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ABSTRACT

Glioblastoma (GBM) is a highly malignant brain cancer with a poor prognosis despite standard treatments. This
investigation aimed to explore the feasibility of PTPN6 to combat GBM with immunotherapy. Our study
employed a comprehensive analysis of publicly available datasets and functional experiments to assess PTPN6
gene expression, prognostic value, and related immune characteristics in glioma. We evaluated the influence of
PTPN6 expression on CD8+ T cell exhaustion, immune suppression, and tumor growth in human GBM samples
and mouse models. Our findings demonstrated that PTPN6 overexpression played an oncogenic role in GBM
and was associated with advanced tumor grades and unfavorable clinical outcomes. In human GBM samples,
PTPN6 upregulation showed a strong association with immunosuppressive formation and CD8+ T cell
dysfunction, whereas, in mice, it hindered CD8+ T cell infiltration. Moreover, PTPN6 facilitated cell cycle
progression, inhibited apoptosis, and promoted glioma cell proliferation, tumor growth, and colony formation
in mice. The outcomes of our study indicate that PTPN6 is a promising immunotherapeutic target for the
treatment of GBM. Inhibition of PTPN6 could enhance CD8+ T cell infiltration and improve antitumor immune
response, thus leading to better clinical outcomes for GBM patients.

INTRODUCTION carries a grim prognosis with an overall survival rate of

approximately 12-15 months post-diagnosis and a five-
GBM is an unconquerable brain carcinoma commonly year survival rate of less than 10% [3]. While
managed through surgical resection, chemotherapy, immunotherapy, such as immune checkpoint inhibitors
radiotherapy, and targeted therapy [1, 2]. Although (ICIs), has shown promise as an additional treatment
notable advancements in diacrisis and treatment, GBM option for several cancer types by altering the tumor
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microenvironment (TME) [4-9], only 10% of GBM
patients benefit from this approach [10]. Therefore,
identifying novel therapeutic targets for GBM is an
urgent and necessary task.

PTPN6 involves various processes, including cell
differentiation, growth, and oncogenic transformation
[11]. It also plays a role in antigen cross-presentation
for immune evasion [12] and is critical for ligand-
mediated CD22 regulation in BCR-ligated B cells [13].
Previous research has shown that PTPN6 may promote
chemosensitivity in colorectal cancer cells by inhibiting
the SP1/MAPK signaling pathway (14) and enhancing
macrophage effector function to bolster antitumor
immunity [14]. However, the specific mechanisms of
PTPN6 in GBM are still unknown. Here, we
systematically investigated the functions of PTPN6
towards immune response in GBM and indicated that
PTPN6 might be leveraged as a promising new
therapeutic target for GBM treatment.

RESULTS

PTPN6 is overexpressed and identified as a
prognostic marker in GBM

We first investigated the PTPN6 gene expression in
different cancer types using TCGA and GTEXx databases.
Interestingly, PTPN6 was significantly overexpressed in
most cancer types, including GBM and LGG, while
significantly downregulated in LUAD, LUSC, and
THYM (Figure 1A). The overexpression of PTPN6 was
also found in the other four independent glioma datasets
(Supplementary Figure 1A). More importantly, the gene
expression of PTPN6 was significantly related to different
glioma subtypes in TCGA and CGGA datasets
(Supplementary Figure 1B, 1C). We investigated the
prognostic significance of PTPN6 in Pan-Cancer by
applying the Cox regression model and log-rank test
(Figure 1B and Supplementary Figure 2A-2C). Our
analysis revealed a statistically significant correlation
between PTPNG6 overexpression and reduced survival in
patients with GBM and LGG (Figure 1C). In addition, the
high expression of PTPN6 was mainly related to
advanced grade and poor OS in glioma (Figure 1D, 1E).

