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INTRODUCTION 
 

As we all know, colorectal cancer (CRC) has a high 

incidence rate and mortality. According to statistics, in 

2020, there will be about 1, 880, 000 new CRC cases and 

nearly 920, 000 CRC deaths worldwide [1]. Although 
great efforts have been made in early screening,  

which can effectively reduce the incidence of CRC [2], 

the morbidity and mortality of CRC have not been 

significantly improved, and the prognosis of patients with 

advanced CRC is still very poor [3]. It is estimated that 

there will be about 3, 200, 000 new CRC cases and  

1, 600, 000 CRC deaths by 2040 [4]. At present,  

the mechanism of occurrence and development of CRC  

is still unclear. Therefore, it is particularly important  
to find new diagnostic and prognostic biomarkers for 

CRC patients. Metabolic reprogramming is generally 

considered to be one of the hallmarks of cancer [5]. 
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ABSTRACT 
 

Background: Colorectal cancer (CRC) is a malignancy of the digestive system with high incidence rate and 
mortality, and reliable diagnostic and prognostic markers for CRC are still lacking. Glutamine metabolism is 
crucial to the occurrence and development of CRC. However, no research has systematically analyzed the 
biological role of glutamine metabolism-related genes (GMRGs) in CRC. 
Methods: We downloaded gene expression data and clinical data of CRC patients from the TCGA database. The 
UCSC database downloads pan-cancer gene expression data and prognosis data. Characteristic GMRGs were 
screened out using differential analysis and two types of machine learning (SVM-REF and RandomForest). 
Single-cell RNA-sequencing data from CRC patients were downloaded from GEO data. ROC curve was used to 
evaluate the diagnostic value. Kaplan-Meier method and univariate Cox regression analysis were used to 
evaluate the prognostic value. The oncoPredict package is used to calculate IC50 values for common drugs in 
CRC patients. 
Results: A total of 31 differentially expressed GMRGs were identified, 9 of which were identified as 
characteristic GMRGs. Further evaluation of diagnostic and prognostic value finally identified GPT as the most 
important GMRGs in CRC. scRNA-seq analysis revealed that GPT is almost exclusively expressed in epithelial 
cells. GPT expression is closely related to the tumor microenvironment and can effectively distinguish the 
sensitivity of different CRC patients to clinical drugs. In addition, pan-cancer analysis showed that GPT is an 
excellent diagnostic and prognostic marker for multiple cancers. 
Conclusions: GPT is a reliable diagnostic, prognostic marker and therapeutic target in CRC. 
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In addition to classic glycolysis (Warburg effect) [6], 

researchers have focused on glutamine metabolism in 

recent years [7]. Studies have shown that glutamine is a 

non-essential amino acid with the highest content in 

blood [8]. In addition to providing a source of nitrogen, 

glutamine is a major source of carbon that supports 

cancer cell growth, especially when mitochondria  

are dysfunctional [9, 10]. Therefore, glutamine is one 

of the essential metabolites for cancer cells to maintain 

a malignant phenotype. Previous research has 

implicated that glutamine metabolism is associated 

with proliferation, invasion, autophagy, and immune 

evasion of cancer cells [11–15], and is a promising new 

target for cancer therapy [16, 17]. Therefore, a 

comprehensive analysis of GMRGs is imperative to 

find new promising biomarkers for the diagnosis and 

prognosis of CRC. 

 

Glutamic pyruvic transaminase (GPT), also known as 

glutamic pyruvic transaminase 1, can reversibly 

catalyse alanine and α-ketoglutarate into pyruvate and 

glutamic acid and plays a pivotal role in the 

intermediate metabolism of amino acids and glucose 

[18]. Unlike mitochondrial GPT2, which has been 

extensively studied in cancer [19–21], GPT1 has  

been rarely reported in cancer. Current studies  

have shown that inhibiting GPT1 expression can reduce 

ATP production, thereby attenuating the malignant 

phenotype of HCC, which is a new therapeutic target 

for HCC [22]. In addition, GPT1 can be negatively 

regulated by SIRT4 to affect cervical cancer cell 

apoptosis by affecting glutamine metabolism. However, 

GPT1 has not been studied in other cancers, including 

CRC. Therefore, it is essential for the systematic study 

of GPT in CRC. 
 

