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ABSTRACT 
 

Pathological cardiac hypertrophy is a considerable contributor to global disease burden. Chinese herbal medicine 
(CHM) has been used to treat cardiovascular diseases since antiquity. Enhancing stem cell-mediated recovery 
through CHM represents a promising approach for protection against doxorubicin (Dox)-induced cardiac 
hypertrophy. Herein, we investigated whether human adipose-derived stem cells (hADSCs) preconditioned with 
novel herbal formulation Jing Si (JS) improved protective ability of stem cells against doxorubicin-induced cardiac 
damage. The effect of JS on hADSC viability and migration capacity was determined via MTT and migration assays,  
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INTRODUCTION 
 

Epidemiological studies have shown that pathological 

cardiac hypertrophy is a major cause of morbidity and 

mortality worldwide. Pathological cardiac hypertrophy 

causes sudden heart failure, accounting for up to 17.3 

million deaths annually [1]. In developed countries, 

hypertrophy-associated heart failure is typically associat-

ed with several risk factors, including stress, aging, diet, 

and physical inactivity [2, 3]. Chronic cardiac 

hypertrophy causes several cardiovascular conditions, 

including hypertension, ischemic disease, and heart 

failure [4]. Hypertrophy involves enhanced cardiac 

remodeling to increase left ventricular mass, causing left 

ventricular hypertrophy [5]. Doxorubicin (Dox), an 

effective anthracycline chemotherapeutic, is widely used 

in the treatment of several cancers, including lung, breast, 

prostate, and bone cancer, as well as leukemias [6]. 

However, various studies indicate that Dox can induce 

cardio toxicity inside and outside the cell by causing lipid 

peroxidation outside cardiomyocytes and free radical 

generation, organelle damage, and cellular signal 

imbalances inside cardiomyocytes, affecting heart 

function [6]. Furthermore, elevated Dox levels can cause 

cardiac hypertrophy leading to detrimental effects, such 

as cardiomegaly [7–9]. Typically, Dox causes excessive 

oxidative damage to the heart, promoting apoptosis [10]. 

Dox also has adverse effects on cytoplasmic calcium 

homeostasis [11]. Myocardial inflammation is driven by 

the activation of nuclear factor kappa B, a major 

transcription factor within the inflammatory response, 

and is also induced by Dox [12]. Transcription factor p53 

is involved in upstream events leading to activation of the 

apoptotic pathway in mitochondria during Dox-induced 

cardiomyocyte death [13]. Developing novel therapies to 

reduce Dox cardiotoxicity is essential for improving its 

clinical efficacy.  
 

Chinese herbal medicine is an effective and reliable 

treatment for several diseases [14, 15], and are widely 

used in various parts of the world. Importantly, CHM 

treatment is associated with few side effects [16, 17]. 

Owing to its high efficacy, few side effects, and low 

cost, CHM has been the focus of extensive research on 

cancer, cardiovascular diseases, diabetes, and corona-

virus infectious disease (COVID-19), as well as stem 

cell therapy [18]. The novel herbal formulation Jing Si 

(JS) is used as tea in Taiwan. It contains various 

bioactive compounds and exhibits pharmacological 

properties that might protect cells under stress [19]. For 

instance, JS reduces DOX-related hypertrophic effects 

and DNA damage in H9c2 cells. It also enhances 

autophagic clearance in MPP-damaged SH-SY5Y 

neuroblasts. In addition, JS was shown to favorably 

regulate metabolism in a type II diabetes animal model. 

The growth of different cancer cell lines was suppressed 

by JS treatment. Further, JS was shown to promote stem 

cell homeostasis and offers cellular protection [19]. JS 

is composed of eight different CHM herbs and contains 

polyphenols, alkaloids, amino acids, organic acids, 

coumarins, vitamins, and phenols, which together act to 

exert beneficial effects on the human body.  

 