Functional analysis of PTPN6 in pan-cancer and
glioma

To comprehensively explore the association between
PTPN6 and cancer progression, we performed a
Spearman  correlation analysis between PTPNG6
expression and cancer hallmark pathways in each cancer
type (Figure 2A). Our functional analysis identified that
several cancer hallmarks had been altered, including
immune response, intercellular signaling, metabolism,

and other biological factor pathways in LGG and GBM
(Figure 2B). Additionally, several pathways, including
gap junction, glutamatergic synapse, ErbB signaling
pathway, serotonergic synapse, cGMP-PKG signaling
pathway, and cortisol synthesis and secretion, were
significantly up-regulated (Figure 2C, FDR < 0.05).
Conversely, antigen processing and presentation, primary
immunodeficiency, ECM receptor interaction, Th17 cell
differentiation, p53 signaling pathway, and B/T cell
receptor signaling pathways were significantly down-
regulated (Figure 2C, FDR < 0.05). We built a network
of enriched GO terms and KEGG pathways of PNPNG6
and its related genes based on the clusters and P-values
by Metascape in GBM (Figure 2D). Notably, we found
that the gene expression of PTPNG6 was significantly and
positively correlated with angiogenesis, differentiation,
and inflammation, while it was negatively associated
with hypoxia, invasion, DNA damage, and DNA repair in
GBM (Figure 2E, P-value < 0.05).

The green module involving PTPN6 was identified
by WGCNA and functionally characterized in
immune suppression

CD8* T cell infiltration is critical in predicting
prognosis in GBM patients. We used CIBERSORT to
assess CD8" T cell levels and deleted outlier samples
before running WGCNA. A power of 6 (scale-free R2 =
0.80) was found to be the soft threshold in our
investigation (Supplementary Figure 3A). The data
indicated that the dynamic tree-cut approach found 18
gene co-expression modules (Supplementary Figure
3B). Genes in the green module involving PTPN6 were
strongly linked to GBM malignancy and poor prognosis
by the heatmap of module trait correlations (Figure 3A),
which indicated that genes in the green module might
be responsible for GBM malignancy and prognosis.
Module membership and gene importance were shown
as scatter plots with similar results (Supplementary
Figure 3C, 3D), which led to the green module being
deemed the most important.

The biological processes analysis revealed that the
green module’s genes were enriched by T cell
activation, MAPK cascade, leukocyte migration, and
proptosis (Figure 3B). The KEGG pathway analysis
revealed the genes’ association with T-cell receptor
signaling and apoptosis (Figure 3C). These data
suggested that genes from the green module may
mediate the TME in GBM.

PTPN6 shapes the immunosuppressive TME in
GBM

TME is an essential factor that affects tumor
progression. To investigate the relationship between
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PTPN6 expression and infiltration levels of various
immune cell types in GBM, we examined 22 immune
cell types (Figure 4A). We validated the results by
immunohistochemistry on GBM samples (Figure 4B).

A

® normal & tumor

Surprisingly,
between PTPNG6 expression and infiltration levels of M2
macrophages, regulatory T cells (Tregs), Thl7 cells,
and CD4+ memory T cells. At the same time, we found

we observed a positive correlation
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Figure 1. Oncogenic properties of PTPN6 across pan-cancer. (A) The gene expression of PTPN6 in cancer compared with normal
tissues (B) Clinical significance of PTPN6 for overall survival in the TCGA dataset. (C) Underlying carcinogenesis of PTPN6 in cancer. (D) PTPN6
expression in different grades in GBM. (E) Survival analysis of PTPN6 expression levels for GBM patients.
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Figure 2. Functional enrichment of PTPN6 in GBM. (A) Correlation of PTPN6 with cancer hallmarks across different cancer. (B) Enriched
pathways of PTPN6 expression in TCGA dataset. (C) Representational functions of PTPN6 in TCGA dataset. (D) Functional network of PTPN6

clustered by Metascape dataset. (E) Correlation of PTPN6 with angiogenesis, differentiation, inflammation, hypoxia, invasion, DNA damage
and repair. *P <0.05, **P <0.01, ***P <0.001.
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a negative correlation between PTPN6 expression and
infiltration levels of B cells, mast cells, and
CD8+ T cells.

