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INTRODUCTION 
 

Renal cell carcinoma (RCC), one of the most prevalent 

tumors in urology, accounts for about 3% of all adult 

malignancies and over 90% of all renal malignancies 

[1]. Kidney renal clear cell carcinoma (KIRC) is the 

most prevalent subtype with the highest mortality rate 

and accounts for approximately 70% of all kidney 

cancers [2]. Estimated new cases and deaths in the 

United States in 2022 were 97000 and 13980, 

respectively [3]. Nearly one-third of KIRC patients have 

metastases by the time of diagnosis [4]; this is due to 

the lack of early symptoms and reliable screening 

markers. Surgical resection is the standard treatment for 

early-stage disease; however, 30% of patients will 

experience recurrence or metastasis after surgery [5]. A 

substantial proportion of patients with advanced KIRC 

exhibited poor outcomes, with a 5-year survival rate is 

only 10% [4]. Despite advances in clinical diagnostic 

technology and molecular targeted therapy, including 

immune-checkpoint inhibitors and antiangiogenic 

agents, which increase the survival rate of advanced-

stage patients, more than 100,000 patients still die each 

year [6–8]. Consequently, it is urgent to identify novel 

biomarkers to predict clinical outcomes and aid in 

decision-making. 

 
Telomeres are nucleoprotein structures at the distal end 

of chromosomes, composed of a repeating TTAGGG 

sequence and a bound shelterin protein complex [9]. 
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ABSTRACT 
 

Kidney renal clear cell carcinoma (KIRC) is one of the most prevalent malignant tumors of the urinary system, 
with a high recurrence and metastasis rate. Telomeres and long non-coding RNAs (lncRNAs) have been 
documented playing critical roles in cancer progression. However, the prognostic significance of telomere-
related lncRNA (TRLs) in KIRC is less well-defined. The Cancer Genome Atlas database was applied to retrieve 
the expression profiles and corresponding clinical information of KIRC patients. To create the TRLs prognostic 
signature, univariate Cox regression, least absolute shrinkage and selection operator analyses were performed. 
The prognostic signature, comprised of nine prognostic TRLs, was developed and demonstrated superior 
prognostic ability for KIRC patients. Additionally, the risk score acted as an independent prognostic indicator. A 
nomogram incorporating age, grade, stage, and signature-based risk scores was also developed and exhibited 
excellent predictive accuracy. Several immune activities were associated with the signature, as determined by 
gene function analysis. Further analysis revealed differences in the status of immunity and the tumor 
microenvironment between low- and high-risk groups. Notably, KIRC patients with high-risk scores were more 
responsive to immunotherapy and chemotherapy. To summarize, our study developed a new prognostic 
signature consisting of nine telomere-related lncRNA that can precisely predict the prognosis of KIRC patients. 
The signature was shown to be of substantial value for the tumor microenvironment and tumor mutation 
burden, thereby contributing to a framework for the individualized treatment of patients. 
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Telomeres are essential in maintaining the stability of 

chromosome structure and the genome [10]. Although 

telomeres shorten with each cell division, it has been 

reported that telomere abnormalities have been 

identified in certain disease states, such as dyskeratosis 

congenita, aplastic anemia [11], diabetes mellitus [12], 

and psychiatric disorders [13]. Moreover, many 

previous studies have reported the crucial role of 

telomeres in tumor initiation and progression [11, 14]. 

However, shortening telomeres can also serve dual 

functions in the process of cancer development. On the 

one hand, telomere shortening can result in genome 

instability and therefore promote the progression of 

cancer. Alternatively, telomere shortening has a tumor-

suppressing effect by inhibiting cell proliferation [11, 

15]. Regarding KIRC, several studies suggested that 

telomere length could predict kidney cancer survival, 

but its prognostic role is still unconfirmed [16]. 

 

Long non-coding RNAs (lncRNAs) are non-coding 

RNAs exceeding 200 nucleotides in length [17]. Several 

publications have reported that lncRNAs serve as an 

important marker for various human cancers [18], and 

are among the most sensitive and specific biomarkers 

for cancer. As a result, it is confirmed that lncRNA can 

be utilized to predict clinical prognosis and direct 

treatment in KIRC [19]. Nevertheless, the functions of 

telomere-related lncRNAs (TRLs) in KIRC require 

further investigation. Given the significance of 

telomeres and lncRNAs, the use of novel methods to 

provide an improved prognosis for KIRC patients may 

offer a viable strategy. 

