www.aging-us.com 8887 AGING 

 
 

Figure 13. The protein expression of ROCK1 in pan-cancer. (A) The protein expression level of ROCK1 in women-specific cancers 

(Breast tumors, Cervical tumors, and Ovarian tumors versus normal tissues. (B) The protein expression level of ROCK1 in Skin tumors, Renal 
tumors, and Lung tumors versus normal tissues. 
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analysis and find immune scores in 12 types of tumors 

(GBM, UCEC, LAM, CESC, STES, SARC, KIRP, 

LUSC, THYM, WT, SKCM-P, and PCPG) were 

negatively correlated to the ROCK1 expression levels 

(Figure 15B). 

 

Tumor mutation burden (TMB) refers to the total 

number of substitution and insertion/deletion mutations 

per megabase in the exon coding region of a tumor 

sample that has been analyzed. High TMB levels in 

patients may result in increased neoantigen production 

and subsequent activation of tumor-specific T cells, 

which can be further potentiated by PD-1/PD-L1 

inhibitors. As such, TMB has emerged as an important 

biomarker for predicting the response to immune 

checkpoint inhibitors in cancer patients [35]. We then 

calculate the Pearson correlation between TMB and 

ROCK1, which may help to identify ROCK1-related  

PD-1/PD-L1 inhibitors which can treat the specific 

tumors. As shown in Supplementary Figure 6A, ROCK1 

 

 
 

Figure 14. ROCK1 and survival situations. (A–D) Forest plots of ROCK1 expression and OS, DSS, DFI, and PFA. OS, overall survival; DSS, 
disease-specific survival; DFI, disease-free interval; PFI, progression-free interval; HR, hazard ratio. 
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expression had a positive correlation with TMB in 

COADREAD (r =0.12, p =0.026) and a negative 

correlation with STES (r =-0.16, p =1.7E-04) and STAD 

(r =-0.14, p =0.004). MSI (Microsatellite Instability) is a 

functional defect caused by DNA mismatch repair in 

tumor tissue. Like TMB, MSI is also an important tumor 

marker that may indicate a great effect treated by PD-

1/PD-L1 inhibitors [36]. High ROCK1 expression was 

significantly and positively associated with high MSI 

values in GBM (r =0.23, p =0.005), GBMLGG (r =0.18, 

p =3.5E-06), CESC (r =0.15, p =0.01), LUAD (r =0.096, 

p =0.03), COAD (r =0.17, p =0.004), COADREAD  

(r =0.17, p =7.5E-04), LUSC (r =0.13, p =0.005), and 

READ (r =0.28, p =0.008), and with low MSI values in 

BRCA (r =-0.1, p =0.001), STES (r =-0.14, p =7.2E-04), 

KIPAN (r =-0.09, p =0.01), STAD (r =-0.12, p =0.016), 

PRAD (r =-0.16, p =3.2E-04), HNSC (r =-0.24, p =4.5E-

08), THCA (r =-0.1, p =0.028), and DLBC (r =-0.56,  

p =3.8E-05) (Supplementary Figure 6B). 

 

DISCUSSION 
 

Osteoporosis, a systemic skeletal disorder characterized 

by low bone mass and degradation of bone tissue 

microstructure, is a leading cause of bone fragility and 

susceptibility to fractures. Postmenopausal osteoporosis 

(PMOP) is the most common type of primary 

osteoporosis, affecting over 200 million women 

globally, and influenced by a range of factors, including 

age, smoking, drug use, dietary habits, physical activity, 

endocrine status, comorbidities, and genetics [11, 37]. A 

survey from Hong Kong found that women over the age 

of 50 had a prevalence of PMOP in the spine of 34.1-

37%, compared to only 7% in men of the same age, 

indicating that low estrogen levels in women may 

increase their risk [38]. PMOP results in decreased bone 

mass, changes in bone tissue composition, increased 

fragility, and susceptibility to fractures, as well as pain, 

bone deformities, and related complications, all of which 

have a significant negative impact on the health and 

quality of life of elderly women and may even reduce 

their lifespan [39]. For individuals at low risk of 

fractures, the North American Menopause Society 

(NAMS) recommends non-pharmacologic interventions, 

including healthy eating (with adequate protein, calcium, 

and vitamin D), regular physical activity, and avoidance 

of smoking and excessive alcohol consumption [40, 41]. 

