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INTRODUCTION 
 

Central nervous system (CNS) malignancies are 

among the cancers with the poorest prognosis [1]. 

Glioma is the most common primary central nervous 

tumor in the brain, accounting for approximately 81% 

of malignant brain tumors. Gliomas usually originate 

from glial cells or precursor cells and progress to 

astrocytomas, oligodendrogliomas, ependymomas, or 

oligoastrocytomas [2, 3]. According to the previous 
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ABSTRACT 
 

Background: Glioma is the most frequent primary tumor of the central nervous system. The high heterogeneity of 
glioma tumors enables them to adapt to challenging environments, leading to resistance to treatment. Therefore, 
to detect the driving factors and improve the prognosis of glioma, it is essential to have a comprehensive 
understanding of the genomic heterogeneity, stemness, and immune microenvironment of glioma. 
Methods: We classified gliomas into various subtypes based on stemness, genomic heterogeneity, and immune 
microenvironment consensus clustering analysis. We identified risk hub genes linked to heterogeneous 
characteristics using WGCNA, LASSO, and multivariate Cox regression analysis and utilized them to create an 
effective risk model. 
Results: We thoroughly investigated the genomic heterogeneity, stemness, and immune microenvironment of 
glioma and identified the risk hub genes RAB42, SH2D4A, and GDF15 based on the TCGA dataset. We developed 
a risk model utilizing these genes that can reliably predict the prognosis of glioma patients. The risk signature 
showed a positive correlation with T cell exhaustion and increased infiltration of immunosuppressive cells, and 
a negative correlation with the response to immunotherapy. Moreover, we discovered that SH2D4A, one of the 
risk hub genes, could stimulate the migration and proliferation of glioma cells. 
Conclusions: This study identified risk hub genes and established a risk model by analyzing the genomic 
heterogeneity, stemness, and immune microenvironment of glioma. Our findings will facilitate the diagnosis 
and prediction of glioma prognosis and may lead to potential treatment strategies for glioma. 
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classification scheme established by the World Health 

Organization, primary gliomas are classified as grades I 

to IV [4]. This grading system reflects the malignancy 

of the tumor, and in general, a higher grade is associated 

with a worse prognosis. WHO grade I indicates that 

slow-growing lesions are usually associated with a 

 good prognosis, while WHO grade IV is recognized as 

highly malignant [5]. WHO grade II and III gliomas, 

including astrocytomas, oligodendrogliomas, and mixed 

oligodendrogliomas are defined as low-grade gliomas 

(LGG). Generally, low-grade gliomas (LGG) show 

some sensitivity to treatment and have a better 

prognosis [6, 7]. World Health Organization grade IV 

gliomas (glioblastomas, GBM) are highly malignant 

and also the most common gliomas, accounting for 

approximately 45% of all gliomas [8, 9]. At present, 

molecular pathological features (such as mutation status 

of isocitrate dehydrogenase gene IDH1 or IDH2) are 

used to classify adult glioma. IDH-mutated gliomas 

usually present with a lower histological grade and have 

a better prognosis. Median survival is approximately 12 

years [10]. In contrast, IDH wild-type gliomas usually 

present as glioblastomas (GBM) with a poor prognosis 

and a median survival of only 12 - 15 months [11–13]. 

 

Traditional cancer treatments, such as surgery, 

chemotherapy, and radiation therapy, have shown limited 

improvement in the prognosis of patients with glioma. 

The main reason for the limited therapeutic progress in 

glioma is the blood-brain barrier consisting of endothelial 

cells, capillaries, and basement membrane, which 

prevents most anti-tumor drugs from entering the brain. 

