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INTRODUCTION 
 

Urothelial carcinoma (UC) is a common type of cancer, 

which is derived from the pseudostratified epithelium. 

UC is the 10th most commonly diagnosed cancer 

worldwide, with more than 573,000 new cases and 

213,000 deaths in 2020 [1]. Bladder cancer is the most 

common malignancy of UC, accounting for 90% to 
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ABSTRACT 
 

Background: Immune checkpoint inhibitors (ICIs) have shown efficacy in patients with metastatic urothelial 
cancer (mUC), however, only a small subset of patients could benefit from ICIs. Identifying predictive 
biomarkers of ICIs in patients with mUC is clinical meaningful for patient stratification and administration. 
Methods: Clinical and transcriptomic data of mUC patients treated with ICIs from mUC cohort (IMvigor210 study) 
was utilized to explore the predictive biomarkers. LASSO Cox regression was performed to construct a predictive 
model. The predictive model was trained and tested in the mUC cohort, and then exploratively tested in clear cell 
renal cell carcinoma (ccRCC) and melanoma cohorts in which patients also received ICIs regimens. 
Results: The differentially expressed genes (DEGs) in complement and coagulation cascades pathway (CCCP) 
were mainly enriched in non-responders of ICIs in the mUC cohort. A CCCP risk score was constructed based on 
the DEGs in CCCP. Patients with a low-risk score were more responsive to ICIs and had better overall survival 
(OS) than those with a high-risk score in the training set (HR, 0.38; 95%CI, 0.27-0.53, P<0.001) and the test set 
(HR, 0.34; 95%CI, 0.17-0.71, P=0.003). The association between the CCCP risk score and OS remained significant 
in the multivariable cox regression by adjusting PD-L1 expression and TMB (P<0.05). In addition, there was no 
difference for OS in the bladder cancer patients without ICIs (TCGA-BLCA cohort, HR, 0.76, 95%CI, 0.49-1.18, 
P=0.22), suggesting a predictive but not prognostic effect of the risk score. For the exploratory analysis, 
consistent results were observed that low-risk group showed superior OS in ccRCC cohort (HR, 0.52, 95%CI, 
0.37-0.75, P<0.001) and melanoma cohort (HR, 0.27, 95%CI, 0.12-0.62, P=0.001). 
Conclusions: Our study showed that the CCCP risk score is an independent biomarker that predicts the efficacy 
of ICIs in mUC patients. The patients with a low-risk score tend to have a better response to ICIs and a longer 
life time probably due to the immune-activated TME. Further studies are needed to validate the clinical utility 
of the seven-gene signature. 
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95% [2]. Although the advance of immune checkpoint 

inhibitors (ICIs) has led to substantial improvements in 

outcomes for patients with metastatic UC (mUC), the 

response rate of ICIs is only around 20% and the 5-year 

survival rate is only 15% [3]. These concerns have 

prompted studies to identify the mUC patients who are 

most likely to benefit from ICIs. 

 

Previous studies have identified several predictive 

biomarkers for ICIs treatment in mUC, including 

programmed death-ligand 1 (PD-L1) expression [4], 

CD8+ T cell [5, 6], tumor mutational burden (TMB) [7, 

8], microsatellite instability (MSI) [5], and tumor-

infiltrating lymphocytes (TILs) [9, 10]. Despite these 

advances, there are still a majority of mUC patients 

showing unresponsiveness to ICIs. Therefore, the 

identification of more convenient and reliable biomarkers 

beyond TMB and PD-L1 expression for the prediction of 

ICIs benefits are needed for clinical practice. 

 