Mesenchymal stem cell transplantation is an emerging 

approach in the field of regenerative medicine and 

influences growth factor secretion in cardiovascular 

disease [20, 21]. However, maintaining stemness 

alongside cardioprotective function is a major challenge 

after transplantation into the host. Adipose-derived stem 

cells (ADSCs) are an attractive option for stem cell 

therapy to regulate cardiac remodeling, as they are 

easily obtainable and have multi-lineage differentiation 

potential [22, 23]. ADSCs are able to regulate the “stem 

cell niche” in the host by stimulating the recruitment of 

endogenous stem cells to the transplant site and 

accelerating their differentiation. ADSCs may also act 

as free radical scavengers as well as a source of 

antioxidants and chaperone/heat shock proteins at sites 

of ischemia or injury [24]. This allows for 

detoxification of the microenvironment during stress 

conditions, which supports the remaining cells at these 

sites [24]. ADSCs also suppress the immune response 

respectively. Co-culture of hADSC or JS-preconditioned hADSCs with H9c2 cells was analyzed with immunoblot, 
flow cytometry, TUNEL staining, LC3B staining, F-actin staining, and MitoSOX staining. The in vivo study was 
performed M-mode echocardiography after the treatment of JS and JS-preconditioned hADSCs by using Sprague 
Dawley (SD) rats. Our results indicated that JS at doses below 100 µg/mL had less cytotoxicity in hADSC and JS-
preconditioned hADSCs exhibited better migration. Our results also revealed that DOX enhanced apoptosis, cardiac 
hypertrophy, and mitochondrial reactive oxygen species in DOX-challenged H9c2 cells, while H9c2 cells co-cultured 
with JS-preconditioned hADSCs alleviated these effects. It also enhanced the expression of autophagy marker LC3B, 
mTOR and CHIP in DOX-challenged H9c2 cells after co-culture with JS-preconditioned hADSCs. In Dox-challenged 
rats, the ejection fraction and fractional shortening improved in DOX-challenged SD rats exposed to JS-
preconditioned hADSCs. Taken together, our data indicate that JS-preconditioned stem cells exhibit a cardio-
protective capacity both in vitro and in vivo, highlighting the value of this therapeutic approach for regenerative 
therapy. 
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and transfer healthy mitochondria to regulate aerobic 

metabolism. Compared to other stem cell types, ADSCs 

have notable advantages, such as their availability and 

low cost. They also secrete various growth factors, 

including hepatocellular growth factor (HGF), vascular 

endothelial growth factor (VEGF), insulin-like growth 

factor (IGF), and platelet-derived growth factor 

(PDGF), which confer cardioprotective effects under 

pathological conditions [25].  

 

While Dox is an effective chemotherapeutic agent, its 

cardiotoxicity contributes to patient mortality. A limited 

number of studies have examined the effects of CHM 

on mesenchymal stem cell therapy for cardiac 

hypertrophy. While JS can promote stem cell homeo-

stasis, there is no evidence to support whether it can 

enhance stem cell function. Therefore, we aimed to 

investigate whether JS could enhance the protective 

effects of ADSCs against Dox-induced cardiotoxicity in 
vitro and in vivo. We evaluated the effects of JS on 

human adipose-derived stem cells (hADSCs) via MTT 

and migration assays. Co-culture of hADSCs and H9c2 

was followed by western blot, flow cytometry, TUNEL 

staining, immunoblot, F-actin staining, LC3B staining, 

and MitoSOX staining. For our in vivo study, Sprague-

Dawley (SD) rats were subjected to M-mode 

echocardiography after receiving hADSCs. Our findings 

indicated that JS preconditioning improved the cardio-

protective properties of stem cells against Dox, 

highlighting its value in regenerative therapy. 

 

MATERIALS AND METHODS 
 

Preparation and characterization of Jing Si herbal 

drink  

 

The Jing Si herbal drink included 6 g of Ohwia caudate 

leaves, 6 g of Artemisia argyi leaves, 2 g of Perilla 

frutescens leaves, 4 g of Ophiopogon japonicas leaves, 4 
g of Platycodon grandifloras roots, 4 g of Houttuynia 

cordata (Ophiopogonis Radix) roots, 2 g of Glycyrrhiza 
uralensis (Glycyrrhizae radix) roots, and 0.2 g of 

Chrysanthemum × morifolium flowers. All herbs were 

bought from the local herbal store (Hualien, Taiwan) and 

finely powdered. The herbal mixture was added to 500 

mL reverse osmosis water and concentrated to 50 mL via 

boiling. The preparation was spun down (slow speed) to 

remove the pellet and then filtered through a 0.45-µm 

filter [26]. 

 

hADSCs and H9c2 cell culture 

 

hADSCs were purchased from Thermo Fisher 

(Waltham, MA, USA) and cultured in mesenPRO 

RSTM basal medium supplemented with mesenPRO 

RSTM growth factor supplement (Thermo Fisher) in an 

incubator at 37° C and 5% CO2. Cells were sub-cultured 

once the initial confluency reached 70%, with cells at 

passage 8 used for the experiments. H9c2 cells were 

obtained from American Type Culture Collection 

(USA) and cultured in Dulbecco’s Minimum Essential 

Medium (D5523, Sigma, Saint Louis, MO, USA) 

containing 10% fetal bovine serum (FBS) (Hyclone, 

Logan, UT, USA) with 1% penicillin-streptomycin 

(Invitrogen, Carlsbad, CA, USA), maintained at 37° C 

in a 5% CO2 incubator [27]. 