Bisphosphonates are the most commonly used drug for 

PMOP; however, they can have harmful effects, such as 

osteonecrosis of the jaw, renal impairment, atypical 

femur fractures, upper gastrointestinal side effects, and 

atrial fibrillation [42–46]. To date, several genome-wide 

 

 
 

Figure 15. ROCK1’s role in tumor immune response. (A) Correlation between the expression levels of ROCK1 and immune infiltration 
pan-cancer by TIMER database. (B) Correlation between the expression of ROCK1 and ImmuneScore derived from the ESTIMATE algorithm. 
*p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. 



www.aging-us.com 8890 AGING 

association studies (GWASs) have found hundreds of 

candidate genes associated with osteoporosis, including 

RANKL, SOST, ESR1, PTHLH, and DKK1 [47]. 

Targeting these genes with RANKL inhibitors, 

sclerostin inhibitors, estrogen agonists, parathyroid 

hormone-receptor agonists, and DKK1 inhibitors has 

been partially approved for clinical use in high-risk 

patients requiring pharmacologic interventions [47, 48]. 

Therefore, exploring novel genomic targets can provide 

further and innovative perspectives on PMOP 

therapeutic approaches. 

 

With the rapid development of computer science, 

bioinformatics was the study of large biological data, 

including DNA, RNA, and protein sequences, which is 

crucial for the detection and treatment of disease. We can 

distinguish the traits of diseases at the genetic level 

thanks to newly developed high-throughput techniques 

like gene microarray chips, RNA sequencing, and scRNA 

sequencing. Moreover, WGCNA and Machine Learning 

can screen out characteristic genes that are highly 

associated with disease phenotypes through computer 

algorithms such as clustering, iteration, training, and 

sorting. These methods enable quick and accurate early 

detection of diseases and the development of highly 

effective treatments by targeting specific genes. 

 

Getting access to the data from RNA-seq or microarray 

data, previous studies have illustrated the role of hub 

genes in PMOP by WGCNA or PPI network analysis 

[49–51]. However, there is still a paucity of research on 

identifying the hub genes by performing machine 

learning combined with WGCNA on mRNA as well as 

scRNA expression data. In the study, we identified the 

715 up-regulated and 563 down-regulated DEGs in 

PMOP patients from a training mRNA dataset and 

screened the hub genes using WGCNA and Machine 

Learning. Finally, three hub genes (KCNJ2, HIPK1, and 

ROCK1) were identified. Functional enrichment 

analyses, including DO, GO, KEGG, and GSEA, were 

performed on DEGs and the hub genes. The binding 

between proteins, ion channel activity, and immune 

reaction activity were three types of enrichment results 

that keep occurring. PPI co-expression network further 

illustrated the interaction between the hub genes which 

may influence the development of PMOP. The 

expression and diagnostic values of the hub genes were 

validated in the external mRNA dataset and finally, 

ROCK1 showed significantly low expression (p =5.3E-

04) and a high diagnostic value (AUC =0.81) in PMOP, 

further illustrating its potential key role in PMOP. 

 

KCNJ2 is a member of the KCNJ genes family which 
encodes inwardly-rectifying potassium (Kir) channels 

[52]. The mutation of KCNJ2 was widely reported in 

Andersen’s Syndrome, characterized by recurrent 

paralysis, irregular heartbeat, and defects in bone growth 

[53]. Moreover, a mutation in 17q24.3-rs12946942 near 

the KCNJ2 may be associated with the phenotypes of 

adolescent idiopathic scoliosis [54]. Only one GWAS 

study on a total of 5428 Chinese population has found 

rs1239055408 G>GA (KCNJ2) was associated with 

BMD only in women, and 17q24.3-rs1239055408 had 

significantly stronger effects in women [55]. Further 

research should focus on the molecular mechanism of 

KCNJ2 in the pathogenesis of PMOP. The 

homeodomain-interacting protein kinase (HIPK) family 

consists of four closely related serine/threonine kinases, 

HIPK1-4, that have been found as co-repressors for 

homeodomain-containing transcription factors [56]. 