 

The previous investigations have chiefly focused on the 

telomere length in cancers and their role in cancer 

prognosis. Now, there is still no study to investigate the 

prognostic values of TRLs in cancers so far. Herein, we 

constructed a prognostic signature based on TRLs to 

predict the outcomes of KIRC and then explored the 

potential role in the selection of therapeutic agents. 

 

RESULTS 
 

The expression of telomere-related genes and 

identification of TRLs 

 

The study flow diagram is shown in (Supplementary 

Figure 1). We obtained the expression profiles of 2088 

telomere-related genes telomere from 72 normal 

kidneys and 539 KIRC tissues. In KIRC, 37 telomere-

related genes exhibited significant expression 

differences, including 15 down-regulated and 22 up-

regulated genes (Figure 1A, 1B). The expression 

profiles of 37 differentially expressed telomere-related 

genes and lncRNAs were then utilized to conduct a 

Pearson correlation analysis. Under the conditions of |R| 

> 0.7 and P < 0.001, 13 telomere-related genes were 

retained and 648 lncRNAs were identified as TRLs. The 

co-expression networks between telomere-related genes 

and TRLs were illustrated in the Sankey diagram 

(Figure 1C). 

 

Construction of TRLs prognostic signature 

 

The univariate Cox analysis revealed that 15 of 648 

TLRs were significantly related to overall survival (OS) 

(Figure 2A). In the training cohort, the aforementioned 

genes were subjected to the least absolute shrinkage and 

selection operator (LASSO) regression analysis for 

dimensionality reduction. There was a total of nine 

TRLs that were filtered out and used to create a 

prognostic signature (Figure 2B, 2C). The coefficient 

distributions of nine TRLs are illustrated in Figure 2D. 

The risk score for each KIRC patient can be estimated: 

risk score = (−0.387 × value of SIAH2-AS1) + (−0.218 

× value of AL109741.1) + (−0.269 × value of 

LINC00551) + (0.097 × value of AC112715.1) + (0.379 

× value of AC080013.2) + (−0.370 × value of 

LINC00571) + (−0.488 × value of AL161457.2) + 

(0.096 × value of AC002398.1) + (1.627 × value of 

AL512770.1). Additionally, we conducted a co-

expression analysis of TRLs and telomere-related 

genes, and the results indicated that AC002398.1 and 

AL512770.1 co-expressed more than any other TRLs 

and telomere-related genes, which were linked to a poor 

prognosis (Figure 2E). 

 

Validation of TRLs prognostic signature 

 

KIRC patients were separated into low- and high-risk 

groups using the median score. Subsequently, we ranked 

the KIRC patients based on their risk scores from the 

training, testing, and entire cohorts (Figure 3A–3C). We 

then compared the patient survival status and the 

expressions of nine TRLs between two groups in the 

training, testing, and entire groups, respectively. We found 

that as the risk score increases, the number of deaths 

among patients with KIRC increased (Figure 3D–3F). 

Furthermore, four deleterious lncRNAs (AC112715.1, 

AC080013.2, AC002398.1, and AL512770.1) exhibited 

relatively high expression in the high-risk group, whereas 

five protective lncRNAs (SIAH2-AS1, AL109741.1, 

LINC00551, LINC00571, and AL161457.2) demonstrated 

the opposite trend (Figure 3G–3I). 

 

The survival analysis revealed that the high-risk group 

suffered a significantly shorter OS rate than the low-risk 

group (Figure 4A–4C). In addition, there was a 

significant difference in PFS between the two groups, 
with the progression-free survival (PFS) rate being higher 

in the low-risk group (Figure 4D–4F). Except for stage 

N1, significant statistical differences in survival analysis 



www.aging-us.com 11014 AGING 

were observed between KIRC patients with distinct 

clinical features (Supplementary Figure 2). The absence 

of a significant difference in the OS rate may be partially 

explained by the fact that there are fewer cases of N1 

group. In addition, we found that patients with high-grade 

and advanced-stage tumors had significantly higher risk 

scorers than those with low-grade and early stages tumors 

(Supplementary Figure 3). Between these two groups, 

there was no significant difference in the distribution of 

age and gender. The preceding result revealed that the 

constructed prognostic signature holds for almost all 

clinical features of KIRC patients. 