The coagulation and complement cascades pathway 

(CCCP) exert multiple positive or negative effects on 

tumorigenesis and mediate the components of the tumor 

microenvironment (TME) [11–13]. Complement, an 

essential part of innate immunity, converges at the 

cleavage of C3 and C5 upon activation and leads to the 

release of the anaphylatoxins C3a, C4a, and C5a, 

thereby leading to the lysis of target cells by the 

membrane attack complex [14]. Monoclonal antibody 

(mAb)–based cancer immunotherapy relies on the two-

pronged capacity of mAbs to halt oncogenic signaling 

and tumor cell growth and to simultaneously fix 

complement on the surface of the targeted tumor cells, 

thereby eliciting complement-dependent cytotoxicity 

(CDC) [15–17]. Previously, many studies of preclinical 

models in lung, colon, and liver cancers have indicated 

complement-derived inflammatory mediators, such as 

C5a, together with PD-1 blockade markedly reduced 

tumor growth and metastasis and lead to prolonged 

survival via enhancing antitumor CD8+ T cell responses 

[18–20]. Moreover, cancer cells can exploit the CCCP 

to shape the tumor microenvironment (TME), thus 

impacting the efficacy of ICIs [21, 22]. For example, 

Markiewski et al. found the production of C5a in TME 

recruited myeloid-derived suppressor cells (MDSCs) to 

restrain the antitumor effect of CD8+ T cell and thus 

promoting tumor growth in cervical cancer mouse 

model [23]. Tumor-associated macrophages (TAM) has 

been hijacked by RCC tumor cells to produce C1q and 

then activated the complement signal and the expression 

of C1q was associated with an exhausted T cell 

phenotype and poor clinical outcome [24]. Corrales et 

el. have reported that lung cancer cells were capable of 
producing C5a, which contributed to the recruitment of 

MDSCs and generation of an immunosuppressive 

microenvironment in lung cancer [25]. Altogether, these 

studies suggest that CCCP may play an important role 

in shaping TME to impact immunotherapeutic efficacy 

and cancer progression. However, the role of CCCP in 

ICIs treatment has not been fully studied. 

 

In the present study, we aimed to explore a predictive 

biomarker for immunotherapeutic responsiveness in 

mUC. We identified that CCCP was associated with the 

efficacy of anti-PD-1/PD-L1 treatment in patients with 

mUC. Based on the CCCP, we developed and validated 

a seven-gene signature as an independent predictive 

biomarker of ICIs. 

 

MATERIALS AND METHODS 
 

Data source and study design 

 

The clinical and mRNA gene expression data of  

298 mUC patients from IMvigor210 study  

(mUC cohort) are publicly available in the R  

package “IMvigor210CoreBiologies” which was  

downloaded from website http://research-pub.gene.com/ 

IMvigor210CoreBiologies/ [26]. The Cancer Genome 

Atlas (TCGA)-BLCA dataset is publicly available in the 

TCGA database, which comprises 409 bladder cancer 

samples with gene expression and 401 patients with 

survival and clinical characteristics. The RNA-seq data 

in the mUC cohort and TCGA-BLCA cohort was 

transformed into transcripts per million (TPM) data by 

R package “GeoTcgaData”, and then processed by Log2 

transformation before analysis. The gene expression 

profiles of advanced clear cell renal cell carcinoma 

cohort (ccRCC cohort) were acquired from published 

literature, which comprises of 181 patients who 

received Nivolumab [27], and no other data processing 

was performed for subsequent analysis. A melanoma 

dataset (melanoma cohort) including 40 patients with 

metastatic melanoma, was obtained from cBioPortal 

[28]. The expression data in the melanoma cohort was 

normalized by Z-score transformation. Relevant clinical 

data of these bladder and other carcinoma samples are 

summarized in Supplementary Table 1.  

 

Identification of differentially expressed genes 

(DEGs) and enrichment analysis 

 

Tumor were assessed according to the Response 

Evaluation Criteria in Solid Tumors (RECIST) version 

1.1 [29]. Responders were defined as patients with 

complete response (CR) and partial response (PR) after 

ICIs treatment, contrary, non-responders were defined as 

patients with stable disease (SD) and progressive disease 

(PD). DEGs analysis was performed between responders 

and non-responders by R package “DESeq2” [30] with 

cut-off parameters of fold change > 1.5 

(|log2FC|>0.5849625) and P-value < 0.05. R package 

http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
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“clusterProfiler” [31] was used to perform pathway 

enrichment analysis of DEGs with Kyoto Encyclopedia 

of Genes and Genomes (KEGG). The threshold was set 

as false discovery rate (FDR) < 0.05, and q-value < 0.2. 

To further investigate the enriched pathway, single 

sample gene set enrichment analysis (ssGSEA) [32] was 

performed to assess the enrich level of pathway (ssGSEA 

score) for each sample with R package “GSEABase”. 

 

Construction of the CCCP risk score  

 

In order to construct a predictive signature of ICIs in 

mUC, 69 candidate genes in CCCP were obtained 

from the Molecular Signatures Database (MSigDB) 

[33] (Supplementary Table 2). The core genes were 

selected by the least absolute shrinkage and selection 

operator (LASSO) regression analysis. The mUC 

cohort were divided into training and validation cohort 

randomly, and repeated 1000 times. We summarized 

the results of Lasso regression and picked genes with 

frequencies greater or equal to 300 in the analysis. 