 

Co-culture experiment 

 

This method has been described in our previous report 

[28]. Briefly, hADSCs cultured in mesenPRO RSTM 

basal medium supplemented with mesenPRO RSTM 

growth factor supplement were seeded in the upper 

chamber of a hanging insert (Millipore, Bedford, MA, 

USA) and placed into the six-well culture plates 

containing H9c2 cells without contact to the lower 

chamber. H9c2 cells were cultured in six-well culture 

dishes. H9c2 cells cultured in Dulbecco’s Minimum 

Essential Medium containing 10% FBS with 1% 

penicillin-streptomycin were treated with Dox (1 µM), 

which was purchased from Sigma-Aldrich and diluted in 

dimethyl sulfoxide, for 24 h. After incubation for 24h, 

then cells were washed with PBS three times. The upper 

chamber with hADSCs preconditioned with JS was 

inserted into a 6-well dish for co-culture for 24 h. Finally, 

co-cultured H9c2 cells were washed with PBS three times 

and used for further experiments.  

 

MTT assay 

 

The hADSCs cells were seeded at a density of 2 x105 

cells per well in 24-well plates. The cells were then 

treated with various concentrations (100–1,000 µg/mL) 

of JS for 24 h. MTT reagent (Sigma-Aldrich, Saint 

Louis, MO, USA) was added at a concentration of 0.5 

mg/mL for 4 h at 37° C. The medium was then 

discarded, and dimethyl sulfoxide was added for 

solubilization. Finally, the absorbance at 570 nm was 

measured using an automated microplate reader [29, 30].  

 

Western blot analysis  

 

This method has been described in our previous reports 

[31–33]. Briefly, protein samples were extracted from 

H9c2 cells or heart tissues after treatment with lysis buffer 

(Tris-base [pH 7.4, 50 mM], EDTA [1 M], NaCl [0.5 M], 

beta-mercaptoethanol [1 mM], NP-40 [1%], IGEPAL 

CA-630 (Sigma-Aldrich), 10% glycerol, and protease 

inhibitor cocktail tablets (Roche, New York, NY, USA). 
Proteins were quantified, and an equal amount of protein 

from each sample was separated using sodium dodecyl 

sulphate–polyacrylamide gel electrophoresis. The proteins 
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were then transferred onto polyvinylidene difluoride 

membranes (Millipore, Bedford, MA, USA), which were 

incubated with 5% blocking buffer for 1 h. The 

membranes were incubated with primary antibodies 

(mTOR [#2983] and p53 [#2524] from Cell Signaling 

(Danvers, MA, USA), CHIP [sc-66830] and β-actin [sc-

47778] from Santa Cruz Biotechnology, Santa Cruz,CA, 

USA) at 4° C overnight. Finally, the membranes were 

incubated with secondary antibodies (horseradish 

peroxidase-conjugated anti-rabbit and mouse (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) for 1 h at 25° C, 

and antibody binding was visualized using ECL western 

blotting luminal reagent (Santa Cruz Biotechnology) and 

the LAS-4000 mini (GE Healthcare Life Sciences) 

machine [34–36]. All chemicals were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). 

 

F-actin, mitoSOX, and TUNEL staining 

 

H9c2 cells were cultured in eight-well chamber slides 

(Greiner Bio-One, Monroe, NC, USA). After reaching 

70% confluence, the cells were fixed with 4% 

paraformaldehyde at room temperature for 1 h, washed 

thrice with PBS, and permeabilized with 0.1% Triton X-

100 for 2 min. The cells were then incubated with 

rhodamine-phalloidin (Invitrogen), MitoSOX Red 

reagent (Invitrogen, Carlsbad, CA, USA), and TUNEL 

reagent (Roche Applied Science, Indianapolis, IN, 

USA), according to the manufacturer’s protocol. After 

incubation, the cells were washed three times with PBS 

and counter-stained with DAPI (Abcam, Cambridge, 

UK) for 15 min for the nucleus staining. The whole 

field of vision was characterized using a fluorescence 

magnifying instrument (IX71, Olympus, Tokyo, Japan) 

associated with an imaging framework (DP2-BSW, 

Olympus). The quantification results were further 

assessed and plotted using GraphPad Prism software. 