Thus, although many cancer therapies have been 

developed, few drugs have been approved for the 

treatment of glioma [14, 15]. Immunotherapy is currently 

at the forefront of cancer treatment. Even though immune 

checkpoint inhibitors (ICI) can penetrate the blood-brain 

barrier, they still do not improve the prognosis of glioma 

[16, 17]. Gliomas are characterized by a high degree of 

heterogeneity and the ability to proliferate aggressively 

[11]. The heterogeneity of gliomas allows them to adapt 

to challenging microenvironments, leading to treatment 

resistance [18, 19]. For patients with glioblastoma, 

recurrences and resistance to treatment can result in a 

short average survival time after treatment. To a large 

extent, this is due to the molecular heterogeneity of 

gliomas, which affects the overall prognosis and response 

to treatment [20, 21]. In addition, the tumor 

microenvironment is another factor in the development 

and treatment resistance of glioma. The tumor 

microenvironment (TME) consists of a variety of non-

tumor cells, such as endothelial cells, stromal cells, 

mesenchymal cells, and immune cells, which play an 

extremely important role in tumor progression, 

recurrence, and drug resistance [22–24]. Communication 

between glioma cells and adjacent cells and the immune 

environment accelerates the cancer process and 

contributes to the formation of glioma stem cells, 

resulting in treatment resistance [21, 25]. Meanwhile, the 

interaction between tumor microenvironment (TME) and 

tumor stem cells significantly affects the aggressive 

proliferation and molecular heterogeneity of tumors [25]. 

 

Here, we found that consensus clustering analysis based 

on tumor stemness, genomic heterogeneity, and immune 

microenvironment could classify gliomas into distinct 

subtypes, and the prognosis was significantly different 

among subtypes. By screening differentially expressed 

genes, and performing WGCNA, LASSO, and 

multivariate Cox regression analyses, we identified risk 

hub genes (RAB42, SH2D4A, and GDF15) associated 

with glioma stemness, genomic heterogeneity, and the 

immune microenvironment. The prognostic model 

constructed using these risk hub genes in this study 

could predict not only glioma prognosis, but also 

immunotherapy response in immunotherapy cohort. 

Although SH2D4A appears to play opposing roles in 

tumors [26, 27], our experiments demonstrated that 

knockdown of SH2D4A significantly inhibited the 

migration and proliferation of glioma cells. In 

conclusion, we investigated the impact of glioma 

stemness, genomic heterogeneity, and immune 

microenvironment-related risk hub genes on glioma and 

provided new ideas for therapeutic strategies for glioma. 

 

MATERIALS AND METHODS 
 

Datasets and samples 

 

The TCGA dataset (Supplementary Table 1) was 

downloaded from the Xena Browser at the  

University of California, Santa Cruz (UCSC, 

https://xenabrowser.net/datapages/) [28]. The clinical 

data (Supplementary Table 2) and RNA-seq data of the 

Chinese Glioma Genome Atlas (CGGA) were obtained 

from the CGGA data portal (http://www.cgga.org.cn/) 

[29]. The data for the IMvigor210 cohort were loaded 

from the R package “IMvigor210CoreBiologies” [30]. 

 

Analysis of genomic heterogeneity, stemness, and 

immune microenvironment 

 

The glioma single nucleotide variant dataset processed 

by MuTect2 software [31] was downloaded from GDC 

(https://portal.gdc.cancer.gov/). Tumor mutation burden 

(TMB) was calculated for each glioma using the tmb 

function of the R package “maftools”, and microsatellite 

instability (MSI) for each glioma was obtained from 

previous studies [32, 33]. Glioma stemness scores based 

on RNA expression and DNA methylation were 

calculated according to a previous study [34]. Stromal-

Score, ImmuneScore, and ESTIMATEScore were 

https://xenabrowser.net/datapages/
http://www.cgga.org.cn/
https://portal.gdc.cancer.gov/
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calculated for each glioma based on gene expression 

using the R software package “estimate” [35]. The 

abundance of tumor-infiltrating immune cells in 

gliomas was analyzed using the CIBERSOR, 

MCPCOUNTER and EPIC algorithms on the TIMER2 

platform (http://timer.cistrome.org/) [36]. 

 

Consensus clustering analysis 

 

Cluster analysis was performed by Consensus-

ClusterPlus [37], using agglomerative pam clustering 

with 1-pearson correlation distances, with 10 repetitions 

for 80% of the samples. The empirical cumulative 

distribution function plot was used to determine the 

optimal number of clusters. 

 

Transfection with siRNA 

 

These siRNAs were synthesized by the Shanghai 

GenePharma Co. (Supplementary Table 3). U87 MG 

cells were transfected with negative control siRNA and 

SH2D4A siRNA according to the manufacturer’s 

instructions of Lipofectamine 3000 (Invitrogen, 

L3000015). 48 hours after transfection, U87 MG cells 

were harvested for subsequent western blot and qRT-

PCR experiments to verify their knock-down efficiency. 