Lasso regression analysis was via R package “glmnet” 

with parameters nlambda=100, alpha=1, and 

family=cox. The above selected genes were then 

examined by multivariable Cox regression. The CCCP 

risk model scores were calculated by the formula: 

( )
n

i ii
CCCP risk score Exp Coef=  , where Expi and 

Coefi represents the expression value and the cox 

coefficient of the selected genes, n is equal to the 

number of selected genes. 

 

Estimates of tumor infiltrating leukocytes 

 

Immune cell infiltrations were evaluated by 

Estimating Relative Subsets of RNA Transcripts 

(CIBERSORT) based on the gene expression data [34, 

35]. CIBERSORT gene signature matrix, termed 

LM22, contains 547 genes and distinguishes 22 

human hematopoietic cell phenotypes, including 

seven T cell types, naive and memory B cells, plasma 

cells, NK cells, and myeloid subsets. We analyzed the 

proportions of immune cells in mUC, TCGA-BLCA, 

ccRCC, and melanoma cohorts to explore the patterns 

of TILs in different groups with the number of 

permutations set at 100. 

 

Statistical analysis 

 

Statistical tests were performed using R software, version 

4.0.1 (R Foundation for Statistical Computing Vienna, 

Austria). Differences in overall survival (OS) between 

groups were compared using Kaplan‑Meier curves, with 

P‑values calculated via the log‑rank test using the R 

package “survival”. Hazard’s ratio (HR) was determined 

by univariable Cox proportional regression. Parameters 

with P-value < 0.05 in the univariable Cox proportional 

regression were subjected to multivariable Cox 

regression. Receiver operating characteristic (ROC) 

curve was drawn and the area under curve (AUC) was 

used to show the predictive ability of the risk model. All 

reported P-values were two-sided and P < 0.05 was 

considered statistically significant. 

 

Data availability statement 

 

The datasets used and/or analyzed during the current 

study are available from the corresponding author on 

reasonable request. 

 

RESULTS 
 

Identification of DEGs between responders and non-

responders of ICIs regimen 

 

In order to identify potential predictive biomarkers of 

ICIs, we explored the DEGs between responders and 

non-responders to ICIs in the mUC cohort. In total, 

1,613 DEGs were identified with 1,080 genes 

upregulated and 533 genes downregulated in 

responders group (Figure 1A). KEGG enrichment 

analysis for the 1,613 genes identified 28 significant 

different pathways (P<0.05) between responders and 

non-responders of ICIs (Figure 1B and Supplementary 

Table 3), including complement and coagulation 

cascades pathway, which was also enriched in the 

downregulated genes of responders (Figure 1C). To 

further study the association between CCCP and 

response to ICIs, ssGSEA algorithm was performed to 

calculate the CCCP enrichment score, which 

represents the degree of absolute enrichment of CCCP 

in each patient. As a result, the CCCP score was 

significantly lower in responders compared to non-

responders (P = 0.003, Figure 1D), suggesting that the 

majority of CCCP-related genes were downregulated 

in the responders of ICIs in mUC. Taken together, 

these results suggested that CCCP might be associated 

with the immunotherapeutic responsiveness in patients 

with mUC. 

 

Construction of a CCCP signature that predicts 

efficacy for ICIs  
 

To further demonstrate the role of CCCP in the efficacy of 

ICIs, a total of 69 genes that regulate or mediate CCCP 

were collected as candidate genes from MSigDB. To 

specifically identify the core genes which predict response 

to ICIs, a predictive risk score was constructed based on 

the expression of the candidate genes using the LASSO 

regression analysis (Figure 2A). Seven core genes 

including C2, CFB, C1QB, SERPING1, MASP1, F8, and 

F2R, with highest frequency of features occurrence in 
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LASSO analysis, were selected as robust markers for 

further study. Expression of all the seven genes was 

associated with the efficacy of ICIs in patients with mUC 

(Log-rank test, P<0.05, Supplementary Figure 1). 

 

Then we constructed a CCCP risk model using a data-

splitting strategy (Supplementary Figure 2) that 

randomly separate the mUC cohort into training and test 

cohorts with a ratio of 4:1. This CCCP risk model was 

to comprehensively investigate the association between 

the seven genes in CCCP and OS in mUC patients 

(Figure 2A). We repeated this process for 1,000 times 

and the risk score constructed in the training set was 

associated with OS in the test set for 857 times 

(Supplementary Table 4), indicating the robustness of 

the model. 