HIPK plays an important role in maintaining normal 

body development and diseases such as tumors, fibrosis, 

and tissue malformation [57]. However, no study has 

explored the relationship between HIPK1 and PMOP to 

date. The deletion of HIPK in the mouse model impaired 

glucose tolerance and insulin secretion, leading to a 

higher risk of type 2 diabetes [58]. Since patients with 

type 2 diabetes had impaired metabolism and a higher 

prevalence of osteoporosis in postmenopausal women, 

whether the low expression of HIPK1 impairs the body’s 

overall metabolic capacity and leads to PMOP needs to 

be further investigated and validated [59–61]. Rho-

associated kinase ROCK1 was downstream of Rho 

GTPase that regulates the actin cytoskeleton dynamics. 

The variants of ROCK1 were associated with disease 

susceptibilities like cardiovascular diseases, cancers, 

autoimmune diseases, and glaucoma [26]. It has been 

reported that Hsa_circ_0006859 is the competing 

endogenous RNA of miR-431-5p that increases the 

expression of ROCK1 in human bone marrow 

mesenchymal stem cells (hBMSCs) from PMOP patients, 

and the capacity of hBMSCs to differentiate was 

predisposed from osteogenesis towards adipogenesis 

[62]. Studies conducted in vitro have shown that 

endoplasmic reticulum stress and autophagy failure cause 

inflammatory bone loss by activating the ROCK1 

signaling pathway in BMSCs [63]. Conversely, by 

increasing ROCK1 expression, strontium ranelate (SrR, 

an anti-osteoporosis drug) promotes the osteogenesis of 

ovariectomy rat bone marrow mesenchymal stem cells 

(OVX-rBMSCs) and cell viability of primary osteoblasts 

[64]. These inverse results indicate that more studies 

should be performed to identify the role of ROCK1 in 

PMOP. 

 

We then identified ROCK1 as the key gene for further 

analysis. Divided the PMOP patients into two groups 

based on the expression of ROCK1, the GSEA analysis 

illustrated that “adaptive immune response”, “regulation 
of cell activation”, “external side of plasma membrane”, 

“plasma membrane protein complex”, and “side of 

membrane” were enriched in low-ROCK1 group and 
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while KEGG pathways including “cytokine receptor 

interaction”, “hematopoietic cell lineage”, and “primary 

immunodeficiency” were highly related to low 

expression of ROCK1 in PMOP patients. The results 

revealed that low-ROCK1 may interact with proteins 

and cells next to the plasma, regulating the immune 

reaction and the expression and function of immune 

molecules, resulting in the development of PMOP. Bone 

versus immune system was first reported in 2000 and T 

cells reaction may influence bone health [65, 66]. 

Moreover, the immuno-skeletal interface (ISI) has been 

widely studied for the pathogenesis of osteoporosis, and 

the role of the immune system in impaired bone turnover 

was also illustrated especially associated with 

RANK/RANKL pathways [67]. Therefore, we evaluated 

the immune infiltration levels in PMOP and found the 

possible immune cells correlated with ROCK1 through 

xCell immune infiltration analysis. In PMOP patients, 

basophils and mast cells decreased whereas DCs and 

NKT cells increased statistically significantly and 

positively associated with the low expression of 

ROCK1. The innate immune, including DCs, has been 

proven to play an important role in osteoporosis. DCs 

can impact the skeletal system by producing pro-

inflammatory cytokines and transdifferentiating into 

osteoclasts with the involvement of IL-17, RANKL, or 

M-CSF [68]. It has been reported that NKT cells can 

directly produce RANKL and M-CSF, increase the 

levels of IL-15, and promote osteoclastogenesis [66]. 

Moreover, invariant NKT (iNKT) cells can activate 

myeloid dendritic cells and innate immune reactions, 

further enhancing the development of osteoclasts and 

boosting bone remodeling in osteoporosis. The role of 

iNKT was also identified in 79 whole blood samples 

from PMOP patients, Patients with PMOP exhibit an 

eight times overexpression of RANKL in their iNKT 

cells, which may be a significant factor in their bone loss 

[69]. Consistent with the mRNA results, scRNA-seq 

illustrated a high expression of ROCK1 in GMP, 

Monocytes, Neutrophils, and T cells among clustered 10 

cell types. However, more research is required to 

ascertain how ROCK1 influences the pathogenesis of 

PMOP via a series of immunological responses. 