 

Western blot analysis 

 

Western blot analysis was performed according to our 

previously reported method with minor modifications 

[38]. In brief, protein extracts were prepared using 

RIPA lysis buffer (Epizyme) in the presence of 100x 

EDTA-free Protease Inhibitor Cocktail (Epizyme). Cell 

lysates were separated through electrophoresis and 

electro-transferred to polyvinylidene difluoride (PVDF) 

membranes (Merck Millipore). The membrane was 

blocked with 5% non-fat milk in TBS solution for 2 h at 

room temperature and incubated with anti-SH2D4A 

(15957-1-AP; Proteintech) or anti-α-Tubulin (11224-1-

AP; Proteintech) overnight at 4° C. Blots were then 

washed thrice with TBST and probed for 2 h at room 

temperature with HRP- conjugated AffiniPure Goat 

Anti-Rabbit IgG (SA00001-2; Proteintech). Finally, the 

labeled proteins were detected using the ECL reagent. 

 

Quantitative real-time PCR 

 

Trizol (Thermo Fisher) was used to extract RNA 

samples, and then 1 μg of total RNA and NovoScript® 

Plus All-in-one 1st Strand cDNA Synthesis SuperMix 

(gDNA Purge) (Novoprotein E047-01B) were used to 

prepare cDNA according to the manufacturer’s 
instructions. Thereafter, cDNA was then analyzed by 

NovoStart® SYBR qPCR SuperMix Plus (Novoprotein 

E096-01A). Relative gene expression was evaluated 

using the 2−ΔΔCT method. The GAPDH was utilized as 

an internal control, and all primer sequences are 

compiled in Supplementary Table 4. 

 

Cell proliferation and migration 

 

Cell proliferation was analyzed by Cell Counting Kit-8 

(CCK-8) (CellorLab, CX001L) and BeyoClick™ EdU-

594 assay kit (Beyotime, C0078S). After 24h of 

transfection, cell suspensions were planted in 96-well 

plates. At 24, 48, 72 and 96h, 10ul CCK-8, and 90ul 

medium were incubated together at 37° C for 2h, then 

the absorbance at 450 nm was detected by a microplate 

reader. 

 

For direct observation of the proliferating cells, the 5-

Ethynyl-2-deoxyuridine incorporation experiment was 

also performed according to the specifications. The cells 

were further incubated with EdU for 2h before fixation, 

permeabilization, and EdU staining. The cell nuclei 

were stained with Hoechst33342 for 30min. Finally, the 

proportion of cells that incorporated EdU was detected 

using confocal laser microscopy. 

 

To perform migration assays, U87 MG cells were 

seeded into 6-well plates. Transfection was performed 

when cell density reached 70-90%. 48 h later the plates 

were scraped with pipette tips, washed with PBS, and 

incubated with serum-free medium. The original images 

and migrated images were obtained using the inversion 

microscope system. The migrated area was analyzed by 

Image J software. 

 

Construction of the risk model 

 

In order to construct a scale-free co-expression network, 

a weighted correlation network analysis (WGCNA) was 

performed using the R package “WGCNA”, and four 

co-expression modules were finally obtained after 

merging modules with distances less than 0.25. Genes 

with high connectivity in the clinically important 

modules were identified as hub genes. LASSO and 

multivariate regression analyses were then performed 

sequentially to screen for positive hub genes that were 

significantly associated with overall survival (OS). Risk 

scores were calculated as follows: 

 
n

i

i 1

oef
i

Risk score C Exp
=

=   

 

Identification of DEGs and enrichment analysis 

 

We identified differentially expressed genes (DEGs) 

between different clusters by executing the “limma” 

package in the R software (p< 0.05 and |FC| ≥ 1.5). 

http://timer.cistrome.org/
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Gene enrichment analysis was conducted using 

Metascape [39]. 

 

Statistical analysis 

 

One-way ANOVA, Wilcox test and t-test were used to 

analyze the significance of differences in heterogeneity, 

stemness, gene expression, and infiltration of immune 

cells in gliomas. LASSO, multivariate Cox regression, 

and Kaplan-Meier analyses were performed to screen 

and evaluate the risk signature using the R packages 

“glmnet” and “survival”. Roc curve was drawn using 

the R package “survivalROC.” All statistical analyses 

were performed using GraphPad Prism and R software, 

and P values less than 0.05 were considered statistically 

significant. 