To further demonstrate the association between the 

CCCP risk score and OS, patients were divided into 

low-risk group and high-risk group based on the median 

cutoff value. Patients in low-risk group had a better OS 

than those in high-risk group in the training set (median 

OS, 19.3 vs 7.5 months; HR, 0.38; 95% CI, 0.27-0.53, 

P<0.001, Figure 2B). Consistent results were observed 

that low-risk group exhibited a superior OS in the test 

set (median OS, not reached vs 8.1 months; HR, 0.34; 

95% CI, 0.17-0.71, P = 0.003, Figure 2C). The objective 

response rate (ORR) was also significantly higher in 

low-risk patients than that of high-risk patients in both 

training and test sets (training set, 32.8% vs 10.9%, 

P<0.001, Figure 2D; test set, 40.0% vs 13.3%, P = 0.04, 

Figure 2E). Besides, the AUC of response predictive 

ability reached 0.714 (95% CI, 0.639-0.789) and 0.656 

 

 
 

Figure 1. Identification and enrichment analysis of DEGs. (A) DEGs between responders (CR or PR) and non-responders (SD or PD) 

groups. (B) KEGG pathway enrichment analysis of the 1613 DEGs. (C) KEGG pathway enrichment analysis of the increased and decreased 
genes in responders. (D) Comparison of complement and coagulation cascades pathway score generated by ssGSEA between responders and 
non-responders. DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; CR, complete response; PR, partial 
response SD, stable disease; PD, progressive disease; ssGSEA, single sample gene set enrichment analysis. 
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Figure 2. Training and validation of the CCCP risk score in mUC and TCGA-BLCA cohort. (A) Workflow for the construction of the 

CCCP risk model. (B, C) Kaplan-Meier curves of OS comparing patients with high- and low-risk in the training (B) and test sets (C).  
(D, E) Comparison of objective response rate between patients with high- and low-risk in the training (D) and test sets (E). (F, G) Heatmaps 
depicting the expression of the seven core genes from CCCP in patients with high- and low-risk in the training (F) and test sets (G). (H) Kaplan-
Meier curves of OS comparing patients with high- and low-risk in TCGA-BLCA cohort (I) Heatmap depicting the expression of the seven core 
genes from CCCP in patients with high- and low-risk in TCGA-BLCA cohort. CCCP, complement and coagulation cascades pathway; mUC, 
metastatic urothelial carcinoma; OS, overall survival. 
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(95% CI, 0.514-0.798) in the training set and test set, 

respectively (Supplementary Figure 3). The different 

expression of the seven genes included in the CCCP 

risk score in the training and test sets are depicted in 

Figure 2F, 2G and Supplementary Figure 4. 

 

To explore whether the CCCP risk score was an 

independent predictive biomarker for ICIs, we 

performed univariable and multivariable Cox regression 

analysis with the CCCP risk score and clinical 

characteristics including TMB, sex, intravesical BCG 

administered, ECOG, platinum-contained regimens 

history, and PD-L1 expression. Variables with P-value 

<0.05 in univariable Cox regression were further 

included in the multivariable Cox regression. The 

association between the CCCP risk score and OS 

remained significant in both training and test sets after 

adjusting TMB and PD-L1 expression (training set: HR, 

0.43, 95% CI 0.27-4.53, P<0.001; test set: HR, 0.39, 

95% CI 0.17-0.90, P = 0.03, Table 1). Altogether, our 

results suggested that the CCCP risk score might serve 

as an independent biomarker for predicting response to 

ICIs in mUC. 

 

To explore whether the CCCP risk score could affect 

the outcome of the mUC patients without immuno-

therapy, we further selected stage IV bladder cancer 

patients who mainly accepted chemotherapy from 

TCGA-BLCA cohort and conducted the same analysis. 

There was no difference in OS between high- and low-

risk group in stage IV bladder cancer patients (median 

OS, 18.1 vs 19.8 months; HR, 0.76; 95% CI 0.49-1.18, 

P = 0.22, Figure 2H), suggesting that CCCP risk score 

might serve as a predictive biomarker of OS benefit 

from immunotherapy rather than chemotherapy. 

Moreover, except for C1QB, higher expression of  

the other six genes were observed in the low-risk  

group (P<0.05, Figure 2I). Overall, these findings 

demonstrated that the association between CCCP risk 

score and OS of patients was most likely derived from 

the different response to ICIs.  