 

Cancer is a global health challenge, ranking as the 

second leading cause of mortality and lacking effective 

treatment strategies. In 2023, the American Cancer 

Society reported 1,958,310 new cancer cases and 

609,820 cancer-related deaths in the United States alone 

[15]. The incidence of most cancers increases with age, 

with cancer representing the leading cause of death for 

individuals aged 60-79 years, who are at an increased 

risk of developing postmenopausal osteoporosis 
(PMOP) [15]. Numerous studies have investigated the 

link between osteoporosis and various types of cancer, 

particularly breast cancer, where patients with breast 

cancer, lung cancer, genitourinary cancer, and skin 

cancer have a higher prevalence of low bone mineral 

density (BMD) and osteoporosis [17, 70]. Cohort 

studies with large populations were consistent with the 

above results [29, 30]. Therefore, we aimed to further 

investigate the role of ROCK1, the hub gene identified 

in PMOP, in the context of pan-cancer, with the 

potential to facilitate early detection and precise 

therapeutic intervention for various types of cancer. 

 

We found a lower expression of ROCK1 in a total of 18 

tumors than in the normal tissues. Along with the 

clinical studies mentioned above, PMOP-related cancers 

including breast cancer, lung cancer, and genitourinary 

cancers especially those in the uterus and ovary showed 

a low ROCK1 expression. Moreover, the prognosis of 

SKCM was protected by ROCK1 according to the OS 

time and K-M curves. A previous study has proven  

Y-27632, a ROCK1 inhibitor can promote the  

growth and migration of human melanoma cells in vivo 

[71]. Immunohistochemistry on aggressive/advanced 

melanoma tissues from 129 patients also showed a 

down-regulation of Rho kinase signaling with decreased 

expression of ROCK1 [72]. Thus, low-expression 

ROCK1 may take part in the development and 

progression of SKCM in PMOP patients [73]. However, 

glucocorticoids can promote migration, invasion, and 

metastasis of melanoma by activating the ROCK1/2, 

indicating the role of ROCK1 in SKCM was still 

unclear. We also noticed that ROCK1 in kidney cancers, 

including KIRP and KICH, was decreased. The 

expression of ROCK1 in KIRC, which was another 

common renal tumor, was associated with low OS time 

and higher levels in T stage, M stage, Stage, and Grade. 

However, previous studies only focus on renal cell 

carcinoma (RCC), and multiple miRNAs (such as miR-

126, miR-199a, and miR-584) impaired the progression 

of RCC targeting ROCK1 [74–76]. To confirm 

ROCK1’s possible function in the treatment of renal 

cancers, more research on the three renal tumors 

mentioned in this study should be conducted. We then 

perform immune infiltration by TIMER and ESTIMATE 

in pan-cancer and the result showed a negative 

correlation between DCs and ROCK1 in SARC, which 

was consistent with xCell immune infiltration analysis in 

PMOP. circROCK1-E3/E4 was down-regulated in 

osteosarcoma (OS) and positively associated with the 

bad prognosis of OS patients [77]. Whether low-ROCK1 

expression in PMOP influences the immune 

microenvironment and then alters the tumor’s features 

should be further investigated. 

 

There are also some limitations in our study. Firstly, the 
clinical features of patients with PMOP and pan-cancer 

were not taken into careful consideration, as the patient 

data were obtained from public databases. Therefore, 
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further validation of our findings in larger, more diverse 

cohorts with detailed clinical information is warranted. 

Secondly, the lack of validation in animal models or 

patient samples due to the limitations of bioinformatics 

precludes the assessment of the reproducibility and 

generalizability of our results. Finally, future research 

with larger sample sizes is necessary to establish the 

diagnostic utility of the identified hub genes in PMOP. 

 

MATERIALS AND METHODS 
 

Data sources 

 

GSE56815 and GSE7429 were obtained from  

the Gene Expression Omnibus (GEO, https://www.ncbi. 

nlm.nih.gov/geo/) database as the training datasets of 

PMOP. Microarray expression data of controls and 

PMOP patients in GSE56814 was also acquired from 

the GEO database to validate the mRNA expression 

levels and the diagnosis value of genes. The information 

of microarray datasets was listed in Supplementary 

Table 1 [78, 79]. GSE147287 was downloaded for 

single-cell analysis. Pan-cancer data of multiple cancer 

types, including gene expression levels, survival time, 

and prognostic data were provided by The Cancer 

Genome Atlas (TCGA) database (https://portal.gdc. 

cancer.gov/) and The Therapeutically Applicable 

Research to Generate Effective Treatments (TARGET, 

https://ocg.cancer.gov/programs/target/). Normal tissue 

expression data from the GTEx database 

(https://gtexportal.org/home/) were used for controls 

compared with the pan-cancer data. 