 

The predictive efficacy of the signature was further 

evaluated using the area under the curve (AUC) and its 

values for 1, 3, and 5 years were 0.673, 0.743, and 

0.893, respectively (Figure 5A). Comparatively, the 

maximum AUCs for the testing cohort and the entire 

cohort were 0.686 and 0.753, respectively (Figure 5B, 

5C). In addition, we observed that the risk score 

predicted the prognosis of KIRC patients better than 

other clinical variables (Figure 5D–5F). 

 

Principal component analyses (PCA) were utilized to 

examine the distinct distribution patterns between two 

groups using a variety of data sets, including whole 

genome data, differentially expressed telomere-related 

genes, TRLs, and signature-based TRLs (Sup-

plementary Figure 4). Using the expression of 

signature-based TRLs, the two groups tended to 

separate in two directions, whereas the other three 

expression profiles failed to distinguish between the 

groups. These results demonstrated that this signature 

possessed strong predictive ability. 

 

The independence of TRLs prognostic signature 

 

We utilized univariate and multivariate Cox analyses of 

variables to determine if the signature-based risk score 

was an independent prognostic factor for OS, 

 

 
 

Figure 1. Identification of telomere-related lncRNAs (TRLs) in KIRC. (A) Violin plot showing the differences in the expression of 
telomere-related genes between normal and KIRC tissues. (B) Heatmap showing the expression profile of differentially expressed telomere-
related genes. (C) Sankey graph of the co-expression networks of the TRLs and telomere-related genes. 
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Figure 2. Construction of TRLs prognostic signature in KIRC. (A) The forest plot shows 15 prognostic TRLs using univariate Cox 
regression analysis. (B) The 10-fold cross-validation for the selection of optimal parameter lambda in the LASSO regression. (C) The profile 
of the LASSO coefficient. (D) The coefficient distributions of nine TRLs. (E) Heatmap for co-expression of signature-based TRLs and 
telomere-related genes. 

 

 
 

Figure 3. Prognosis value of the TRLs prognostic signature in the training; testing; and entire cohorts; respectively.  (A–C) The 

distributions of risk scores. (D–F) The survival time and survival status. (G–I) Heatmaps of 9 TRLs expression. 
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independent of other clinical characteristics. In the 

training cohort, univariate Cox analysis revealed a 

significant association between risk score and patient 

survival (Figure 6A). In addition, a multivariate Cox 

analysis implied that the risk score was an independent 

prognostic factor (Figure 6B). The results of 

independent prognostic analysis for the testing (Figure 

6C, 6D) the entire cohorts (Figure 6E, 6F) were 

identical. Accordingly, these findings suggested that the 

signature-based risk score was an independent 

 

 
 

Figure 4. Kaplan-Meier survival analysis based on TRLs prognostic signature. The OS rates (A–C) and PFS rates (D–F) of different 
risk groups in the training; testing; and entire cohorts; respectively. 

 

 
 

Figure 5. ROC curves for TRLs prognostic signature in the training; testing; and entire cohorts; respectively. (A–C) Time-

dependent ROC curves for the prognostic signature. (D–F) Multi-parametric ROC curve analysis for the signature-based risk score and 
clinical features. 
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prognostic factor for OS, suggesting which had a  

certain clinical utility for the prognosis evaluation. 

Subsequently, we developed a nomogram by integrating 

three independent indicators (age, grade, and stage) and 

a risk score to predict the 1, 3, and 5-years OS of KIRC 

patients (Figure 6G). The calibration curves validated 

the consistency of the nomogram (Figure 6H). 

 

Functional enrichment analysis 

 

Considering that the outcomes of KIRC patients in low- 

and high-risk groups differed significantly, GO (Gene 

Ontology) and KEGG (Kyoto Encyclopedia of Genes 

and Genomes) analyses were conducted to investigate 

the potential biological function of 534 genes with 

differential expression between the two groups. GO 

annotation revealed that these genes were significantly 

associated with biological behaviors like humoral 

immune response (Supplementary Figure 5A–5C). 

KEGG revealed that these genes were related to 

pathways including glycerophospholipid metabolism. 