 

LC3B staining 

 

H9c2 cells were cultured in eight-well chamber slides 

(Greiner Bio-One, Monroe, NC, USA). After reaching 

70% confluence in DMEM containing 10% FBS, the 

cells were fixed with 4% paraformaldehyde in 1× PBS 

for 1 h at room temperature. Permeabilization solution 

(0.5 mL, 0.1% Triton X-100 in 0.1% sodium citrate) 

was added to each well on ice for 2 min without 

shaking. Blocking buffer (2% BSA) was added in each 

well to avoid non-specific binding. Primary antibody 

against LC3B (#2775, Cell Signaling Technology, 

1:100, 500 µL) was added to each well and incubated 

at 4° C for 12 h. Subsequently, diluted fluorescent 

secondary antibody Alexa Fluor® 488 goat anti-rabbit 
IgG (A11008, Invitrogen, 1:100, 500 μL) was added to 

each well and incubated at 25° C for 1 h. DAPI (500 

µL, 10000× diluted) was added to each well. The 

plates were incubated for 30 min at 25° C, in the dark. 

Finally, after washing with PBS, the cells were 

observed under fluorescence microscope (IX71, 

Olympus, Tokyo, Japan). 

 

Animal experiments  

 

The animals were purchased from BioLASCO Taiwan 

Co., Ltd. (Taipei, Taiwan). Eight-week-old SD rats 

were maintained under a 12-h light/dark cycle at 55 ± 

10% humidity and 22 ± 2° C, with access to food and 

water. Healthy SD rats were allocated into five groups 

(n = 4 per group) and treated once every 2 weeks for a 

total 4 weeks, as follows: (Group I) SD rats (control), 

(Group II) SD rats treated with Dox (7.5 mg/kg) for 4 

consecutive weeks to achieve a total concentration of 

30 mg/kg, (Group III) SD rats treated with Dox after 

oral administration of JS (300 mg/kg), (Group IV) SD 

rats treated with Dox and JS (50 µg/mL)-

preconditioned hADSCs (1×106 cells/rat via tail vein 

injection), and (Group V) SD rats treated with Dox and 

JS (100 µg/mL)-preconditioned hADSCs (1×106 

cells/rat via tail vein injection). After treatment, heart 

function was analyzed using M-mode echocardio-

graphy before the rats were euthanized. Left 

ventricular internal end-diastolic dimensions (LVIDd), 

left ventricular internal end-systolic dimensions 

(LVIDs), stroke volume (SV), and end diastolic 

volume (EDV) were examined via echocardiography. 

Fractional shortening (FS) was determined as per the 

following formula: FS (%) = [(LVIDd –LVIDs)/ 

LVIDd] × 100. The ejection fraction (EF) was 

determined as: EF (%)=SV/EDV × 100 [37–39]. 

Thereafter, all animals were euthanized via CO2 

asphyxiation. All hearts were collected and stored at -

80° C for further experiments. 

 

Analysis of apoptosis by flow cytometry  

 

Flow cytometry analysis was performed using a double 

staining Annexin V-FITC and propidium iodide (PI) 

apoptosis detection kit (BD Biosciences, San Jose, CA, 

USA), according to the manufacturer’s protocol for in 
vitro analysis. After processing using the kit, apoptosis 

analysis was carried out using a FACS CantoTM system 

(BD Biosciences) at the FACS Core Facility, Tzu-chi 

Hospital Research Center, Taiwan. The apoptotic cells 

were gated (n=10,000 cells), and the proportion of 

apoptotic cells was calculated by adding the numbers of 

cells in the Q2 (late apoptosis) and Q4 (early apoptosis) 

quadrants. 

 

Migration assay 

 

A migration assay was performed as previously 

described [40]. In brief, 2×105 cells per well were 
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seeded into the chambers of Transwell plates in serum-

free media, and the lower chamber was filled with 10% 

FBS as an attractant. The plates were incubated for 24 h 

at 37° C with 5% CO2. After treatment, the chamber 

membrane was treated with 4% paraformaldehyde to fix 

the cells and stained with crystal violet. Cells that 

migrated to the lower chamber were observed using an 

OLYMPUS® BX53 microscope (Tokyo, Japan). 

 

Statistical analysis 

 

All data are expressed as the mean ± standard error of 

the mean (SEM). Quantifications performed in triplicate 

were analyzed using one-way ANOVA in Prism 

GraphPad 5 software. P-values lower than *p <0.05, 

**p <0.01, and ***p <0.001 were considered 

statistically significant. 

 

Availability of data and material 

 

The raw data used and/or analyzed during the current 

study are available from the corresponding author on 

reasonable request. The authors confirm that the data 

supporting the findings of this study are available within 

the article. 