Furthermore, we investigated the correlation between
PTPNG6 expression and the gene expression of immune
checkpoint genes and immunosuppressive cells
involved in CD8* T cell exhaustion. We found that
PTPN6 expression was positively correlated with
PDCD1, CD274, CTLA4, LAG3, HAVCR2, and
CD244 in most cancer types in TCGA, including LGG
and GBM (Figure 4C). Additionally, we discovered a
significant  relationship  between PTPN6 gene
expressions and microsatellite instability (MSI) and
tumor mutation burden (TMB) in several cancer types
(Supplementary Figure 4), indicating that PTPN6 may

have potential immunogenicity in these cancers.
Moreover, we observed a negative correlation between
PTPNG6 expression and CD8* T cell infiltration in LGG
and GBM (Figure 4D).

We also investigated the role of immunosuppressive
cells in the TME, including myeloid-derived suppressor
cells (MDSC), tumor-associated macrophages (TAM),
cancer-associated fibroblasts (CAF), and regulatory T
cells (Tregs), which have been reported to inhibit CD8*
T cell infiltration and function. We found that PTPN6
expression was positively related to these four
immunosuppressive cells and their corresponding
marker genes (Figure 4E), suggesting that PTPNG is
correlated with immune suppression and CD8" T cell
exhaustion in GBM.
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Single-cell sequencing of PTPNG6 expression on GBM

To confirm the expression of PTPN6 and its significance
in the TME of GBM, we applied a single cell profile of 28
GBM patients containing 24,131 single cells to analyze
the correlation. The cell clusters were shown in Figure
5A. The findings showed that PTPN6 was predominately
concentrated in DC and macrophages cells, whereas T
cells and B cells exhibited lower expression, which
accords with the bulk RNA-seq data from the TCGA
dataset (Figure 5B-5D). Further analysis showed that
PTPN6 was the comparatively low expression in every
subtype of T cells (Figure 5E, 5F). These findings indicate
that the expression level of PTPN6 was significantly

Cell cluster

variable in various immune cell types, which may be the
root of GBM microenvironmental heterogeneity and was
related to GBM tumor progression.

PTPNG6 promoted cancer progression in GBM

To investigate whether PTPN6 was associated with GBM
tumorigenesis, we analyzed the genomic alterations of
PTPNG6. Our analysis revealed that PTPN6 exhibited a
relatively low frequency of mutations but a high
frequency of copy number variations (CNVs) in GBM
(Supplementary Figure 5). Moreover, we confirmed our
findings by examining clinical specimens, which showed
that PTPN6 was significantly overexpressed in GBM
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samples compared to paired adjacent samples at the
protein level (Figure 6A). To explore the effect of
PTPN6 on cell growth, we performed ectopic
expression and knockdown experiments. Our results
indicated that PTPNG6 overexpression promoted growth
velocity (Figure 6B and Supplementary Figure 6A)
while PTPN6 knockdown suppressed cell growth
(Figure 6C and Supplementary Figure 6B) in different
cell lines of GBM. Additionally, we observed that
PTPNG6 could inhibit cell apoptosis and promote tumor
proliferation in glioma cell lines (Figure 6D, 6E and
Supplementary Figure 6C, 6D).

To further elucidate the role of PTPN6 in glioblastoma
development, we investigated immune cell infiltration
in C57BL/6 mice. Our results demonstrated that
mouse glioblastoma cells stably expressing PTPN6
significantly increased tumor development (Figure 6F—
6H). Furthermore, we found that PTPN6 blocked
the penetration of CD8* T cells into the tumor lesion
while promoting the infiltration of Thl7 cells and
immunosuppressive cells, such as Tregs and M2
macrophages, into tumors (Figure 61).