This study screened characteristic genes in the glutamine 

metabolism related family through multiple machine 

learning algorithms, and jointly analyzed their diagnostic 

and prognostic value, ultimately determining GPT as the 

key GMRGs in colorectal cancer. Then, we utilized 

bioinformatics to analyze the biological role of GPT in 

CRC and explore the relationship between its expression 

and tumor microenvironment (TME) and drug sensitivity. 

Finally, we also explored the differential expression, 

diagnostic performance, and prognostic value of GPT in 

pan cancer. 

 

MATERIALS AND METHODS 
 

Data download and processing 

 

The RNA-seq expression data and survival information 

from the CRC cohort (TCGA-COAD/READ)  

were obtained from the TCGA database (https://portal. 

gdc.cancer.gov/). Expression data and prognostic 

information of 31 cancers for pancancer analysis were 

downloaded from UCSC database (https://xena. 

ucsc.edu/). Single-cell RNA sequencing (scRNA-seq) 

data of 12 CRC patients were downloaded from 

GSE166555. The scRNA-seq data in GSE166555 were 

downloaded from the Gene Expression Omnibus (GEO, 

https://www.ncbi.nlm.nih.gov/geo/) database. The 

glutamine metabolism-related genes involved in this 

study were obtained from previous studies published by 

He. et al. [23]. Analysis of the differential expression of 

GMRGs in the TCGA-CRC cohort using the R package 

“Limma”, and the screening condition was set to 

“|Foldchange > 2, P < 0.05|”. 

 

Machine learning screening for differentially 

expressed GMRGs 

 

For the differentially expressed GMRGs, we further 

used SVM-REF and RandomForest algorithm for 

separation to screen out the characteristic genes. SVM-

REF is a powerful classification algorithm [24], that 

can be applied to characterize cancer, allowing the 

identification of biomarkers for diagnosis. Similarly, 

RandomForest is also a powerful classification 

algorithm [25] that ranks gene importance, and in this 

study, we picked genes with an importance score 

greater than 2. Finally, we use the common genes 

identified by these two machine learning algorithms 

for further research and consider them as characteristic 

genes of CRC. 

 

scRNA-seq analysis of characteristic genes 

 

The scRNA-seq data were preprocessed using the 

“Seurat” package. “PercentageFeatureSet” is used to 

calculate the percentage of mitochondrial genes. Cells 

with a gene count below 50 and a mitochondrial gene 

percentage above 5 were eliminated. The 1500 genes 

with the largest variation between cells were analyzed 

as cell clusters, the principal component was set to 20, 

and the resolution was 0.5. 

 

Evaluation of diagnostic performance of characteristic 

genes 

 

We further used the receiver operating characteristic 

curve (ROC) based on specificity and sensitivity to 

evaluate the diagnostic performance of the charac-

teristic gene. The AUC indicated the diagnostic 

performance of the characteristic gene. Different AUC 

values mean different diagnostic values [26]. AUC = 

1.0 means perfect diagnostic value; AUC = 0.9-1.0 

means high diagnostic value; AUC = 0.7-0.9 means 
relative diagnostic value; AUC = 0.5-0.7 means low 

diagnostic value; AUC = 0.5 means no diagnostic 

value. 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xena.ucsc.edu/
https://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
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Evaluation of the prognostic value of characteristic 

genes 

 

We performed a further analysis on the prognostic value 

of the characteristic genes. First, we observed the 

survival curves of different expression levels of the 

characteristic genes using the Kaplan-Meier method. 

Second, we further evaluated the ability of characteristic 

genes to affect the prognosis of CRC using univariate 

Cox regression analysis and displayed it using a forest 

plot. In the prognostic analysis, we excluded the samples 

with missing survival data and survival time ≤30. 

 

External validation and experimental validation of 

core gene GPT expression 

 

The GEPIA2 database analyzed the differential 

expression of the key gene GPT at the mRNA level  

of colon cancer and rectal cancer online (http://gepia2. 

cancer-pku.cn/#index) [27]. The UCLCAN database 

analyzed the expression difference of GPT at the protein 

level in the CPTAC database online (http://ualcan.path. 

uab.edu/index.html) [28]. The HPA database 

(https://www.proteinatlas.org/) obtained the immuno-

histochemical images of GPT in normal colorectal and 

CRC tissues [29], and obtained the basic information of 

the corresponding tissue samples. 

 

CRC specimen collection, RNA extraction and 

quantitative real-time PCR (qRT-PCR) reaction 

 

The 20 pairs of paracancerous normal tissues and 

matched CRC tissues were all from Shanghai Shidong 

Hospital. All patients provided written informed 

consent to participate in this study. 