 

Identification of differentially expressed genes 

 

R package “sva” was used to eliminate the batch effect 

of two PMOP datasets and combine GSE56815 and 

GSE7429 together as a training dataset for the following 

analysis [80]. With the criteria of the adjusted p-value 

(FDR method) <0.05 and |log fold change value| >0.03, 

we identified the differentially expressed genes (DEGs) 

between controls and the PMOP patients by “limma” 

package [81]. Volcano plot was plotted using the 

“ggplot2” package and the “pheatmap” package was 

used to visualize the results of DEGs screening with a 

clustering heat map. 

 

Weighted gene co-expression network analysis 

(WGCNA) 

 

WGCNA can be used to identify highly synergistic sets 

of genes, distinguish genes into modules by analyzing 

the association relationships between genes, and later 

look for molecular features of specific phenotypes by 

correlation analysis between specific modules and 

sample phenotypes. We used the R package “WGCNA” 

for the whole analysis and constructed the network [19]. 

The samples were organized into clusters to detect and 

remove significant outliers. Co-expression networks 

were then developed using automatic networks. Then, 

we identified the soft thresholding power β, which was 

used to calculate the adjacency of the co-expression 

network. To select the important key modules as 

candidates, we performed hierarchical clustering and 

dynamic tree cut function while gene significance (GS) 

and module membership (MM) were assessed to link 

modules with clinical features. Modules having the 

highest Pearson module membership correlation (MM) 

and p <0.05 were chosen as the matching modules, and 

the gene lists of each module were used for further 

study. 

 

Functional enrichment analysis 

 

Disease Ontology (DO, https://disease-ontology.org/) is 

a standardized ontology designed to provide consistent, 

reusable, and sustainable descriptions of human disease 

terminology, phenotypic traits, and related medical 

vocabulary disease concepts. Gene Ontology (GO, 

http://geneontology.org/) database includes three term 

groups: biological processes (BP), molecular functions 

(MF), and cellular components (CC). According to the 

specific genes, GO enrichment analysis can show the 

result of several significant GO terms. Kyoto 

Encyclopedia of Genes and Genomes (KEGG, 

https://www.kegg.jp/) database aids in comprehending 

the essential features and purposes of biological systems 

like cells, organisms, and ecosystems. Using the R 

package “clusterProfiler”, We perform DO, GO, and 

KEGG functional enrichment analyses to explore the 

biological functions, signaling pathways, and diseases 

that may be highly correlated with DEGs or hub genes 

[82]. We choose the top significant terms with the 

adjusted p <0.05 for visualization using bar plots and 

dot plots by “ggplot2” package. 

 

Gene Set Enrichment Analysis (GSEA, http://www. 

gsea-msigdb.org/gsea/index.jsp) is a new computational 

method without appointing the different expression 

genes, which can include genes with insignificant 

differential expression but important biological 

significance that were easily omitted from GO/KEGG 

enrichment analysis. We calculate the Normalized 

Enrichment Score (NES) and the p-value to select  

key terms for the following analysis. R package 

“clusterProfiler” was used for calculating and showing 

the results [82]. 

 

Machine learning 

 

With a wide range of applications in the biomedical 

field, Machine Learning is an important tool belonging 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://ocg.cancer.gov/programs/target/
https://gtexportal.org/home/
https://disease-ontology.org/
http://geneontology.org/
https://www.kegg.jp/
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
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to artificial intelligence. We use five types of Machine 

Learning methods to predict the key hub genes which 

were greatly associated with PMOP. Support Vector 

Machines-Recursive Feature Elimination (SVM-RFE) is 

an algorithm that selects the feature genes with the 

highest score through multiple iterations. R packages 

“e1071”, “kernlab” and “caret” were used for SVM-

RFE [83, 84]. Using “glmnet” package, we construct 

the Least Absolute Shrinkage and Selection Operator 

(LASSO) regression model that selects and regularize 

the variables to improve the predictability and 

interpretability of identifying the hub genes [85]. 

Random Forest (RF) is an algorithm based on ensemble 

learning, using several decision trees to output the 

learning result. We use R package “randomForest” to 

perform the calculation and extrapolate hub genes. 