Integrative analysis of PTPN6 on immunotherapy
and drug response

To investigate the potential utility of PTPN6 as a
novel immune target in pan-cancer, we analyzed
the association between PTPN6 expression and
immunotherapy response as well as drug sensitivity
(Figure 7). Importantly, we found that higher
expression levels of PTPNG6 were associated with
increased immunotherapy response in 9 different
immunotherapy groups (Figure 7A). Additionally, we
compared PTPN6 to other established biomarkers
based on their ability to predict immunotherapy
response in human immunotherapy cohorts. Notably,
we found that PTPN6 had an AUC value above 0.5 in
15 out of 25 immunotherapy cohorts, outperforming
other biomarkers such as MSI score, TMB, T.
Clonality, and B. Clonality (Figure 7B). CD247, TIDE,
IFNG, and CD8 had better predictive values than
PTPNG6, with AUC values above 0.5 in 21, 18, 17, and
18 immunotherapy cohorts, respectively.

To assess the potential responsiveness of PTPNG6 to
anti-cancer drugs, we evaluated the correlation between
PTPN6 expression and drug sensitivity for 252 anti-
cancer drugs using the GDSC dataset across 1,074
cancer cell lines. We also conducted an integrative
analysis of PTPN6 and response to anti-cancer therapies
in TCGA patients. Our combined analysis of GDSC and
TCGA data revealed that PTPN6 significantly
correlated with 100 drugs in each database (Figure 7C).
Four drugs showed similar effects in both databases:

Imatinib, KINO0O1-135, Methotrexate, and S-Trityl-L-
cysteine (Figure 7D). These results provide important
insights into the potential mechanisms underlying
PTPNG6’s effects on immune intervention and patient
survival.

DISCUSSION

PTPNG participates in various pathway regulations and
is conceivable as a drug target in some types of cancer
[15]. While PTPNG6 has been extensively studied in
other cancer types, such as bladder cancer [16] and
colorectal cancer [17], its roles in GBM have not been
thoroughly explored. In this study, we identified that
PTPN6 was significantly overexpressed in GBM
patients in TCGA, which was further validated using
other independent datasets and human specimens at
the protein level. PTPN6 overexpression was
significantly associated with poor survival and
advanced grade in GBM, suggesting its oncogenic
properties [16]. Our observations were in line with
previous research that demonstrated the association of
PTPNG6 with poor prognosis in patients with bladder
cancer and myelodysplastic syndromes [11] and its
potential role as a tumor suppressor in esophagus
cancer [18]. Our results indicated that PTPNG6 could be
a prognostic marker for patients with GBM.

PTPN6 expression was positively associated with the
TME formation of TAMs, Tregs, Th17 cells, and CD4*
memory T cells while reversely associated with those of
B cells, mast cells, and CD8* T cells. Further
correlation analysis revealed that PTPN6 expression
was positively related to the expression of six immune
checkpoint genes (PDCD1, CD274, CTLA4, LAG3,
HAVCRZ2, and CD244) while negatively correlated with
CD8* T cell infiltration in GBM. Additionally, PTPN6
expression was positively related to the four
immunosuppressive cells, including myeloid-derived
suppressor cells, tumor-associated macrophage, Tregs,
and cancer-associated fibroblasts. Other studies have
shown that targeting PTPN6 may be an attractive
therapeutic method for increasing the ability of
leukocytes to fight cancer [14]. Furthermore, in
zebrafish embryos, the lack of the PTPNG6 gene results
in an overactivated innate immune system and impaired
ability to fight off bacterial infections [19], suggesting
its role in inhibiting immune responses and enhancing
tumor progression in GBM.

GO and KEGG enrichment analyses demonstrated that
PTPN6 was significantly and positively correlated with
angiogenesis, differentiation, and inflammation, while
negatively associated with hypoxia, invasion, DNA
damage, and DNA repair. Recent studies have shown that
PTPNG6 inhibits Caspase-8 and Ripk3/MIkl-dependent
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inflammation and regulates HIF-1o protein levels in
endothelial cells under hypoxia [17, 20]. Our functional
experiments further confirmed the oncogenic properties
of PTPN6 in GBM, as PTPNG6 overexpression promoted
tumor growth and colony formation in cell lines and nude
mice.

Our study found that PTPN6 was an effective prognostic
marker for patients with GBM. Moreover, we discovered
that PTPN6 regulated tumor progression by reducing
immune cell infiltration and inhibiting immune response,
indicating that PTPNG6 could be a therapeutic target for
cancer immunotherapy in GBM.