 

The qRT-PCR experiment was performed according to 

the previous procedure [30]. Briefly, total RNA from 

normal and CRC tissues was extracted using RNA-easy 

isolation reagent (Vazyme, China), and then the RNA 

was reversed to cDNA using PrimeScript™ RT Master 

Mix (Takara Bio, Japan). Finally, we performed qRT-

PCR reactions using SYBR-Green qPCR Master Mix 

(Vazyme, China) and normalised using GAPDH. The 

experimental results were quantified relative to the 2-

ΔΔCt method. Primer sequences were designed in this 

study as follows, The GAPDH primer sequences, 

forward: GTCTCCTCTGACTTCAACAGCG, reverse: 

ACCACCCTGTTGCTGTAGCCA. The GPT primer 

sequences, forward: CAAGAAGGTGCTCATGGAGA 

TGG, reverse: TGTTCACCACCTCCACATAGCC. 

 

Co-expression analysis and enrichment analysis 

 

The co-expression network of GPT was analyzed using 

the LinkedOmics database (http://www.linkedomics.org/). 

GO analysis and KEGG analysis explored the biological 

processes involved in the co-expression network. 

 

Assessment of the level of immune cell infiltration 

 

Based on the gene expression profile of TCGA-CRC, 

we used CIBERSORT algorithm to evaluate the 

proportion of twenty-two types of immune cell [31], 

and samples with p < 0.05 were used for further 

analysis. Then, this research evaluated differences in the 

infiltration levels of 22 types of immune cells in CRC 

patients with different GPT expression. 

 

Somatic mutation spectrum analysis 

 

We used the R package “maftools” [32] to analyze the 

somatic gene mutation profile of TCGA-CRC patient 

samples. First, we analyzed the mutation status of 

characteristic genes in TCGA-CRC samples. Second, we 

further analyzed the 10 most mutated genes in samples 

with different levels of GPT expression. 

 

Drug sensitivity analysis 

 

We used R package “oncoPredict” [33] to analyze the 

half maximal inhibitory concentration (IC50) of 

TCGA-CRC samples based on gene expression data. 

The lower the IC50 value, the higher the drug 

sensitivity, and the larger the IC50 value, the lower the 

drug sensitivity. 

 

Pancancer analysis of GPT 

 

As previously described, we used the R package 

“Limma” to explore the expression differences of GPT in 

pancancer. Likewise, the diagnostic performance of GPT 

in pancancer was evaluated using ROC curves. The 

prognostic value of GPT in pancancer was evaluated 

using univariate Cox analysis and Kaplan-Meier method. 

 

Statistical analysis 

 

All bioinformatics research in this study was done by 

R language (version 4.1.2). Differences between 

groups were analyzed using the Wilcoxon test. The 

Kaplan-Meier method was used to draw survival 

curves. qRTPCR results were completed using 

Graphpad prism 9 software. p < 0.05 means that the 

results are statistically significantly different. 

 

Data availability statement 

 

The original contributions presented in the study  
are included in the article/Supplementary Material, 

further inquiries can be directed to the corresponding 

authors. 

http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
http://ualcan.path.uab.edu/index.html
http://ualcan.path.uab.edu/index.html
https://www.proteinatlas.org/
http://www.linkedomics.org/


www.aging-us.com 11814 AGING 

RESULTS 
 

Characteristic gene screening of GMRGs 

 

First, we analyzed the differential expression of 118 

glutamine metabolism family genes in the TCGA-CRC 

cohort, and the results showed that 31 GMRGs were 

differentially expressed genes (DEG), of which 4 

GMRGs were down-regulated and 27 GMRGs were up-

regulated. Figure 1A shows the volcano map of GMRG 

as well as the heat map of DEG (Figure 1B). Then, we 

performed two machine learning algorithms on DEG to 

screen out characteristic gene: RandomForest (Figure 1C, 

1D) and SVM-RFE (Figure 1E). Detailed results are 

detailed in Supplementary Table 1. According to the 

results of the above two machine learning algorithms, we 

used the Venn diagram to obtain 9 overlapping genes and 

defined them as characteristic gene (Figure 1F). Finally, 

we explored the mutation status of CRC signature genes 

and found that CAD (6%), SLC3A2 (5%) and MET (4%) 

had the highest mutation rates (Figure 1G). 