 

Availability of data and material 

 

Bioinformatics datasets presented in this study can be 

found in online repositories, and the datasets used 

and/or analyzed during experiments are available from 

the corresponding author on reasonable request. 

 

Consent for publication 

 

All authors had final approval of the submitted versions 

and read the journal’s authorship statement. 

 

RESULTS 
 

Consensus clustering analysis of stemness, genomic 

heterogeneity, and the immune microenvironment in 

glioma 

 

The molecular heterogeneity of gliomas significantly 

affects the overall prognosis of patients and their 

response to treatment. Three clusters were identified 

through unsupervised consensus clustering analysis of 

genomic heterogeneity of gliomas in the TCGA dataset 

(Figure 1A). We examined the overall survival of the 

three clusters and found significant differences in 

prognosis between them. Cluster 1 had the lowest 

prognosis, while cluster 3 had the highest prognosis 

(Figure 1B). Significant differences were observed in 

TMB and MSI between cluster 1, with the lowest 

prognosis, and cluster 3, with the highest prognosis 

(Figure 1C). In addition, gliomas were divided into two 

subtypes based on the unsupervised consensus clustering 

analysis of stemness scores in the TCGA dataset  

(Figure 1D). The prognosis of cluster 2 was more 

favorable than that of cluster 1 (Figure 1E). Assessment 

of glioma stemness scores based on RNA expression 

(RNAss) and DNA methylation (DNAss) revealed that 

cluster 1 had higher DNAss and lower RNAss than 

cluster 2 (Figure 1F). Tumor microenvironment is a 

crucial factor in glioma development and treatment 

resistance. We conducted another cluster analysis to 

examine the immune microenvironment of glioma. This 

analysis revealed that the StromalScore, ImmuneScore, 

and ESTIMATEScore differed significantly between 

clusters, with cluster 1 having higher scores than  

cluster 2. Improved prognosis was observed in cluster 2 

(Figure 1G–1I). 

 

Identification of DEGs associated with glioma 

stemness, genomic heterogeneity, and immune 

microenvironment 

 

We quantified gene expression among the clusters 

divided according to genomic heterogeneity, stemness, 

and tumor microenvironment, and identified 1792 (412 

down-regulated, 1380 up-regulated), 1599 (306 down-

regulated, 1293 up-regulated), and 1806 (709 down-

regulated, 1097 up-regulated) differentially expressed 

genes (DEGs), respectively (Figure 2A–2C). And 

finally, we identified 857 DEGs shared by the three 

clustering (Figure 2D). Enrichment analysis revealed 

that differentially expressed genes were involved in 

immunoregulatory pathways, including Cytokine-

cytokine receptor interaction, Signaling by Interleukins, 

regulation of T cell activation, and Immunoregulatory 

interactions between a Lymphoid and a non-Lymphoid 

cell pathway (Figure 2E). We extracted all protein-

protein interactions among differentially expressed 

genes from a PPI data source and constructed a PPI 

network. MCODE algorithm was applied to this 

network to identify neighborhoods where proteins are 

densely connected (Figure 2F). GO enrichment analysis 

was applied to the network to reveal biological 

meanings, and the results showed that MCODE 3 was 

enriched in HDACs deacetylate histones; MCODE 4 

was enriched in TCR signaling Translocation of ZAP-

70 to Immunological synapse, Phosphorylation of CD3 

and TCR zeta chains; MCODE 6 was enriched in JAK-

STAT signaling pathway, Signaling by Interleukins, and 

Cytokine Signaling in Immune system (Figure 2F). 