 

Association between the CCCP risk score and 

immune cell infiltrates 

 

To further investigate the association between the 

CCCP risk score and immune characteristics, we 

compared the immune cell infiltrates between low-risk 

and high-risk groups using CIBERSORT algorithm 

[34]. We found that macrophages M1, activated NK 

cells, activated CD4+ memory T cells, and T follicular 

helper cells (Tfh) were significantly higher in low-risk 

group in mUC cohort, while naive CD4+ T cells and 
resting NK cells were significantly higher in high-risk 

group (P<0.01, Figure 3A). In addition, correlation 

analysis of these tumor infiltrating immune cells and 

CCCP risk score revealed that the infiltration level of 

macrophages M1 (P<0.001), activated CD4 + memory T 

cells (P = 0.006), Tfh (P = 0.02), and activated NK cells 

(P = 0.04) were negatively correlated to the risk score, 

while naive CD4+ T cells (P < 0.001) and resting NK 

cells (P = 0.04) were positively correlated with the risk 

score (Supplementary Figure 5), suggesting that CCCP 

risk score was correlated with the immune activity in 

TME. The correlation analysis between immune cell 

infiltrations and the individual genes included in the 

CCCP risk score were illustrated in Supplementary 

Figure 6. The proportion of macrophages M1 was 

positively correlated with the expression of C2, C1QB, 

SERPING1, CFB, and F2R. The proportion of activated 

CD4+ memory T cells was positively correlated with the 

expression of C2, C1QB, SERPING1 and CFB. 

Moreover, the proportion of CD8+ T cell and activated 

NK cell were positively correlated with C2 and C1QB 

expression. By contrast, the proportion of pro-tumor 

immune cells such as naive CD4+ T cells, activated 

dendritic cells, and resting NK cells were negatively 

correlated with the expression of several signature 

genes including C2, F2R, and C1QB. Besides, ssGSEA 

analysis were used to distinguish the immune 

characteristics between high- and low-risk groups. As a 

result, the activity of immune checkpoint, T cell 

receptor, and T-effector and IFN-γ pathway were 

significantly higher in low-risk group than that in high-

risk group (Figure 3B–3E) by ssGSEA analysis. 

Consistent results were observed that T-effector and 

IFN-γ pathway and T-cell receptor pathway were 

enriched in low-risk group (Figure 3F). 

 

We also analyzed immune cell infiltrations in the 

TCGA-BLCA cohort. Similar to the result of mUC 

cohort, macrophages M2 and resting mast cells, which 

representing immunosuppressive environment [36], 

were higher in high-risk group compared with that in 

low-risk group in TCGA-BLCA cohort (Figure 3G). In 

summary, these results indicated that the composition of 

immune cells in the TME may favor an 

immunosuppressive environment that promotes tumor 

progression in high-risk group, thus supporting the 

predictive utility of the CCCP risk score in predicting 

response to ICIs. 

 

Exploratory analysis of the CCCP risk score  

 

In order to further explore the immunotherapeutic 

predictive utility of CCCP risk score in other tumors, 

ccRCC and melanoma cohorts with patients treated with 

ICIs and available mRNA expression data were 

exploratively analyzed. In the ccRCC cohort, patients 
with low-risk score showed better OS than those with 

high-risk score (median OS, 38.6 vs 16.9 months; HR, 

0.52, 95% CI 0.37-0.75, P< 0.001, Figure 4A). Similar 
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Table 1. Univariable and multivariable Cox analysis analyses of OS in mUC patients treated with ICIs. 

Variables 

Training set Test set 

Univariable analysis  Multivariable analysis Univariable analysis  Multivariable analysis 

HR 95% CI P  HR 95% CI P HR 95% CI P  HR 95% CI P 

Risk score               

   Low vs high 0.38 0.27-0.53 <0.001  0.43 0.28-0.65 <0.001 0.34 0.17-0.71 0.004  0.39 0.17-0.90 0.03 

TMB  
              

   >10 muts/mb vs ≤ 10 muts/mb 0.5 0.33-0.76 0.001  0.59 0.39-0.90 0.01 0.81 0.38-1.76 0.6  0.98 0.44-2.17 0.95 

Sex  
              

   Male vs female 0.81 0.56-1.19 0.28     0.89 0.41-1.92 0.77     

ECOG                

   2 vs 0-1 0.94 0.44-2.00 0.87     NA NA NA     

Received platinum               

   Yes vs no 1.37 0.91-2.06 0.14     1.37 0.56-3.31 0.49     

Intravesical BCG administered               

   Yes vs no 0.87 0.60-1.26 0.46     1.29 0.56-2.99 0.55     

PD-L1                

   TC2 vs TC0-1 0.92 0.59-1.43 0.71     1.21 0.47-3.12 0.7     

   IC2 vs IC0-1 0.52 0.37-0.75 <0.001  0.8 0.52-1.23 0.31 0.81 0.40-1.68 0.58  0.45 0.20-1.04 0.06 

Abbreviations: OS, overall survival; TMB, tumor mutation burden; ECOG, Eastern Cooperative Oncology Group; BCG, bacillus 
Calmette-Guerin, HR, Hazard Ratio; 95% CI, 95% confidence interval. 