Gradient Boosting Machine (GBM) was used to predict 

the key genes by “gbm” package and genes whose 

importance scores >0 were considered as the feature 

genes. eXtreme Gradient Boosting (XGboost) algorithm 

has high calculating speed and efficiency in screening 

the phenotype-associated genes. R package “xgboost” 

was used to set the model and complete the genes 

prediction. According to the screened genes of each 

Machines Learning method, we construct a Venn plot 

by jvenn (http://jvenn.toulouse.inra.fr/app/index.html) 

to get the common genes as the key hub genes for 

further study [86]. The correlation between the key hub 

genes identified was calculated based on the gene 

expression levels from PMOP datasets with the help of 

R plot “corrplot”. 

 

Protein-protein interaction (PPI) network 

construction 

 

Given a list of query genes, GeneMANIA 

(https://genemania.org/) can use a large amount of 

genomics and proteomics data to discover functionally 

similar genes or proteins and weights each functional 

genomic dataset according to the predicted values of the 

query [87]. We use GeneMANIA to explore the co-

expression of proteins and construct the PPI networks of 

hub genes in our study. 

 

The receiver operating characteristic (ROC) curve 

analysis and expression analysis 

 

We perform the ROC curve analysis to evaluate the 

diagnostic value of the hub genes. The ROC curve’s 

proximity to the upper left corner increases the true 

positive rate and sensitivity of the test while 

decreasing the false positive rate and misdiagnosis 

rates, indicating a better diagnostic value of the genes 
for PMOP. The ROC curve was assessed and drawn 

using the "pROC" R package [88]. AUC (Area Under 

Curve) is the region that the ROC curve encompasses, 

and axis and hub genes were considered helpful  

in screening the disease if their AUC was greater  

than 0.7. 

 

Immune infiltration analysis 

 

Immune cells play an important role in various diseases 

and abnormalities. xCell (https://xcell.ucsf.edu/) is a 

gene signatures-based tool learned from thousands of 

pure cell types from various sources which can calculate 

the expression of 64 types of immune and stroma cells 

in each sample [21]. The level of immune infiltration in 

controls and PMOP patients was evaluated with the R 

package “xCell”. We calculated the related coefficient 

and estimated the correlation between the expression of 

each immune cell by the “corrplot” package. The 

correlation between the hub genes and immune cells 

was also identified by “corrplot”. 

 

Single-cell analysis 

 

The data of single-cell RNA sequencing (scRNA-seq) 

on BM-derived mononuclear cells (BM-MNCs) from a 

PMOP patient was collected from GSE147287. We use 

R package “Seurat” to conduct quality control, 

expression data normalization, dimension reduction, 

and clustering [89]. Cell type annotation was auto-

matically completed by “SingleR” package [90]. R 

packages “ggplot2” and “cowplot” visualized the 

analysis result. 

 

Pan-cancer analysis 

 

After eliminating cancer data with less than three 

samples, we extracted gene expression data of each 

sample from the uniformly standardized pan-cancer 

dataset containing 34 cancer types. log2(x+1) 

transformation was performed for each expression 

value and unpaired Wilcoxon Rank Sum and  

Signed Rank Tests were used for differential analysis. 

The Human Protein Atlas (HPA) database 

(http://www.proteinatlas.org/) was used to verify the 

expression of ROCK1 at the protein level. 
 

A total of 44 cancer species were eventually acquired 

for investigation after cancer species with fewer than 10 

samples in each cancer species were excluded from the 

data set. We created a Cox proportional hazards 

regression model using the “coxph” function of the R 

package “survival” to examine the correlation between 

gene expression and prognosis in each tumor. The log-

rank test was utilized as a statistical test to determine 

the prognostic significance. 
 

From the pan-cancer dataset, we retrieved the 

expression data of the target gene and 44 marker genes 

http://jvenn.toulouse.inra.fr/app/index.html
https://genemania.org/
https://xcell.ucsf.edu/
http://www.proteinatlas.org/
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for RNA modification (m1A, m5C, and m6A) in each 

sample, and then we did a log2(x+1) transformation. 

Additionally, modification functions are used to 

categorize marker genes (writer, reader, eraser). The 

Pearson correlation between the target gene and marker 

genes was then calculated using R software (Version 

4.2.2). 