Consent for publication 

 

The authors agree with the publication of this paper. 

 

RESULTS 
 

JS-preconditioned hADSCs exerted cytoprotective 

effects on Dox-challenged H9c2 cells 

 

To evaluate the effect of JS on hADSC viability, we 

performed an MTT assay. The results indicated that 

after 24 h of treatment, hADSC viability increased 

under low doses of JS (25, 50, 100 µg/mL), whereas 

high doses (up to 800 µg/mL) exhibited low 

cytotoxicity (Figure 1A). Through transwell migration 

transwell migration assay to examine the effect of JS 

treatment on migration efficiency, we observed that 

hADSC migration increased in a dose-dependent 

manner at low dose concentrations of JS (Figure 1B). 

We consider JS contains various bioactive compounds 

that may regulate the microenvironment by stimulating 

cells to secrete soluble trophic factors that regulate 

stemness, through autocrine and paracrine mechanisms. 

To determine whether JS-preconditioned hADSCs exert 

a paracrine effect on Dox-challenged H9c2 cells, we 

 

 
 

Figure 1. Jing Shi-preconditioned human adipose-derived stem cells (hADSCs) enhanced cytoprotective effects of 
doxorubicin-challenged H9c2 cells. (A) Cell viability assay indicating cell viability of human adipose-derived stem cells (hADSCs) treated 
with Jing Shi. (B) Transwell migration assay showing that Jing Shi-preconditioned hADSCs showed more migration efficiency (pink color) 
compared with that of the control. (C) Schematic diagram outlining the strategy for co-culturing hADSC and doxorubicin-challenged H9c2 
cells. (D) Immunoblot results showing that Jing Shi-preconditioned hADSCs co-cultured with doxorubicin-challenged H9c2 cells increased 
mTOR and CHIP expression and attenuated apoptosis marker p53 protein expression in H9c2 cells. Experiments were performed in triplicate. 
Data are presented as means ± SEM. *p <0.05, **p <0.01, and ***p <0.001 were considered significant. 
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performed a co-culture experiment, summarized in a 

schematic diagram (Figure 1C). The data from western 

blot analysis revealed that Dox-challenged H9c2 cells 

exhibited a decreased expression of mammalian target 

of rapamycin (mTOR) and carboxy terminus Hsp70-

interacting protein (CHIP) protein, both of which 

regulate autophagic flux. Meanwhile, co-culture with 

hADSCs preconditioned with 50 or 100 µg/mL JS 

significantly upregulated mTOR and CHIP in H9c2 

cells, while downregulating apoptosis marker p53 in a 

dose-dependent manner (Figure 1D). Similarly, the 

autophagic marker LC3B expression in Dox-challenged 

H9c2 cells was also exhibited lower expression. 

However, co-culture with hADSCs preconditioned with 

50 or 100 µg/mL JS significantly induced the up-

regulated expression and aggregation of LC3B in Dox-

challenged H9c2 cells (Figure 2). Because cells utilized 

autophagy to eliminates protein aggregates and 

damaged organelles, and by promoting bioenergetic 

homeostasis [41], these data suggest that JS-

preconditioned hADSCs exert a cytoprotective effect to 

maintain a healthy cellular environment in Dox-

challenged H9c2 cells through the stimulation of auto-

phagic mechanism. 

 

JS-preconditioned hADSCs inhibited the apoptosis 

of Dox-challenged H9c2 cells  

 

Several studies have reported that exposure to Dox 

promotes apoptosis in H9c2 cells [42, 43]. To 

examine whether JS-preconditioned hADSCs protects 

against Dox-induced apoptosis, we performed flow 

cytometry analyses of co-cultured H9c2 cells after 

Annexin V staining. After co-culture of JS-

preconditioned hADSCs with H9c2 cells that were 

treated with Dox for 24 h, we determined the total 

proportion of apoptotic H9c2 cells by quantifying the 

number of cells undergoing late apoptosis (upper right 

quadrant; Q2) and early apoptosis (lower right 

quadrant; Q4). The apoptotic population was 

significantly reduced in a dose-dependent manner in 

Dox-challenged H9c2 cells co-cultured with JS-

preconditioned hADSCs, as compared to that 

following co-culture with untreated ADSCs  

(Figure 3A, 3B). These data suggest that JS 

conditioning enhanced stem cell viability, thus 

maintaining a cytoprotective microenvironment, 

which helps nullify the cytotoxic effects of Dox 

exposure in H9c2 cells.  

 

In concordance with the flow cytometry results, we also 

observed via TUNEL assay that Dox causes apoptosis. 