MATERIALS AND METHODS
Data resource

Gene expression profiles, somatic mutations, copy
number variations (CNV), and clinical data of pan-cancer
(Level 3) were extracted using the TCGAbiolinks
package in R [21]. MC3 project containing somatic
variants information was obtained from the previous
research [22]. Copy number variations (CNV) were
retrieved from Broad GDAC Firehose and preprocessed
using GISTIC2 [23].

The clinical information was downloaded from the
reported article [14] or through the TCGAbiolinks R
package. Genotype tissue profiles were downloaded
using the UCSC Xena project. Other glioma data were
downloaded from the CGGA (CGGA.mRNAseq 693)
and GlioVis (Rembrandt, Gravendeel, and Gill)
databases [24, 25]. The single-cell data of GBM were
acquired from the GEO database (GSE131928) [26].
Detailed information of cohorts used in this study was
list in Supplementary Table 1.

Survival analysis

Kaplan-Meier methods performed in the R package
assessed overall survival (OS) between the target
groups. The log-rank test was leveraged to evaluate the
statistical data; a P-value < 0.05 was considered
significantly different.

WGCNA analysis

The present study employed WGCNA to conduct a
correlation analysis between PTPNG6 expression and
clinical as well as immunological parameters. The
resulting correlation matrix was subjected to a
predetermined power and clustered via the WGCNA
package in R, using the following parameters: power =
20, TOMType = <signed”, pamStage = F, and
minModuleSize = 3, as we described before [27, 28].

Functional analysis

Gene set enrichment analysis (GSEA) was leveraged
via GSEA software with gene sets from the Molecular
Signatures Database [29-31]. FDR corrected g-value <
0.05 was regarded to be significant statistically. The
Metascape was used to build the interactive network
of PTPN6 and its related genes. The analysis of
biological progresses for PTPN6 was decoded
using CancerSEA. Further study was conducted on
the significant results where the p-value was less
than 0.05 [32].

TME evaluation

The influence of PTPN6 on TME formation was
assessed using a previous study as a reference [33].
TIDE was used to determine the response to cancer
immunotherapy based on the expression of PTPNG6 and
the T cell exclusion and dysfunction [34].

Drug response analysis

Gene expressing matrix and area under the dosage
response curve of glioma cell lines were collected
from the GDSC database [35, 36]. Correlation
coefficient |Rs| > 0.25 and FDR < 0.05 were employed
to further analysis [37]. In addition, previously
conducted studies were used to obtain imputed tumor
response data for 138 anti-cancer drugs, which were
subsequently used to assess treatment response for
GBM patients [38].

Cell lines and human tissues

The U87, U118-MG, and U-251-MG glioma cell lines
were cultured in DMEM supplemented with 1%
Penicillin/Streptomycin and 10% fetal bovine serum
and maintained at 37° C and 5% CO2. Human tissue
samples were obtained from patients undergoing
clinical surgery at the Second Affiliated Hospital of
Bengbu Medical College, and clinical information were
list in Supplementary Table 2.

Stable cell line construction

We established a stable overexpression PTPNG cell line
in human glioblastoma cells using lentiviral-based gene
transfer. The full-length PTPN6 cDNA was cloned into
a lentiviral expression vector, and viral particles
carrying the PTPN6 gene were generated and used to
transduce the glioblastoma cells. Positively transduced
cells were selected and expanded to create a stable pool
of overexpression PTPN6 cells. The successful
overexpression of PTPN6 was validated using
quantitative PCR and Western blot analysis. Functional
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experiments were conducted to assess the impact of
PTPN6 overexpression on cell proliferation and
tumorigenesis in mice. These experiments aimed to
investigate the role of PTPNG6 in glioblastoma cell
behavior and its potential as an immunotherapeutic
target.