 

Screening of risk hub genes 

 

Through WGCNA analysis of integrated data  

containing DEGs and clinical characteristics (such as 

genomic heterogeneity, stemness and tumor immune 

microenvironment), four co-expression modules were 

finally determined (Figure 3A–3C). We filtered the most 

relevant module by evaluating its interrelationships with 

traits and identified the blue module as the most relevant 

(Figure 3D, 3E). The hub genes of blue module were 

extracted. Subsequently, LASSO Cox regression 
analysis and multivariate Cox regression analysis were 

performed sequentially to filter variables. Ultimately, we 

selected RAB42, SH2D4A, and GDF15 as risk hub 
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genes (Figure 4A–4C). The expression of three risk hub 

genes in glioma was investigated in the TCGA and 

CGGA datasets, and RAB42, SH2D4A, and GDF15 

were found to be higher expressed in GBM than in LGG 

(Figure 4D, 4E). In the TCGA and CGGA datasets, the 

Kaplan-Meier curve showed that RAB42, SH2D4A,  

and GDF15 significantly affected the prognosis of 

glioma, with a poor prognosis at high expression  

(Figure 4F, 4G). 

 

Construction of the risk signature 

 

A risk model was then constructed in the TCGA dataset 

using the risk hub genes RAB42, SH2D4A, and GDF15. 

Kaplan-Meier curve showed that high-risk scores were 

associated with poor prognosis. The risk score had high 

sensitivity and specificity in predicting 1-, 3-, and 5-year 

survival rates in glioma patients (Figure 5A–5C). The 

results of the risk model were also confirmed in the 

CGGA dataset (Figure 5D–5F). In addition, we  

also validated the risk model in GBM and LGG, 

respectively (Supplementary Figure 1). The results of the 

correlation analysis showed that risk scores and risk hub 

genes RAB42, SH2D4A and GDF15 were highly 

correlated with the clinical traits such as TMB, MSI, 

RNAss, DNAss, StromalScore, ImmuneScore and 

ESTIMATEScore (Figure 6A). To better understand the 

relationship between the risk signature and clinical 

characteristics, we analyzed the distribution of survival 

status, WHO classification, risk scores, MGMT, and IDH 

 

 
 

Figure 1. Consensus clustering analysis in glioma. (A) Consensus clustering was performed based on the genomic heterogeneity of 

gliomas. (B) Kaplan-Meier curves displaying prognostic differences between different clusters. (C) The differences in TMB and MSI between 
clusters. (D) Consensus clustering was performed based on the stemness of gliomas. (E) Kaplan-Meier curves displaying prognostic 
differences between different clusters. (F) The differences in DNAss and RNAss between clusters. (G) Consensus clustering is performed 
based on the microenvironment of gliomas. (H) Kaplan-Meier curves displaying prognostic differences between different clusters. (I) The 
differences in the microenvironment scores between clusters. 
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status of glioma patients. We identified significant 

differences in clinical characteristics between patients 

with low-risk scores and those with high-risk scores. 

Patients in the low-risk score group exhibited an IDH-

Mutant, Methylated phenotype and had a better 

prognosis, and GBM had a significantly higher risk score 

than the corresponding LGG subtype (Figure 6B–6E). 

 

The risk score is an independent risk factor for 

glioma prognosis 

 

We performed univariate Cox regression analysis to 

investigate the independent prognostic factors for glioma. 

And the analysis showed that risk score, age, MGMT 

promoter status, WHO classification, and IDH status 

were significantly associated with prognosis (Figure 7A). 

Multivariate Cox regression analysis showed that risk 

score and age were significantly associated with 

prognosis, suggesting that risk score is an independent 

prognostic factor for glioma (Figure 7B). Following that, 

we developed a nomogram survival prediction model for 

glioma patients based on independent prognostic 

parameters, and plotted calibration curves. The results 

showed good agreement between the predicted outcome 

and the 1-, 3- and 5-year overall survival of patients 

(Figure 7C, 7D). 

 

 
 

Figure 2. DEGs screening and enrichment analysis. (A) Differentially expressed genes (Fold change >1.5 and P < 0.05) were screened 
between different clusters distinguished in genomic heterogeneity, (B) stemness, and (C) tumor microenvironment, respectively. (D) Venn 
diagram showing the overlap of identified differentially expressed genes. (E) Enrichment analysis of the differentially expressed genes.  
(F) Protein-Protein Interaction Networks, PPI. 
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Risk signature is highly associated with tumor 

immune cells 

 

The above analysis mentioned that DEGs were enriched 

in immunoregulatory process, and risk signature was 

highly correlated with the immune microenvironment, 

so we further analyzed the relationship between risk 

signature and infiltrating tumor immune cells. 