 

results were noted in the melanoma cohort (median OS, 

39.5 vs 6.2 months; HR, 0.27, 95% CI 0.12-0.62, P = 

0.001, Figure 4B). Besides, we found that the 

proportion of macrophages M0, activated mast cells, 

and Eosinophils were higher in the high-risk group, 

while macrophages M1 and M2, and resting mast cells 

were higher in the low-risk group in melanoma cohort 

(Figure 4C). In the ccRCC cohort, the proportion of 

naive B cells, CD8+ T cells, activated CD4+ memory T 

cells, Tfh cells, and macrophages M1 were higher in the 

high-risk group, while resting CD4+ T memory cells, 

resting NK cells, macrophages M2, and resting mast 

cells were higher in the low-risk group (Figure 4D). 

Altogether, these results suggested that the high-risk 

group exhibited an immunosuppressive TME. The 

CCCP risk score is of potential predictive utility across 

different cancer patients treated with ICIs. 

 

DISCUSSION 
 

In the present study, 1,613 DEGs were firstly identified 

between responders and non-responders in the mUC 

cohort. The DEGs in CCCP were significantly enriched 

in the gene set of non-responders of ICIs. The CCCP 

risk score including C2, C1QB, SERPING1, CFB, 
MASP1, F8, and F2R genes was then trained and tested 

in the mUC cohort. The CCCP risk score could identify 

patients with ICIs who had better OS, while there was 

no significant association between the risk score and OS 

in the mUC patients without ICIs, suggesting rather a 

predictive than a prognostic role. In multivariable cox 

regression analysis, the CCCP risk score was associated 

with OS in mUC independent of PD-L1 expression and 

TMB. In addition, the activity of immune checkpoint, T 

cell receptor, and T-effector and IFN-γ pathway were 

significantly lower in high-risk group, suggesting a 

relative immunosuppressive TME. In exploratory 

analysis, the CCCP risk score could also predict the 

response to ICIs in ccRCC and melanoma. 

 

An ideal predictive biomarker for immunotherapy is 

supposed to stratify patients who can benefit from ICIs, 

and meanwhile has no association with survival for 

patients receiving other treatments. In the present study, 

we first demonstrated that the CCCP risk score was 

associated with OS in the training and test sets from the 

mUC cohort treated with ICIs. Since ICIs are currently 

approved by FDA for advance-stage UC, we further 

selected stage IV patients who mainly accepted 

chemotherapy from TCGA-BLCA cohort and 

conducted the same analysis. There were no significant 

association between the CCCP risk score and the OS in 

TCGA-BLCA cohort, suggesting that CCCP risk score 

did not predict the benefit from chemotherapy in 

advanced BLCA. These results indicated that the CCCP 

risk score was a predictor but not prognostic indicator 

for mUC. However, the predictive effect of the CCCP 

risk score warranted further validation in randomized 

controlled trials. 

 

Previous studies have shown that higher infiltrated M1 
macrophages, activated NK cells, activated CD4 + 

memory T cells, and Tfh cells were associated with a 

significantly better prognosis [37–42]. We investigated 
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Figure 3. Association between the CCCP risk score and immune microenvironment in mUC and TCGA-BLCA cohort.  
(A) Comparison of immune cell infiltrations between patients with high- and low- risk score in mUC cohort. (B–E) Comparison of ssGSEA 
scores in immune checkpoint (B), T-cell receptor (C), T-effector and INF-γ (D) and tumor microenvironment (E) associated pathway between 
patients with high- and low-risk score. (F) GSEA enrichment analysis of T-cell receptor pathway and T-effector and INF-γ pathway in patients 
with high- and low-risk score. (G) Comparison of immune cell infiltrations between patients with high- and low- risk score in TCGA-BLCA 
cohort. mUC, metastatic urothelial carcinoma; CCCP, complement and coagulation cascades pathway; ssGSEA, single sample gene set 
enrichment analysis; GSEA, gene set enrichment analysis. 
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Figure 4. Exploratory analysis of the CCCP risk score in ccRCC and melanoma cohort. (A, B) Kaplan-Meier curves of OS comparing 