(Supplementary Figure 5D, 5E). These biological 

behaviors and pathways are probably responsible for the 

high-risk group’s tendency to have poorer clinical 

outcomes. 

 

Immune landscape of KIRC patients 

 

Since the preceding results indicated a close association 

between risk scores and immune functions, we 

 

 
 

Figure 6. Independent prognostic validation of risk signatures and development of clinical nomogram.  Univariate and 
multivariate Cox regression analysis results were presented in the form of forest plots in the training (A, B); testing (C, D); and entire (E, F) 
cohorts; respectively. (G) Nomogram to quantitatively predict 1; 3; and 5-year OS in KIRC patients. (H) The calibration curves of this 
nomogram. 
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investigated the immune profiles of KIRC patients in 

low- and high-risk groups. A significant correlation 

between various immunocytes and the risk score was 

observed, which was determined by employing seven 

algorithms to study the relationship between risk score 

and tumor immune cell infiltration (Figure 7A). 

 

 
 

Figure 7. Potential effects of prognostic signatures on tumor immune microenvironment in KIRC patients. (A) The correlation 
between different immune cells and risk scores was analyzed using seven algorithms. (B) The heatmap of immune cells and immune-
related pathways. Differences in enrichment scores of 16 immune cells (C) and 13 immune-related pathways (D) between the low- and 
high-risk groups. Distribution (E–G) and Kaplan-Meier survival (H–J) of immune score; stromal score; and ESTIMATE score between the low- 
and high-risk groups. 
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Then, using the single sample Gene Set Enrichment 

Analysis (ssGSEA) algorithm, we quantified scores for 

immune cell enrichment and function enrichment 

(Figure 7B). The proportions of CD8+ T cells, T 

follicular helper cell and tumor Infiltrating 

lymphocytes were higher in the high-risk group than 

the low-risk group (Figure 7C). As for the 

immunization-associated function enrichment scores, 

cytolytic activity, inflammation promoting, T cell co-

inhibition/stimulation, and IFN response (Type 1) were 

higher in the high-risk group than the low-risk group 

(Figure 7D). We then determined that the immune score 

of the high-risk group was obviously higher than the 

low-risk group using the ESTIMATE algorithm (Figure 

7E). Neither the stromal score nor the estimated score 

varied significantly between subgroups (Figure 7F, 7G). 

In addition, the poor prognosis was more prevalent 

among KIRC patients with higher immune scores 

(Figure 7H), indicating that the immune score can be 

used to predict the outcomes of these patients. However, 

there was no significant survival difference in the 

stromal score and estimate score (Figure 7I, 7J). 

 

Tumor mutation analysis 

 

To characterize tumor mutation analysis (TMB) in 

KIRC patients, we determined the TMB value for each 

individual case. The probability of a genetic mutation 

occurring in the low-risk group and high-risk group 

were 76.50% and 82.95%, respectively (Figure 8A, 8B). 

However, there is no significant difference in the value 

of TMB (Figure 8C). To investigate the value of TMB 

in KIRC, we then conducted survival analyses for 

different TMB groups and risk groups. The patient with a 

low TMB represented favorable OS than the patient with 

a high TMB (Figure 8D). The synergistic effect of TMB 

 

 
 

Figure 8. Analysis of TMB based on TRLs prognostic signature in KIRC patients. The waterfall plot illustrates the type and 
frequency of tumor mutational burden in the low-risk group (A) and high-risk group (B). (C) TMB levels between two groups. (D) The 
Kaplan-Meier curve of KIRC patients in the low- and high-TMB groups. (E) The Kaplan-Meier curves of KIRC patients among diverse 
subgroups based on the risk score and TMB levels. 
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concentrations and risk scores on outcome prediction 

were then investigated in greater detail. Combining 

TMB subgroup analysis with the risk score revealed 

statistically significant differences in survivability 

across groups (Figure 8E). Additionally, the low-TMB 

combining low-risk group had the highest OS rate, 

whereas the high-TMB combining high-risk group had 

the lowest OS rate. These findings indicated that the 

signature-based risk score combined with TMB had a 

good prognostic value. Comparing the high-risk group 

to the low-risk group, the high-risk group exhibited a 

relatively higher immune status. 