Transfection and Western blotting

Transient transfection of plasmids and siRNAs was
applied using Lipofectamine 3000 (Thermo Fisher,
USA) according to the manufacturer’s instructions.
After 48 hours, total proteins were extracted from the
cultured cells and quantified using a normal quantitative
system. Western blotting was conducted using standard
techniques, with GAPDH antibody as an internal
control for normalization. The blots were stripped and
probed with primary antibodies against PTPN6 (#3759)
and GAPDH (#5174) from CST company. The imaging
system were utilized for blot scanning, visualization,
and analysis. All experiments were repeated thrice with
consistent outcomes.

Immunohistochemistry

The GBM tumor tissue was fixed with 4%
paraformaldehyde, embedded in paraffin, and sub-
sequently cut into 4 pm sections. The paraffin sections
were incubated overnight at 4° C with antibodies
according to standard protocols. Two independent,
blinded pathologists independently evaluated each
section. Two independent blinded pathologists assessed
each section separately. Immunohistochemistry was
performed using antibodies against PTPN6 (ab32559,
Abcam), CD1A (17325-1-AP, Proteintech), IL-17
(ab79056, Abcam), CXCR5 (ab254415, Abcam), CD8
(66868-1-1g, Proteintech), Tryptase (ab2378, Abcam),
CD20 (10252-1-AP, Proteintech), CD45 (60287-1-1g,
Proteintech), FOXP3 (ab20034, Abcam), CD57 (19401-
1-AP, Proteintech), CD64 (ab140779, Abcam) and
CD163 (ab79056, Abcam).

Cell cycle assay

Glioma cell lines treated with transfection of target
oligos were washed twice with PBS that had been pre-
chilled in preparation for the cell cycle assay.
Subsequently, the cells were fixed overnight at 4° C
with pre-cooled 70% ethanol. After washing once with
1 mL of PBS, the cells were treated with a PBS solution
containing 50 pg/mL propidium iodide, 100 pg/mL
RNase A, and 0.2% Triton X-100. 30 minutes were
spent incubating the cells at 4° C and in the dark.
20,000 cells were enumerated using a BD flow
cytometer after standard cell cycle procedures. ModFit
software was used to analyze the results.

Cell apoptosis assay

The cells were rinsed once with PBS buffer, and FITC-
Annexin V and PI at a final concentration of 1 pg/mL
were added to the PBS buffer. 10-15 minutes were spent
incubating the mixture in the dark at room temperature.
At 488 nm, the flow cytometer measured the
fluorescence, gathering FITC and PI-PE signals. Flowjo
software was used to analyze the results.

MTT assay

Cells were seeded in 96-well plates at a density of 1.2 x
10° cells per well and incubated at 37° C for 4 hours in
the presence of 5 mg/mL MTT (Sigma-Aldrich)
dissolved in PBS. After removal of the supernatant, the
formazan crystals were dissolved in 100 pL of DMSO,
and the optical density was measured at 570 nm using a
microplate reader (Bio-Tek). The IC50 values for two
cell lines were calculated based on the cytotoxicity
obtained from the MTT assay. Each experiment was
repeated at least three times.

Tumorigenesis in mice

C57BL/6 mice were obtained from Charles River
(Beijing, China) and maintained in a pathogen-free
environment. The Ethics Committee of Bengbu
medical college approved all animal experiments.
Six mice per group were subcutaneously injected
with either murine glioma GL261 expressing PTPN6
stably or empty vector (6 x 107 cells in serum-free
DMEM) in the right super lateral tissue. After 10
days, mice were sacrificed, and the protein expression
of the target gene was evaluated by Western blot
analysis.

Statistical analysis

The data were analyzed using R software (version
4.0.0; https://cran.r-project.org/). To  compare
variables with normal and non-normal distributions,
the student’s t-test and Wilcoxon rank-sum test were
employed, respectively. To control the false discovery
rate (FDR), two-sided P-values were corrected using
the Benjamin-Hochberg (BH) method. A P-value less
than 0.05, after adjusting for BH effects, was
considered statistically significant unless otherwise
specified.
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Supplementary Figure 1. Expression pattern of PTPN6 in GBM. (A) Distribution of PTPN6 expression from four different datasets.
(B) Distribution of PTPN6 expression in TCGA subtypes. (C) Distribution of PTPN6 expression in CGGA subtypes.
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Supplementary Figure 2. Prognostic analysis of PTPN6 for disease-specific survival in pan-cancers. (A) Clinical prognosis of
PTPNG6 in four different datasets. (B) Clinical significance of PTPNG6 for disease specific survival in the TCGA dataset. (C) Representative survival
analysis of PTPN6 in TCGA datasets.