Infiltrating analysis showed elevated infiltration of  

T cell regulatory (Tregs), tumor associated macrophages, 

 

 
 

Figure 3. Weighted correlation network analysis. (A, B) Soft-thresholding powers. (C) Clustering of module genes in the TCGA cohort. 
(D) Module-trait relationships. (E) Scatter plot of correlation between GS and MM. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
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tumor associated fibroblasts, neutrophils and endothelial 

cells in patients in the high-risk score group compared 

to patients in the low-risk score group (Figure 8A–8C). 

Moreover, the risk signature and risk hub genes RAB42, 

SH2D4A, and GDF15 were highly positively correlated 

with the increase of these immunosuppressive tumor 

infiltrating cells (Figure 8D). Although CD4+ and 

CD8+ T cells increased in high-risk group, they might 

be exhausted T cells, characterized by progressive loss 

of T cell function and ultimately loss of cascade 

response. Therefore, we analyzed the relationship 

between risk signature and T cell exhaustion. The 

results showed that the risk signature was positively 

correlated with exhausted T cell signature (Figure 8E, 

8F), and the expression of exhausted markers 

HAVCR2, TIGIT, LAG3, PDCD1, and LAYN was up-

regulated in high-risk group (Figure 8G). 
 

Risk signature is associated with immunotherapy 

outcome 
 

In order to analyze the predictive effect of risk signature 

on the efficacy of immune checkpoint inhibitors (ICI) 

therapy, we downloaded gene expression profiles and 

 

 
 

Figure 4. Identification of risk hub genes related to the overall survival of glioma. (A, B) LASSO regression analysis of hub genes in 
the TCGA cohort. (C) Multivariate Cox regression analysis of hub genes in the TCGA cohort. (D, E) Violin plot showing the expression levels of 
the 3 risk hub genes between LGG and GBM in the TCGA and CGGA datasets, respectively. (F, G) Kaplan-Meier curves displayed 3 risk hub 
genes were significantly related to poor prognosis in the TCGA and CGGA datasets, respectively. 
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clinical data of the IMvigor210 cohort. All samples 

were divided into high and low-risk groups according to 

the risk signature. Patients with treatment response 

[complete remission (CR) or partial remission (PR)] had 

significantly lower risk scores than those without 

response [stable (SD) or progressive (PD)] (Figure 9A). 

By evaluating the distribution of CR/PR and SD/PD in 

the high-risk and low-risk groups, we found that the 

low-risk group responded better to ICI treatment than 

the high-risk group (Figure 9B), and had a significantly 

better prognosis than the high-risk group (Figure 9C). 

We then analyzed the prognostic value of risk signature 

and risk hub genes in pan-cancer (Figure 9D, 9E), and 

the results showed that the low-risk group had a better 

prognosis in LIHC\PAAD\MESO\UVM (Figure 9E). 

SH2D4A affects the migration and proliferation of 

glioma cells 

 

To validate the expression of the risk hub genes in 

glioma, we analyzed the immunohistochemistry patho-

logical specimen data. The results showed that the 

expression level of SH2D4A was increased in GBM 

relative to LGG (Figure 10A). However, the function of 

SH2D4A in glioma has not been reported in the 

literature so far. To investigate the effect of SH2D4A on 

glioma cells, we knocked down SH2D4A in U87 MG 

cells by transfecting specific siRNAs (Figure 10B, 

10C). CCK-8 and Edu assays suggested that SH2D4A 

significantly affected the proliferation of U87 MG cells 

(Figure 10D–10F). Cell migration assays confirmed that 

 

 
 

Figure 5. Construction of the risk score signature. (A) Distribution of the risk score, survival status, and expression profile of the 
prognostic genes in the TCGA cohort. (B) Kaplan-Meier curves displaying prognostic differences between high and low-risk groups in the 
TCGA cohort. (C) The ROC curves describing the sensitivity and specificity of the risk score in predicting OS at 1-, 3- and 5-year time points in 
the TCGA cohort. (D) Distribution of the risk score, survival status, and expression profile of the prognostic genes in the CGGA cohort. (E) 
Kaplan-Meier curves displaying prognostic differences between high and low-risk groups in the CGGA cohort. (F) The ROC curves describing 
the sensitivity and specificity of the risk score in predicting OS at 1-, 3- and 5-year time points in the CGGA cohort. 
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Figure 6. The relationship between risk score and clinical phenotype. (A) Correlations between 3 risk hub genes and tumor 

stemness, genomic heterogeneity, and immune microenvironment. (B) Sankey Diagram displayed the distribution of the survival status, IDH 
status, WHO grade, risk score and MGMT promoter status. (C) Analysis of the risk scores in different IDH status, (D) MGMT promoter status, 
and (E) WHO grades, respectively. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
 