 

Immunotherapy responsiveness and drug sensitivity 

analysis 

 

Subsequently, we determined the immune checkpoint 

inhibitors (ICIs) expression levels and drug sensitivity 

of KIRC patients. In the high-risk group, a number of 

ICIs, including PD-1, were upregulated (Figure 9A). 

Examining the differences in immunotherapy efficacy 

between the two groups, we then obtained the IPS of the 

KIRC patients from the Cancer Immunome Atlas 

(TCIA) database. Overall, there was no statistical 

difference in the IPS of CTLA4negPD1neg (Figure 9B); 

however, there existed difference in the group of 

CTLA4posPD1pos (Figure 9C), indicating that 

immunotherapy may be more suitable for the high-risk 

group. By comparing differences in the maximum 50% 

inhibition concentration (IC50) values of several drugs 

between two groups, we discovered that our signature 

may influence drug sensitivity to some extent. The fact 

that the IC50 values of 12 drugs in the low-risk groups 

were higher than those in the high-risk groups suggests 

that KIRC patients with high-risk scores may be more 

sensitive to the aforementioned chemical therapy 

(Figure 9D). The findings demonstrated that this 

prognostic signature has a certain guiding significance 

for selecting specific therapy for KIRC patients. 

 

DISCUSSION 
 

KIRC is one of the most prevalent tumors, particularly 

in patients with advanced disease, whose prognosis is 

often very unsatisfactory [5, 6, 20]. Research has shown 

that lncRNAs perform crucial roles in tumor 

progression. In addition, aberrant lncRNA expression 

has been detected in KIRC [21, 22]. There are reports 

that prognostic models based on LncRNA can 

accurately predict the prognosis of KIRC patients. The 

research conducted by Zhou resulted in the 

development of a risk assessment model comprised of 

pyroptosis-related lncRNAs that could predict the 

outcomes of KIRC patients [23]. Xu et al., constructed a 

prognosis signature using 10 cuproptosis–related 

lncRNAs, which can assist in determining the prognosis 

and molecular profile of KIRC patients [24]. Zhang 

et al., found that the epithelial-mesenchymal transition-

related lncRNA prognostic signature is significant for 

KIRC prognosis [25]. Telomeres are essential for 

controlling genome stability because they maintain the 

integrity of chromosomes [14]. Interestingly, several 

types of cancer have been linked to aberrant telomeric 

structures, indicating their significance in the 

development and progression of cancer. However, the 

purpose of TRLs in KIRC was poorly understood. 

 

In the present study, 37 telomere-related genes with 

differential expression between normal and KIRC 

tissues were initially screened. 15 of the 648 TRLs 

identified by Spearman correlation analysis were 

considered prognostic lncRNAs in univariate Cox 

analysis. Based on LASSO regression analysis, a 

prognostic signature consisting of nine TRLs was 

constructed. Among them, SIAH2-AS1 was found to be 

expressed at low levels in breast cell lines relative to 

normal cells and was associated with a favorable 

prognosis [14]. Wang et al., identified LINC00551 as a 

tumor suppressor in lung adenocarcinoma and 

demonstrated that LINC00551 inhibits glycolysis via 

regulating c-Myc-mediated PKM2 expression [26]. 

However, a recent study presented contradictory results. 

Through the regulation of the miR-98-5p/TGFBR1 axis, 

Li et al., found that LINC00551 may promote 

postoperative distant recurrence in non-small-cell lung 

cancer [27]. LINC00571 was identified as a risk factor 

with HR >1 for patients with triple-negative breast 

cancer, and high LINC00571 expression was associated 

with poor overall survival [28]. Regarding the 

remaining six TRLs, however, there were few reported 

cases in the literature. 

 

We did not only obtain the most accurate signature, but 

we also calculated the optimal cutoff value for 

separating patients with KIRC into low- or high-risk 

groups. Analysis of survival revealed that the clinical 

outcomes of KIRC patients in the high-risk group were 

poorer relative to those of patients in the low-risk group. 

Moreover, the prognostic signature was applied to 

nearly all clinical features of KIRC patients in subgroup 

analyses. The ROC analysis revealed that the signature 

is superior to other clinical characteristics for predicting 

prognosis. The univariate and multivariate cox 

regression analyses further determined the signature's 

independent prognostic function. Moreover, the 

independent clinical indicators were integrated to 

develop a nomogram, thereby making the signature 

more applicable to clinical practice. 