patients with high- and low-risk in the ccRCC cohort (A) and melanoma cohort (B) treated with ICIs. (C) Comparison of immune cell 
infiltrations between patients with high- and low- risk score in melanoma cohort. (D) Comparison of immune cell infiltrations between 
patients with high- and low- risk score in ccRCC cohort. CCCP, complement and coagulation cascades pathway; ccRCC, clear cell renal cell 
carcinoma; Tfh, T follicular helper cells. 
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the component of tumor infiltrating lymphocytes in mUC 

to explore the influence of complement system on TME. 

In the present study, the CCCP risk score was negatively 

related to the infiltration level of macrophages M1, 

activated NK cells, activated CD4+ memory T cells, and 

Tfh. Moreover, macrophages M1, activated NK cells, 

activated CD4+ memory T cells, and Tfh were 

significantly higher in the low-risk group. The fraction of 

naive CD4+ T cells and resting NK cells were 

significantly higher in the high-risk group and positively 

correlated with the risk score. Similarly, recent studies 

have revealed that CCCP have a multifaceted role in 

immune regulation and cancer [14, 16, 21, 43]. 

Complement acts as an immune surveillance against 

cancer by eliciting potent anti-tumor cytotoxic responses. 

In contrast, complement proteins, such as C3, C3a and 

C5a, downregulated the antitumor T cell responses 

through recruiting and activating MDSCs, macrophages 

M2, or T regulatory cells (Tregs) [11, 44–46]. 

Collectively, complement activation may shape an 

encouraging immune-enhanced microenvironment thus 

impacting the efficacy of ICIs in our study. However, 

mechanistic investigation including cell and molecular 

biology study for complement-mediated differentiation of 

immune cells is needed to further interpret these results. 

 

In present study, we found that the CCCP risk score not 

only predicted the efficacy of ICIs in mUC, but also 

served as a predictor for ICIs in ccRCC and melanoma. 

To investigate the potential consistent association, we 

found that the infiltrations of macrophages M1 and M2 

were both higher in the low-risk group. Macrophages 

M2 generally represents poor prognosis in melanoma 

according to the previous report [36], while increased 

proportion of macrophages M1 was associated with 

better prognosis in lung [25] and colorectal cancer [47]. 

The skewing of TAMs into M1 phenotype, may 

represent the better clinical prognosis. In terms of 

ccRCC, we observed CD8+ T cells were more abundant 

in the high-risk group, which was consistent with a 

previous study that a high density of CD8+ T cell was 

associated with poor survival in ccRCC [48]. Overall, 

the above results suggest that the CCCP risk score has 

potential to be a pan-cancer immunotherapeutic 

predictive biomarker, however, more evidences in other 

cancer types are warranted. 

 

The development of biomarkers that predicts the 

efficacy of ICIs falls behind the amazing therapeutic 

innovation, except for PD-1 and TMB which have been 

used in clinical practice. Comprehensive and effective 

biomarkers are still under research. Liang et al., 

proposed a risk model based on the immune-related 
genes for predicting immunotherapeutic responses and 

identifying the patients who may benefit from ICIs in 

mUC [49]. In addition, a prognosis and predictive 

model has been constructed based on four hypoxia-

related genes and verified its value in predicting benefit 

of ICIs in mUC [50]. Moreover, DNA damage response 

(DDR) pathway has been reported as a predictor for 

ICIs efficacy in mUC patients [51]. Though the 

importance of CCCP in TME has been broadly 

investigated [11, 14, 17], the predictive value of the 

CCCP in predicting ICIs benefit in mUC was seldom 

researched. To our knowledge, this is the first study 

regarding CCCP in predicting response to ICIs in Muc. 

The seven-gene signature in CCCP may represent a 

cost-effective method for further utility in clinic. 

 

Several limitations should not be ignored. First, even 

though we utilized the machine learning approach to 

select the optimal candidate genes and a data-splitting 

strategy to ensure the robustness of the CCCP risk 

model, there is still a lack of independent validation 

cohort. Second, ccRCC and melanoma cohorts were 

tentatively included to test the predictive role of the 

CCCP risk score for ICIs regimen. Whether it could 

serve as a pan-cancer indicator need further validation. 

Third, the underlying mechanism between CCCP and 

immune environment needs to be further explored.  