 

scRNA-seq analysis of characteristic genes 

 

First, we processed single-cell sequencing data of  

CRC cancer tissues to classify cells into 18 clusters 

(Figure 2A). We then displayed the 10 genes that were 

significantly overexpressed in each cluster in Figure 2B. 

In addition, we automatically annotated cell types 

through the “SingleR” package, and finally determined 

that there are 9 main types of cells in CRC tissues, 

including T cells, B cells, Epithelial cells, Monocyte, 

Tissue stem cells, Smooth muscle cells, Endothelial 

cells, NK cells, Fibroblasts (Figure 2C). 

 

Second, we explored the connections between cells 

using cell communication analysis. We visualized the 

number (Figure 3A) and weight (Figure 3B) of 

interactions between the 9 cell types. And centering on 

each cell type, the communication relationship between 

it and 9 cell types is shown separately (Figure 3C–3K). 

Furthermore, we use heatmaps to visualize the ligand-

receptor molecules that mediate interactions between 

cells (Figure 3L). 

 

Finally, we explored the distribution of characteristic 

genes in the TME (Figure 2D). Bubble plots show the 

expression levels of signature genes in each cell type 

(Figure 2E). Combining the above results, we found that 

SLC7A5 was highly expressed in monocyte, B cells and 

T cells. MET is mainly expressed in endothelial cells 

and epithelial cells. SHMT2 has similar expression level 

in other cell types except T cells. CAD and PPAT were 

expressed at low levels in all cell types. PYCR1 is 

highly expressed in tissue stem cells, epithelial cells and 

fibroblasts. GPT is almost exclusively expressed in 

epithelial cells. SLC3A2 was highly expressed in 

monocytes, but very low in fibroblasts. MYC is mainly 

expressed in endothelial cells, smooth muscle cells and 

epithelial cells. 

 

 
 

Figure 1. Characteristic gene screening. (A) Volcano map of differential expression of GMRGs. (B) Heatmap of DEG. (C, D) RandomForest 

evaluates the relative importance of DEG. (E) SVM–RFE algorithm. (F) Venn diagram of two machine learning algorithms. (G) Somatic 
mutation profiles of characteristic genes. 
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Diagnostic and prognostic value of characteristic 

genes 

 

First, we analyzed the diagnostic performance of the 

characteristic genes using ROC curves. We found that 

the 9 characteristic genes all had high AUC values 

(Figure 2A–2I), specifically: CAD (AUC = 0.976), GPT 

(AUC = 0.973), MET (AUC = 0.983), MYC (AUC = 

0.974), PPAT (AUC = 0.962), PYCR (AUC = 0.972), 

SHMT2 (AUC = 0.981), SLC3A2 (AUC = 0.968) and 

 

 
 

Figure 2. scRNA-seq analysis of CRC tissue. (A) tSNE analysis of CRC tissue scRNA-seq data to classify cell clusters. (B) Heatmap showing 
the top 10 genes highly expressed in each cell cluster. (C) The “Sin-gleR” package annotates the cell clusters into 9 cell types. (D) The 
distribution of the characteristic genes in the 9 cell types. (E) The bubble plot shows the expression levels of the characteristic genes in the 9 
cell types. 
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Figure 3. Cell communication analysis of scRNA-seq data. (A) Network diagram showing the number of connections between different 

cell types. (B) Network diagram showing the weight of connections between different cell types. (C–K) Diagram of the communication 
network between different cells and other cells. (L) Bubble plot showing genes involved in cell communication. 
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SLC7A5 (AUC = 0.992). These results imply that all 

characteristic genes are a potentially powerful class of 

diagnostic markers. 

 

At the same time, we analyzed the survival curves of 

the 9 characteristic genes with different expression 

levels using the Kaplan-Meier method (Figure 2J–2U). 

We found that high expression of CAD and SLC7A5 

had a worse prognosis, while high expression of GPT, 

MET, MYC, and PPAT had a better prognosis. The 

results showed that high expression of CAD and 

SLC7A5 had worse prognosis, while high expression of 

GPT, MET, MYC and PPAT had better prognosis. 

However, the prognosis of patients with different 

expression levels of PYCR, SHMT2, and SLC3A2 was 

not significantly different. 

 

Finally, we used univariate Cox analysis and found only 

GPT as a protective factor affecting the prognosis, and 

none of the remaining 8 characteristic genes were 

factors affecting the prognosis in CRC (Figure 4A). 