 
GO annotation and KEGG analysis were performed to 

increase understanding of the potential biological 

behaviors and mechanisms of the involved signature. 
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The results showed that many enrichment biological 

functions were significantly associated with immune 

activities. In addition, several biological phenomena, 

including humoral immune response, immunoglobulin 

production, and immunoglobulin complex, may be 

involved in the process. Glycerophospholipid metabo-

lism [29] and the NF-kappa B signaling pathway [30] 

may partially explain why KIRC patients with high-risk 

scores had a worse prognosis. 

 

Taking into account the results of function enrichment 

and the fact that KIRC was an immunogenic tumor, we 

investigated the associations between signature and the 

immune microenvironment of KIRC tumors and noticed 

 

 
 

Figure 9. Immunotherapeutic response prediction and drug susceptibility analysis between low- and high-risk groups in 
KIRC patients. (A) Differential expression of common immune checkpoints. (B, C) Relative response of anti-PD1 and anti-CTLA4 therapy. 

(D) Difference analysis of anti-tumor drug sensitivity. 
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that multiple immune cells differed between the different 

groups. Importantly, we found that the high-risk group 

had a higher proportion of CD8+ T cells, which was 

associated with a poor prognosis due to immune evasion 

via T cell exhaustion [31, 32]. Besides, most of the 

immunization-associated function enrichment scores, 

including cytolytic activity, inflammation-promoting, T 

cell co-stimulation/inhibition, and INF response, were 

higher in the high-risk group. In addition, we observed 

that the immune score was higher in the high-risk group 

compared with the low-risk group. In addition, KIRC 

patients at high risk with elevated immune scores had a 

dismal survival rate, which was consistent with previous 

research [33]. The aforementioned findings indicated 

that the constructed prognostic signature might reflect 

the immune status of the tumor microenvironment in 

patients with KIRC. 

 

TMB levels are increasingly regarded as a sensitive 

predictor of the clinical response to immunotherapy in 

multiple cancers [34]. We analyzed somatic mutations 

to explore the role of TMB in KIRC. A total of 247 

patients possessed somatic mutations, 107 (76.50%) in 

the low-risk group and 140 (85.95%) in the high-risk 

group. Similarly, to other studies, the VHL genes 

exhibited the highest frequency of mutations. In 

addition, we discovered that the high TMB group 

suffered poor survival rates, although there was no 

difference between TMB and risk score. This 

phenomenon was also identified in a separate study [35]. 

 

KIRC is currently one of the most prevalent cancer 

immunotherapies used to treat advanced-stage cancer. 

Although PD1 (PDL1) can prolong the survival in 

patients with metastatic KIRC, only a minority of 

patients benefit from them [36]. Accordingly, we hope 

that our signature will provide guidance for 

individualized immunotherapy. Then, we analyzed the 

expression of ICIs and found that the majority of ICIs 

were higher in the high-risk group. These findings 

suggested that KIRC cases with high-risk scores may be 

more sensitive to the treatment of ICIs, which may be 

advantageous for achieving greater therapeutic effects. 

Recent FDA approvals of α-PD-1 in combination with 

α-CTLA-4 are transforming the standard of care for 

metastatic KIRC [36, 37]. Using TCIA data to predict 

the efficacy of immunotherapy, we found that the scores 

of IPS−PD1−CTLA4 blocker were higher in the high-

risk group, indicating that this signature may be a 

potential biomarker for evaluating the immunotherapy 

response in KIRC patients. In addition, we investigated 

the response of patients to chemotherapy sensitivity as 

measured by IC50 values and found that the low-risk 

group was more sensitive to several drugs. These 

findings may provide KIRC patients with a viable 

treatment option. 

The study also had a number of limitations. First, the 

retrospective nature of our study necessitated a 

prospective multicenter investigation to validate the 

preliminary findings. Second, experimental studies of a 

fundamental nature are required to elucidate the 

mechanism by which TRLs influence the progression of 

KIRC. Third, some prognostic lncRNAs may have been 

overlooked because we only considered a single 

phenotype when constructing a prognostic signature. 

Despite a number of flaws, the clinical applicability of 

the present study is extremely promising. 