 

In conclusion, we established a CCCP risk score to 

predict the efficacy of ICIs in mUC patients. The 

patients with a low-risk score tended to have a better 

response to ICIs and a longer life time probably due to 

the immune-activated TME. In addition, CCCP may 

play a crucial role in T-effector, IFN-γ and T-cell 

receptor pathway. Future studies are needed to further 

validate the clinical utility of the CCCP risk score in the 

patients treated with ICIs in mUC and other cancer 

types. 

 

Nomenclature 

 

ICIs, immune checkpoint inhibitors; mUC, metastatic 

urothelial cancer; PD-L1, programmed death-ligand 1 

(PD-L1); ccRCC, clear cell renal cell carcinoma; UC, 

urothelial carcinoma; TMB, tumor mutational burden; 

CR, complete response; PR, partial response; SD, stable 

disease; PD, progressive disease; FDR, false discovery 

rate; DEGs, differentially expressed genes; OS, overall 

survival; DFS, disease‑free survival; LASSO, least 

absolute shrinkage and selection operator; ssGSEA, 

single sample gene set enrichment analysis; ORR, 

objective response rate; HR, Hazard’s ratio; TME, 

tumor microenvironment; TILs, tumor infiltrating 

leukocytes. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Kaplan-Meier curves of OS comparing patients with high and low gene expression of the seven core genes 

included in the CCCP risk model: F2R (A), F8 (B), MASP1 (C), CFB (D), SERPING1 (E), C1QB (F), C2 (G). 
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Supplementary Figure 2. The CCCP risk model was constructed with seven selected genes in complement and coagulation 
cascades pathway. The data-splitting strategy was implemented with 80% and 20% samples, which were used as training and test set 

respectively by repeating 1000 times.  

 

 

 
 

Supplementary Figure 3. The ROC of CCCP risk score in predicting response to ICIs in the training set (A) and test set (B). 
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Supplementary Figure 4. Comparison of the expression of the seven core genes between patients with high- and low-risk in the training 
(A) and test (B) sets.  
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Supplementary Figure 5. Correlation between the risk score and follicular helper T cells (A), Macrophages M1 (B), activated CD4+ memory 

T cells (C), activated NK cells (D), naive CD4+ T cells (E), and resting NK cells (F). NK: natural killer. 
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Supplementary Figure 6. Correlation between the immune cell infiltrates and the expression of the seven core genes 
included in the CCCP risk model. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 3. 

 

Supplementary Table 1. Baseline clinical characteristics of the patients. 

Dataset IMvigor210 ccRCC Melanoma  TCGA-BLCA stage IV 

Platform Illumina HiSeq 2500 Illumina RNA-seq Illumina RNA-seq Illumina RNA-seq 

No. of patients 298 181 40 131 

Age, median (range) NA NA 60.5 (22-83) 69 (44-90) 

Sex     

    Male 233 (78%) NA 26 (65%) 97 (74%) 

    Female 65 (22%) NA 14 (35%) 34 (26%) 

Anti-PD1/L1 regimen Atezolizumab Nivolumab Ipilimumab NA 

Survival outcome OS OS, PFS OS, DFS OS, PFS 

Abbreviations: ccRCC, clear cell renal cell carcinoma; NA, not available; OS, overall survival; DFS, disease-free 
survival. 

 

Supplementary Table 2. The gene list of complement and coagulation cascades pathway. 

Gene list of complement and coagulation cascades pathway 

A2M, BDKRB1, BDKRB2, C1QA, C1QB, C1QC, C1R, C1S, C2, C3, C3AR1, C4A, C4B, C4BPA, C4BPB, C5, C5AR1, C6, 

C7, C8A, C8B, C8G, C9, CD46, CD55, CD59, CFB, CFD, CFH, CFI, CPB2, CR1, CR2, F10, F11, F12, F13A1, F13B, F2, 

F2R, F3, F5, F7, F8, F9, FGA, FGB, FGG, KLKB1, KNG1, MASP1, MASP2, MBL2, PLAT, PLAU, PLAUR, PLG, PROC, 

PROS1, SERPINA1, SERPINA5, SERPINC1, SERPIND1, SERPINE1, SERPINF2, SERPING1, TFPI, THBD, VWF 

 

Supplementary Table 3. Summary results of KEGG enrichment analysis.  

 

Supplementary Table 4. Summary results of LASSO 
regression.  

 Training subset Test subset 

Not significant  0 143 (14.3%) 

Significant  1000 (100%) 857 (85.7%) 

 