www.aging-us.com 9838 AGING



>

Scale independence Mean connectivity
e 1
" w = 2
o 2 ~
&
Pl :
] E g
g E
F o<l i
S i
-3
1 g
i 8
a
C
4
= |
- 1 a Ee-iu'l 12 14 @ 1@ 20 12 M 28 28 W0
T T T T T T
] B 1 15 Y 2 » o s ® 15 0 25 0

Som Treucnoi (powar)

o

Module membership in green medule vs. gene significance
Cor=0.67, p=3d.4e-143

080 085 w

Heignt
080 08
L

a7rs
L

o7

Dymamic Tres Cut

Memged dynami

O

Cluster Dendrogram

Module membership in green module vs, gene significance
cor=0.51, 73

02 03 04 05 08 07

Gene significance for Grade

00 01

Gene significance for CD8 T cell

000 005 010 015 020 025 030

08

Module Membership in green module

04 06

08

Module Membership in green module

Supplementary Figure 3. WGCNA construction and functional annotation. (A) Power distribution of WGCNA. (B) Dynamic tree of 18

modules. (C, D) Module membership and gene importance.

MSI

A

ACC, P=009 THCA P =013 gppc p=p73
PR

CHOL, P=0.58 AD, P =0
03
UVM, P =056 PCPG, P=078
KICH, P=071 PAAD, P =0.93
MESO, P =024 HNSC. P =0.71

LUSC P=038 ESCA P=0.15

DLBC, P = 0.05 COAD, P =0.39
STAD,P=098 CESC,P=063
THYM, P = 0.54 BRCA, P = (.88
UCS, P =009 BLCA, P =09
LGG, P =036 TGCT,P=0
GBM, P =087 KIRP. P = 0.32
UCEC, P = 0.06 KIRC, P =083
LIHC, P=08 LAML, P =0.28

LUAD,P=0 gy p-gq2 READ.P=026

TMB
B Acc,P=008 THCAP=029 ganc p=po3
CHOL, P =023 PRAD, P = 0.38
0.3
UVM, P =061 PCPG, P =063
KICH, P = 0 96 PAAD, P = 036
MESO, P = 0.61 HNSC, P = 0.92
LUSC, P =027 ESCA.P=021

DLBC, P =066 COAD, P=068
STAD, P = 0.81 CESC,P =076
THYM, P = 0.29 BRCA, P =075

UCsS, P=015 BLCA, P=076

LGG. P =059 TGCT. P = 0.83
GBM,. P=063 KIRP, P = 0.04
UCEC, P =094 KIRC, P = 0.34
LIHC,P=04 LAML, P =022
LUAD, P = 0.77 ov, P =047
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Supplementary Figure 6. PTPN6 regulated cell cycle and apoptosis in glioma cells. (A) PTPN6 was transduced in glioma cell lines.
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Supplementary Tables

Supplementary Table 1. Detailed information of included clinical cohorts.

Cohort name Data source  Sample number Survival data  Platform
GTEX GTEX 8295 No RNA-seq
TCGA TCGA 9807 Yes RNA-seq
CGGA_mRNAseq_693 CGGA 693 Yes RNA-seq
Rembrandt GlioVis 580 Yes Microarray
Gravendeel GlioVis 284 Yes Microarray
Gill GlioVis 92 No RNA-seq
GSE131928 GEO 24131 No RNA-seq

Supplementary Table 2. Clinical
characteristics of GBM patients
(n =30).

Variable No %
Age
<=55 8 26.7
> 55 22 73.3
Gender
Female 19 63.3
Male 21 36.6
Grade
I 2 6.67
Il 13 43.33
v 15 50.0
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