 

To summarize, our study developed a new prognostic 

signature consisting of nine telomere-related lncRNA 

that can precisely predict the prognosis of KIRC 

patients. The signature was shown to be of substantial 

value for the tumor microenvironment, tumor 

mutation burden, and drug sensitivity, thereby 

contributing to a framework for the individualized 

treatment of patients. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The RNA sequencing data (FPKM value) of 539  

KIRC and 72 normal patients were downloaded from 

The Cancer Genome Atlas (TCGA) database 

(https://portal.gdc.cancer.gov/). Individuals with 

incomplete RNA expression data, missing prognostic 

information, or a 30-day survival time were excluded 

from our study. The 513 KIRC cases were randomly 

separated into two groups (1:1 ratio) for training (n = 

257) and testing (n = 256). Patient demographics and 

baseline characteristics were listed in Supplementary 

Table 1. 

 

Identification of telomere-related lncRNAs 

 

TelNet is a user-friendly gene database designed to 

facilitate the study of genes involved in telomere 

maintenance mechanisms. Accordingly, the information 

on 2088 telomere-related genes were identified from 

TelNet (http://www.cancertelsys.org/telnet/) database 

[38]. With a preset threshold (|log2 fold change (FC)| ≥ 

3.0 and false discovery rate (FDR) < 0.05), the “limma” 

package was used to identify the differentially 

expressed telomere-related genes [39]. The “limma” 

package was further used to conduct a Pearson 

correlation analysis on differentially expressed 

telomere-related genes and lncRNAs expression. When 

|correlation coefficient (R)| > 0.7 and P < 0.001, TRLs 

were eliminated from further consideration. A Sankey 

diagram was created to illustrate the relationship more 

intuitively between differentially expressed telomere-

related genes and TRLs. 

https://portal.gdc.cancer.gov/
http://www.cancertelsys.org/telnet/
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Construction and validation of the TRLs-based 

prognostic signature 

 

We merged TRLs expression data with corresponding 

survival data and then conducted a univariate Cox 

analysis to identify TRLs associated with OS (P < 

0.05). In the training cohort, the LASSO regression 

analysis was used to develop the optimal prognostic 

signature. The risk score was estimated in the three 

cohorts using the following equation: 

1
Risk score ( ) ( ).

n

i
x i Coef i

=
=  The x(i) and Coef(i) 

represented the expression values of TRLs and their 

coefficients, respectively. Using the median score, the 

patients were classified into low-risk (< median) and 

high-risk (≥median) groups. Additionally, Kaplan-

Meier survival analysis was utilized to compare the OS 

and PFD between the two groups using log-rank tests. 

Moreover, the receiver operating characteristic (ROC) 

curves and subgroup analyses were conducted to 

further evaluate the signature’s ability to predict 

outcomes and the performance of relevant clinical 

parameters. To determine the independence of 

signature-based risk scores, Cox regression analyses 

were conducted. The aforementioned analyses were 

validated in the testing and entire cohorts. A 

nomogram was developed eventually by integrating all 

independent prognostic parameters to qualitatively 

predict the OS of KIRC patients across the entire 

cohort. 

 

Functional enrichment analysis 

 

To investigate the potential molecular mechanisms 

underlying the prognostic signature, the differentially 

expressed genes between low- and high-risk groups 

were identified (|log2FC| > 1 and FDR < 0.05) using the 

“limma” package. The functional enrichment analysis 

of GO and KEGG was then carried out on the above 

genes. An adjusted P < 0.05 was regarded to be the cut-

off point. 

 
Analysis of tumor immune microenvironment 

 

Seven algorithms (CIBERSORT-ABS, CIBERSORT, 

EPIC, MCPCOUNTER, QUANTISEQ, TIMER, 

XCELL) were used for calculating the immune cell 

infiltration in various KIRC cases. The correlation 

between infiltration levels of immune cell and risk score 

was then determined using Spearman correlation 

analysis. In addition, the ssGSEA was employed for 

analyzing the relative abundance of immune 

populations between different groups [40]. Sub-

sequently, we used the ESTIMATE algorithm to obtain 

the immune score for each KIRC patient and for 

comparing the score differences between risk groups 

[41]. 

Tumor mutation analysis 

 

Based on somatic mutation frequencies, TMB was 

calculated. The median TMB value was then used to 

divide the KIRC patients into low- and high-TMB 

groups. The waterfall plot of a mutational landscape 

was visualized through the “maftool” package [42]. In 

addition, comparative and survival analyses were 

conducted between two groups to investigate the 

difference in somatic mutation. 