 
 

Figure 7. Risk score is an independent prognostic factor for glioma. (A) Univariate Cox regression analyses showed that clinical 
features such as the risk score, age, MGMT promoter status, WHO grade, and IDH status were significantly correlated with prognosis.  
(B) Multivariate Cox analysis showed the risk score remained associated with the prognosis. (C) The Nomogram was constructed to predict 
prognosis in patients at 1-, 3-, and 5 years in the TCGA dataset. (D) The calibration curve of the nomogram. 
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knockdown of SH2D4A significantly inhibited the 

migration of U87 MG cells (Figure 10G–10H). 

 

DISCUSSION 
 

Primary central nervous system tumors arise from 

heterogeneous cells within the central nervous system 

(CNS) [40]. Although traditional treatments for glioma, 

such as surgical resection, temozolomide (TMZ), and 

radiation therapy, have been used, they offer limited 

progress in combating the tumor’s progression. 

Immunotherapy is a recent breakthrough in cancer 

treatment and is currently at the forefront of cancer 

therapy [41]. However, it still requires further 

 

 
 

Figure 8. Risk signature is associated with infiltrating immune cells. (A) The level of immune cell infiltration between different risk 
subgroups evaluated by CIBERSORT, (B) MCPCOUNTER and (C) EPIC algorithm, respectively. (D) Correlation of infiltrating immune cells with 
risk scores and 3 risk hub genes. (E, F) Correlation of exhausted T cell signature with risk scores and 3 risk hub genes. (G) Violin plot showing 
the expression levels of the exhausted markers between low- and high-risk groups in the TCGA dataset. *, P < 0.05; **, P < 0.01;  
***, P < 0.001; ****, P < 0.0001. 
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improvement for gliomas [16, 17]. Previous studies 

have shown that there is significant genetic, epigenetic, 

and microenvironmental heterogeneity in each  

glioma. Intratumoral heterogeneity has a significant 

influence on tumor recurrence in gliomas, and this 

presents various challenges in developing targeted 

therapies [42]. Thus, improvement of patient prognosis 

requires a better understanding of the genomic 

heterogeneity, stemness, and immune microenvironment 

of gliomas. 

 

 
 

Figure 9. Analysis of risk signature in immunotherapy cohort and pan cancer. (A) Violin plot depicting the risk scores between 

SD/PD and CR/PR groups in the IMVIgor210 cohort. (B) The response rate of the high-risk score group and low-risk score group to immune 
therapy in the IMVIgor210 cohort. (C) Survival analysis of patients with low-risk scores and high-risk scores in the IMVIgor210 cohort.  
(D) Survival analysis of 3 risk hub genes in pan cancer. (E) Kaplan-Meier survival curve of patients in high- and low-risk score groups in pan 
cancer. **, P < 0.01. 
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To address this issue, we conducted a consensus 

clustering analysis of gliomas’ genomic heterogeneity, 

stemness, and microenvironment. The results showed 

that all samples can be classified into subgroups, and  

the prognostic differences between them were significant 

(Figure 1). Therefore, identification of driver hub genes 

affecting these three aspects may help to address 

treatment failure. Interestingly, genes differentially 

expressed in different groups in all three consensus 

clustering analyses were enriched in immunomodulatory 

interactions (Figure 2E), suggesting that genomic 

heterogeneity, stemness, and the tumor microenvironment 

may all contribute to reprogramming the immune status 

of gliomas, which may have implications for therapy. 

 

Through WGCNA, LASSO and multivariate Cox 

regression analyses, we identified RAB42, SH2D4A and 

GDF15 as high-risk hub genes for glioma, and we 

employed these genes to create a risk model that showed 

high sensitivity and specificity in prognosticating 

patients’ 1-, 3-, and 5-year survival (Figure 5). 