Results from TUNEL analyses indicated that the Dox 

challenge significantly upregulated the number of 

apoptotic cells, whereas co-culture with JS-

preconditioned hADSCs reduced the number of 

apoptotic cells in a dose-dependent manner (Figure 3C, 

3D). Altogether, these results confirm that the JS-

preconditioned hADSCs act as a booster to maintain the 

health of H9c2 cells in response to Dox. 

 

 
 

Figure 2. Jing Shi-preconditioned human adipose-derived stem cells (hADSCs) enhanced autophagy of doxorubicin-
challenged H9c2 cells. The essential autophagic marker LC3B expression in Dox-challenged H9c2 cells was also exhibited lower expression. 
However, co-culture with hADSCs preconditioned with 50 or 100 µg/mL JS significantly induced the upregulated expression of LC3B in H9c2 
cells. Scale bar was 100 μm. 
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JS-preconditioned hADSCs inhibited Dox-induced 

cellular hypertrophy and mitochondrial ROS 

generation in H9c2 cells 

 

Dox has been shown to induce hypertrophy in H9c2 

cells [44]. Further, prolonged exposure to Dox is 

associated with reduced heart function, which can lead 

to heart failure and sudden cardiac arrest. To validate 

the hypertrophic response to Dox in H9c2 cells, we 

performed F-actin staining, the results of which 

indicated that Dox challenge increased H9c2 cell size, 

whereas co-culture with hADSCs or JS-preconditioned 

hADSCs reduced the hypertrophic effects of Dox and 

normalized the cell size of H9c2 cells. Quantitative 

 

 
 

Figure 3. Jing Shi-preconditioned human adipose-derived stem cells (hADSCs) co-cultured with doxorubicin-challenged H9c2 
cells decreased doxorubicin-induced apoptosis. (A, B) Flow cytometry analyzing cell apoptosis in H9c2 cells after doxorubicin induction 
with different JS-preconditioned hADSCs treatment groups versus control. Jing Shi-preconditioned human adipose-derived stem cells 
(hADSCs) remarkably decreased cell apoptosis in doxorubicin-challenged H9c2 cells (C, D) TUNEL assay indicating apoptotic cells (green color 
fluorescence) in control and different treatment groups. DAPI counter stain indicates the nucleus. The number of TUNEL positive cells 
decreased when doxorubicin-challenged H9c2 cells were co-cultured with Jing Shi-preconditioned hADSCs. Experiments were performed in 
triplicate. Data are presented as means ± SEM. *p <0.05, **p <0.01, and ***p <0.001 were significant. 



www.aging-us.com 9174 AGING 

analysis confirmed that there was a significant increase 

in H9c2 cells after incubation in Dox for 24 h, but JS-

hADSC co-culture significantly had better effect in 

Dox-treated H9c2 cells and the effect was in a dose-

dependent manner (Figure 4A, 4B). Taken together, 

these findings demonstrated that co-culture with JS-

preconditioned hADSCs nullified the hypertrophic 

response in Dox-treated H9c2 cells. 

 

Dox induces oxidative stress through the generation of 

reactive oxygen species (ROS) in H9c2 cells [45]. 

Further, ROS are primarily responsible for the cellular 

damage and apoptosis associated with Dox exposure. 

An earlier study showed that increased mitochondrial 

ROS regulates cardiotoxicity in H9c2 cells [46]. We 

therefore next to analyze the mitochondrial superoxide 

generation in JS-treated H9c2 cells challenged with 

Dox, using MitoSOX red staining. The fluorescence 

results indicated that Dox enhanced ROS generation, 

whereas JS-preconditioned hADSCs nullified the 

increase in ROS in a dose-dependent manner in H9c2 

cells (Figure 4C, 4D). Taken together, our data suggest 

that JS-preconditioned hADSCs exert a neutralizing 

effect on ROS generated in response to Dox challenge 

in H9c2 cells.  

JS and JS-preconditioned hADSCs regulated 

cardiac function in Dox-challenged SD rats 

 

The results from our in vitro analysis showed that low 

dose JS enhanced the survival and migration of hADSC. 

Furthermore, JS-preconditioned hADSCs provide a 

suitable microenvironment that supports H9c2 cells in 

nullifying the detrimental effects of Dox. To validate 

these findings in an in vivo model, we next investigated 

whether JS-preconditioned hADSCs provide cardio-

protective effects in Dox-challenged SD rats. 