 
Prediction of immunotherapy responsiveness and 

potential drug sensitivity 

 

We also compared the expression levels of several 

ICIs genes between low- and high-risk groups and 

then utilized the TCIA database to predict potential 

immunotherapy responses [43]. Gene expression 

profiles and drug response data were obtained from 

the Genomics of Drug Sensitivity in Cancer (GDSC) 

database. Additionally, we adopted ridge regression to 

predict the IC50 of drugs with the “oncoPredict” 

package [44]. The IC50 was calculated as tolerance 

ability, and a higher IC50 indicated the cells showing 

higher resistance to drugs. The difference in 

sensitivity score was then analyzed between the two 

groups. 

 

Statistical analysis 

 

All statistical analyses were performed in R statistical 

software (version 4.0.1) and Perl language (version 

5.30.2). Unless otherwise specified, statistical 

significance was considered for two-tailed P < 0.05. 

 

Availability of data and materials 
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study are available from the corresponding author on 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The flowchart of our research. 
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Supplementary Figure 2. Stratified survival analysis based on TRLs prognostic signature. The OS rates of different risk groups 

with different clinical features; including age (A); gender (B); grade (C); AJCC stage (D); T stage (E); N stage (F); and M stage (G). 
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Supplementary Figure 3. The distribution of the risk scores in terms of age, gender, grade, and stage. 
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Supplementary Figure 4. Principal components analysis between low‐ and high‐risk groups with different data sets. (A) The 
whole genome data. (B) The differentially expressed telomere-related genes. (C) TRLs. (D) The signature-based TRLs. 
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Supplementary Figure 5. Functional enrichment analysis of 548 genes with differential expression between low- and high-
risk groups. (A–C) GO enrichment analysis. (D, E) KEGG enrichment analysis. 
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Supplementary Table 
 

Supplementary Table 1. Characteristics of all patients included in this study. 

Variable 
Entire cohort (n = 513) Training cohort (n = 257) Testing cohort (n = 256) 

Number (%) Number (%) Number (%) 

Age 

≤65 340 (66.28%) 168 (65.62%) 172 (66.93%) 

>65 173 (33.72%) 88 (34.38%) 85 (33.07%) 

Gender 

Female 176 (34.31%) 91 (35.55%) 85 (33.07%) 

Male 337 (65.69%) 165 (64.45%) 172 (66.93%) 

Grade 

G1 12 (2.34%) 11 (4.3%) 1 (0.39%) 

G2 219 (42.69%) 109 (42.58%) 110 (42.8%) 

G3 201 (39.18%) 94 (36.72%) 107 (41.63%) 

G4 73 (14.23%) 38 (14.84%) 35 (13.62%) 

Gx 5 (0.97%) 2 (0.78%) 3 (1.17%) 

Unknow 3 (0.58%) 2 (0.78%) 1 (0.39%) 

AJCC stage 

I 255 (49.71%) 127 (49.61%) 128 (49.81%) 

II 56 (10.92%) 29 (11.33%) 27 (10.51%) 

III 117 (22.81%) 50 (19.53%) 67 (26.07%) 

IV 82 (15.98%) 49 (19.14%) 33 (12.84%) 

Unknow 3 (0.58%) 1 (0.39%) 2 (0.78%) 

T stage 

T1 261 (50.88%) 133 (51.95%) 128 (49.81%) 

T2 68 (13.26%) 38 (14.84%) 30 (11.67%) 

T3 173 (33.72%) 79 (30.86%) 94 (36.58%) 

T4 11 (2.14%) 6 (2.34%) 5 (1.95%) 

N stage  

N0 229 (44.64%) 104 (40.62%) 125 (48.64%) 

N1 16 (3.12%) 11 (4.3%) 5 (1.95%) 

Nx 268 (52.24%) 141 (55.08%) 127 (49.42%) 

M stage 

M0 407 (79.34%) 194 (75.78%) 213 (82.88%) 

M1 78 (15.2%) 45 (17.58%) 33 (12.84%) 

Mx 26 (5.07%) 16 (6.25%) 10 (3.89%) 

Unknow 2 (0.39%) 1 (0.39%) 1 (0.39%) 

 

 