 

We took the target gene expression information and 

the gene expression profile for each tumor from the 

pan-cancer dataset, mapped the expression profile to 

Gene Symbol, and then used the R package 

“ESTIMATE” to compute the immunological ratings 

for each patient in each tumor based on the gene 

expression [91]. Taking gene expression into account, 

we also assessed each patient’s B cell, T cell CD4, T 

cell CD8, Neutrophil, Macrophage, and DC immune 

infiltration score in each tumor using the TIMER 

method of the R package "IOBR" [92, 93]. We 

calculated the Pearson’s correlation coefficient  

of the gene and immune infiltration score in each 

tumor using the “corr.test” function of the R package 

“psych” to ascertain the significance of the 

relationship. 

 

We explore the relationship between the gene 

expression levels and clinical staging of pan-cancer, 

including T stage, N stage, M stage, Stage, and Grade. 

The difference in gene expression in each tumor sample 

from various clinical stages was calculated using R 

software (version 4.2.2), and the significance of the 

difference between pairs was analyzed using the 

unpaired Student’s t-Test and multiple groups of 

samples using the analysis of variance. 

 

We get the entire Simple Nucleotide Variation data set 

for level four TCGA samples from GDC 

(https://portal.gdc.cancer.gov/). The TMB (Tumor 

Mutation Burden) of each tumor was determined using 

the “tmb” function of the R package “maftools” [94]. 

We also gathered the MSI (Microsatellite Instability) 

score for every tumor from earlier research. We 

combined the samples’ TMB, MSI, and gene expression 

data, and for each tumor, we estimated Pearson 

correlations with the TMB or MSI. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Bar plot (A) and dot plot (B) showed the results of GO enrichment analysis of DEGs. Bar plot (C) and dot plot (D) 

showed the results of KEGG enrichment analysis of DEGs. 
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Supplementary Figure 2. Ridge map showed the GO (A) and KEGG (B) enrichment analysis results by GSEA. GSEA plot with 112 ranked 
common genes and the top 5 up-regulated GO terms (C) or KEGG terms (D). GSEA plot with 112 ranked common genes and the top 5 down-
regulated GO terms (E) or KEGG terms (F). 



www.aging-us.com 8903 AGING 

 
 

Supplementary Figure 3. Significantly different Pan-cancer expression levels of ROCK1 in T-stage (A), N-stage (B), M-stage (C), Stage (D), 
and Grade (E). *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. 
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Supplementary Figure 4. Analysis of the overall survival in multiple tumors with the best cut-off method. The expression levels 
of ROCK1 are positively correlated with OS in TCGA-GMBLGG (A), TCGA-KIRC (B), TCGA-SKCM (C), and TARGET-ALL (D). The expression levels 
of ROCK1 are negatively correlated with OS in TCGA-LGG (E), TCGA-LAML (F), and TARGET-NB (G). 
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Supplementary Figure 5. Correlation of ROCK1 expression with RNA-modified (m1A-, m5C-, and m6A-modified) gene 
expression in multiple cancers. *p < 0.05 



www.aging-us.com 8906 AGING 

 
 

Supplementary Figure 6. (A) Correlation between the expression levels of ROCK1 and TMB pan-cancer. (B) Correlation between the 

expression levels of ROCK1 and MSI pan-cancer. 
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Supplementary Tables 
 

 

Supplementary Table 1. The characteristics of microarray datasets obtained from 
GEO database. 

GEO Dataset Platform PMOP(n) Control(n) Year Country PMID 

GSE56815 GPL96 40 40 2016 USA 29330445 

GSE7429 GPL96 10 10 2008 USA 18433299 

GSE56814 GPL96 31 42 2016 USA 

30056508, 

31073748, 

29330445 

 

Supplementary Table 2. Basic information about patients from 
whom samples for IHC staining in the HPA database. 

Position Tissue Patient ID Sex Age Staining 

Skin 
Normal 1876 Female 46 High 

Cancer 2013 Female 85 Low 

Kidney 
Normal 3521 Female 68   Medium 

Cancer 1498 Female 70 Not detected 

Lung 
Normal 2268 Female 49 High 

Cancer 3016 Female 73 Not detected 

Breast 
Normal 3544 Female 45 Medium 

Cancer 2083 Female 51 Low 

Cervix 
Normal 2102 Female 57 Medium 

Cancer 4218 Female 29 Not detected 

Ovary 
Normal 2264 Female 60 Medium 

Cancer 2082 Female 57 Low 

 