Interestingly, we found that both JS and JS-

preconditioned hADSCs provided cardioprotective 

effects to rats challenged with Dox, compared to the 

only Dox-treated group. The left ventricular internal 

diameter end diastole (LVIDd) and end systole (LVIDs) 

values of the JS groups showed a remarkable 

contractility function after the treatment, with the JS-

preconditioned hADSCs exhibited a more pronounced 

favorable effect (Figure 5A). Similarly, the ejection 

fraction (EF%) and fractional shortening (FS%) also 

indicated a significant improvement in cardiac function 

following JS and JS-hADSC treatment (Figure 5B, 5C). 

Along with our in vitro results, these findings suggest 

that JS-preconditioned hADSCs could regulate 

 

 
 

Figure 4. Doxorubicin-challenged H9c2 cells co-cultured with Jing Shi-preconditioned human adipose-derived stem cells 
(hADSCs) presented less hypertrophy and low-level mitochondrial reactive oxygen species. (A) F-actin staining detecting 
hypertrophy with or without Doxorubicin induction in H9c2 cells after co-culture with human adipose-derived stem cells (hADSCs).  
(B) quantitative analysis of cell area for Doxorubicin-challenged H9c2 cells. Jing Shi-preconditioned hADSCs significantly reduced hypertrophy 
in doxorubicin-challenged H9c2 cells (C, D) MitoSOX staining detecting mitochondrial reactive oxygen species and their quantitative analysis. 
Doxorubicin-challenged H9c2 cells showed the least mitochondrial reactive oxygen species levels after co-culture with Jing Shi-
preconditioned hADSCs. Experiments were performed in triplicate. Data are presented as means ± SEM. *p <0.05, **p <0.01, and ***p 
<0.001 were significant. 
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mitochondrial ROS and suppress apoptosis to maintain 

cardiac function following Dox challenge in vivo. 

 

DISCUSSION 
 

We have recently demonstrated that resveratrol-

preconditioned ADSCs increase the regenerative 

capacity of diabetic hearts via the Sirt1/Akt signaling 

pathway [47]. Furthermore, Alpinia oxyphylla extract-

preconditioned ADSCs attenuate mitochondria-

mediated cardiac apoptosis and maintain cardiac 

function in an aging rat model [48]. Hence, in the 

current study, we aimed to evaluate the cardioprotective 

effects of JS-preconditioned hADSCs against Dox-

induced cardiac damage and found that JS-

preconditioned hADSCs attenuated Dox-induced 

cardiac damage in vitro and in vivo. 

 

Autophagy is an important phenomenon that maintains 

the homeostasis mechanism of the cells during stress 

conditions. Maintaining autophagic flux via the CHIP 

and mTOR proteins is an important cellular approach to 

mimic the experiment with Dox challenge [49]. 

Previous studies have indicated that Dox challenge 

causes ROS generation, which leads to cardiac 

apoptosis via p53 upregulation [44]. Another study also 

emphasized that Dox attenuated autophagy and co-

chaperone activity in SD rats after treatment [50, 51]. 

Autophagy is an important quality control mechanism 

in healthy cells, and its cytoprotective effects involve 

the removal of unfolded and damaged proteins [52]. 

Our results identified similar mechanisms, with our in 
vitro data revealed that JS-hADSC treatment against 

Dox challenge regulated expression of the autophagy 

marker mTOR and the co-chaperone CHIP, in addition 

to downregulating the apoptosis marker p53. A previous 

report shows that CHIP E3 ligase regulates p53 

degradation [53] which is in concordance with our 

western blot analysis. JS may regulate this by its 

bioactive compounds that leads to maintenance of the 

mesenchymal stem cells microenvironment, enabling 

these cells to regulate the secretion of soluble trophic 

factors and to regulate autophagy in Dox-challenged 

H9c2 cells. Similarly, JS-hADSC treatment may control 

mitophagy to reduce apoptosis in Dox-challenged H9c2 

cells. For example, Luteolin, a natural compound in 

vegetables and fruits, activates mitochondrial autophagy 

to attenuate Dox-induced cardio toxicity in cardio-

myocytes [54]. In the present study, mTOR and CHIP 

expression increased, but p53 expression decreased 

after co-culture with JS-hADSC. Previous literature 

mentions that mTOR inhibition immediately changes 

mitochondrial function [55]. Mitochondrial autophagy 

is also regulated by CHIP expression and localization 

[56]. Thus, p53 inhibits Parkin-mediated mitochondrial 

autophagy resulting in mitochondrial dysfunction [57]. 