Undoubtedly, the risk model showed an extremely strong 

correlation with genomic heterogeneity, stemness,  

and immune microenvironment scores (Figure 6). In 

addition, we found that the risk signature was closely 

associated with T cell exhaustion (Figure 8E–8G),  

which could theoretically be partially reversed by 

inhibiting the PD-1 pathway. However, we also found 

that immunosuppressive cells, such as tumor-associated 

macrophages, tumor-associated fibroblasts, and T cell 

regulatory (Tregs), were elevated in the high-risk  

group (Figure 8A–8C). The presence of these 

immunosuppressive cells may be an important 

contributor to T-cell exhaustion and to the low response 

rate to immune checkpoint inhibitor therapy. And these 

results further corroborate the influence of genomic 

 

 
 

Figure 10. SH2D4A affects proliferation and migration of glioma cells. (A) Immunohistochemical staining of SH2D4A in glioma (data 
from HPA). (B, C) qRT-PCR and western blot analysis of SH2D4A knockdown efficiency in U87 MG cells. (D) Analysis of proliferation of control 
and SH2D4A-deficient U87 MG cells by CCK8 assay. (E, F) Representative images and statistical analysis of EdU assay in control and SH2D4A-
deficient U87 MG cells. (G, H) Representative images and statistical analysis of cell migration assay in control and SH2D4A-deficient U87 MG 
cells at the indicated times. **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
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heterogeneity, stemness and tumor microenvironment on 

the immune status of glioma (Figures 2, 8). 

 

Studies have shown that RAB42 can promote the 

proliferation, migration and invasion of glioma cells  

[43, 44]. And in addition to these functions, GDF15 can 

regulate immune infiltration of glioma and promote stem 

cell-like phenotype [45, 46]. However, the role of 

SH2D4A in glioma remains unclear. SH2D4A is 

localized to human chromosome 8p21.3 and encodes 

SH(2)A. Earlier studies indicate that chromosome 

regions harboring SH2D4A are frequently deleted in 

various cancer types, and the deletion or downregulation 

of this gene is related to poor survival and hepato-

carcinogenesis [26, 47]. In addition, SH2D4A was found 

to promote the oncogenic progression of HCT15 and 

LoVo CRC cells [16]. Given the conflicting roles of 

SH2D4A in different tumor types, we validated its effects 

on glioma cells. Our results suggest that SH2D4A 

contributes to the migration and proliferation of glioma 

cells (Figure 10). However, the effects and mechanisms 

of SH2D4A on glioma stemness and microenvironment 

needs to be further investigated. 

 

CONCLUSIONS 
 

In this study, we utilized consensus clustering analysis  

of genome heterogeneity, stemness, and tumor micro-

environment to identify hub genes associated with risk in 

glioma. We then constructed a risk model capable of 

accurately predicting glioma prognosis and treatment 

response to immunotherapy. Our findings could pave the 

way for new strategies to treat glioma. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. Validation of risk model in GBM and LGG. (A) Kaplan-Meier curves displaying prognostic differences 

between high- and low-risk groups in GBM and (B) LGG cohorts, respectively. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. Clinical information for the TCGA glioma dataset. 

 

Supplementary Table 2. Clinical information for the CGGA glioma dataset. 

 

Supplementary Table 3. siRNAs used in this study. 

Name Sequence 

siNC-sense 5’-UUCUCCGAACGUGUCACGUTT-3’ 

siNC-antisense 5’-ACGUGACACGUUCGGAGAATT-3’ 

siSH2D4A#1-sense 5’-GAUCCGACGAUGGAAAGAATT-3’ 

siSH2D4A#1-antisense 5’-UUCUUUCCAUCGUCGGAUCTT-3’ 

siSH2D4A#2-sense 5’-GCGAACACCAUCUAGAUAATT-3’ 

siSH2D4A#2-antisense 5’-UUAUCUAGAUGGUGUUCGCTT-3’ 

 

Supplementary Table 4. qPCR primer list. 

Name Sequence 

SH2D4A-F 5’-CTGGAGCAAGGATCGAGGC-3’ 

SH2D4A -R 5’-CAGCTCTTACAAATCTGCTTCGT-3’ 

 