Besides, LC3B is the extensively accepted marker for 

autophagy activity assessment as it is important for 

 

 
 

Figure 5. Role of Jing Shi and Jing Shi-preconditioned human adipose-derived stem cells (hADSCs) on cardiac function in 
doxorubicin-challenged Sprague–Dawley rats. (A) M-mode echocardiography results showing contractility functions (i.e., left 
ventricular internal diameter end diastole and end systole. (LVIDd and LVIDs)) of all rat groups, indicated by the blue arrow. Doxorubicin-
challenged Sprague–Dawley rats treated with Jing Shi-preconditioned human adipose-derived stem cells (hADSCs) showed similar patterns to 
that of the control group. (B, C) The ejection fraction (EF%) and fractional shortening (FS%) of control, doxorubicin, and various treatment 
groups. Jing Shi-preconditioned hADSCs showed an improved repair of heart function in Doxorubicin-challenged Sprague–Dawley rats. 
Experiments were performed in triplicate. Data are presented as means are represented as means ± SEM. *p <0.05, **p <0.01, and  
***p <0.001 were significant. 
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the autophagy mechanism [58]. Hence, we consider that 

JS-hADSC treatment can regulate autophagy to 

maintain a healthy cellular environment in Dox-

challenged H9c2 cells.  

 

Growth factor secretion by mesenchymal stem cells 

regulates various signaling pathways, such as the IGF1-

IGF1R-AKT-mTOR pathway [59]. Our in vitro studies 

provided strong evidence that JS enhanced the migratory 

ability of hADSCs after treatment in a dose-dependent 

manner, which indicates the migration efficiency of the 

stem cells after transplantation. The damaged myocardial 

tissue secretes SDF1a, which helps to recruit stem cells 

via the chemokine marker CXCR4 to repair vascular 

damage [60, 61]. Several studies have focused on the 

paracrine activity of mesenchymal stem cells to mitigate 

vascular damage after stress [62–64]. ADSCs have the 

potential to secrete several growth factors, anti-

inflammatory cytokines, and chemokines that mediate 

cardiac injury repair. These secreted soluble trophic 

factors promote migration, cell proliferation, and 

cytoprotection. Under pathological conditions, stem cells 

provide a supportive microenvironment by producing 

antioxidant and antiapoptotic factors to nourish the 

damaged cells [65]. Mesenchymal stem cells also secrete 

anti-fibrotic and angiogenic factors that modulate 

protection of the heart [66]. These pleotropic growth 

factors, such as VEGF, HGF, IGF, and PDGF, enhance 

cardiac repair during chronic stress conditions (e.g., 

pathological hypertrophy). Various preconditioning 

mechanisms have been applied to enhance the ability of 

these growth factors to restore blood flow during damaged 

conditions such as myocardial infarction and pathological 

hypertension. Here, we used JS-preconditioned hADSCs, 

and examined their cardioprotective capabilities in both in 

vitro and in vivo contexts. The paracrine effects of JS-

preconditioned hADSCs involve promoting a healthy 

microenvironment that protects H9c2 cells against the 

stress mediator doxorubicin. Based on our results, we 

hypothesized that ADSCs treated with JS act in a 

paracrine manner to exert a cardioprotective effect against 

Dox-induced cardiac damage that leads to enhanced EF 

(%) and FS (%) functions.  
 

CONCLUSIONS 
 

In this study, we reported that JS-preconditioned 

hADSCs have exhibited protective effects in dox-

induced hypertrophic conditions in both in vitro and in 

vivo conditions (Figure 6). The in vitro model 

demonstrated that JS-preconditioned hADSCs has 

cardioprotective effects by regulating mitochondrial 

ROS, cardiac hypertrophy, and apoptosis in Dox-

challenged H9c2 cells via activation of autophagy. Our 

in vivo data suggest that the preconditioning of hADSCs 

enhance cardiac function that might be regulated by 

 

 
 

Figure 6. Graphical representation of the cardioprotective effects of Jing Shi and Jing Shi-preconditioned human adipose-
derived stem cells (hADSCs) against Doxorubicin (Dox) induction in in vitro and in vivo models.  
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secreting growth factors and regulating cell viability, 

as well as improving migration efficiency. Taken 

together, our data indicate that JS preconditioning of 

hADSCs augments their cardioprotective effects in 

reducing ROS and apoptosis in H9c2 cells. To 

maintain the viability after transplantation is a greater 

challenge in stem cell therapy. So, we presume that 

this therapeutic strategy can also enhance cardiac 

function by enhancing the viability and migratory 

ability of the cells against Dox damage conditions. Our 

study shows that JS-preconditioned stem cells regulate 

the cardioprotective mechanism, both in vitro and in 

vivo, and these results suggest that this therapeutic 

approach is important for further investigation as a 

regenerative therapy. 
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