Combining the above results, we regard GPT as the 

most important GMRGs in CRC and conduct further 

analysis. 

 

Co-expression network and enrichment analysis of 

GPT in CRC 

 

In order to fully understand the biological function of 

GPT in CRC, we analyzed the co-expression network of 

GPT in the LinkedOmics database online. The results 

showed that GPT expression was positively correlated 

with 3462 genes and negatively correlated with 5207 

genes (Figure 5B). The heatmap shows the top 50 most 

significantly positively and negatively correlated genes 

with GPT expression, respectively (Figure 5C, 5D). We 

further performed GO analysis and KEGG analysis on 

the top 200 significantly positively correlated genes. 

 

 
 

Figure 4. Evaluation of diagnostic performance and prognostic value of characteristic genes. (A–I) ROC curves of 9 characteristic 

genes. (J–U) KM survival curves of 9 characteristic genes. 
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Figure 5. Co-expression analysis and enrichment analysis. (A) Univariate Cox regression analysis of characteristic genes.  

(B) Correlation of GPT ex pression with other genes. (C) Heatmap showing the 50 genes with the strongest positive correlation with GPT 
expression. (D) Heatmap showing the 50 genes most negatively correlated with GPT expression. (E) GO analysis. (F) KEGG analysis. 
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The bubble charts show the top 15 GO analysis terms 

(including 5 BP, CC and MF terms respectively) and the 

10 KEGG analysis terms (Figure 5E, 5F). GO analysis 

results showed that, in terms of BP, mainly enriched in 

hormone metabolic process; one−carbon metabolic 

process; cellular modified amino acid metabolic 

process; primary alcohol metabolic process; steroid 

metabolic process. in terms of CC, mainly enriched in 

brush border; brush border membrane; cluster of 

actin−based cell projections; apical part of cell; 

microvillus. in terms of MF, mainly enriched in 

carbonate dehydratase activity; oxidoreductase activity, 

acting on the CH−OH group of donors, NAD or NADP 

as acceptor; oxidoreductase activity, acting on CH−OH 

group of donors; steroid dehydrogenase activity, acting 

on the CH−OH group of donors, NAD or NADP as 

acceptor; carboxylic ester hydrolase activity. KEGG 

analysis mainly enriched in Pancreatic secretion; Bile 

secretion; Steroid hormone biosynthesis; Retinol 

metabolism; Glycerolipid metabolism. In short, the 

results suggest that GPT co-expressed genes are mainly 

involved in various metabolic pathways. 

External validation and experimental validation of 

GPT expression 

 

We first explored the differential expression of GPT in 

COAD and READ using the GEPIA2 database. We 

found that GPT mRNA expression levels were low in 

COAD and READ (Figure 6A). In addition, we 

detected GPT mRNA levels of GPT using qRT-PCR. 

The results also showed that compared with CRC 

tissues, GPT was highly expressed in normal tissues 

(Figure 6B). In addition, we also evaluated the 

expression difference of GPT at the protein level. 

First, we used the CAPTC database on UALCAN to 

analyze the differences in GPT protein expression 

levels, and found that GPT protein levels were 

significantly decreased in COAD tissues compared 

with normal tissues (Figure 6C). In addition, we 

obtained immunohistochemical images of normal 

colon and rectal tissues and CRC tissues from the HPA 

database. We found that the intensity of GPT in CRC 

tissues was significantly reduced compared to normal 

tissues (Figure 6D–6G). 

 

 
 

Figure 6. External data and experimental data verify GPT expression of GPT in CRC. (A) GEPIA2 database showing differential 

expression of GPT in COAD and READ (mRNA level). (B) qRT-PCR showed that GPT was significantly lower in CRC tissues than in adjacent 
normal tissues. (C) The UALCAN database showed that the low expression of GPT in COAD was correlated with cancer tissues (protein level). 
(D, E) HPA database showing IHC images of GPT in COAD and colon normal tissues. (F, G) HPA database showing IHC images of GPT in READ 
and rectal normal tissues. 
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Association analysis between GPT expression and 

TME 

 

Our research assessed the infiltration levels of 22 

immune cells in TCGA-CRC tissue samples using the 

CIBERSORT algorithm. We found that compared to the 

GPT low expression group, the infiltration levels 

increased significantly increased in the GPT high 

expression group, while the infiltration levels of T cells 

CD4, gamma delta of T cells gamma delta, Macrophages 

M0 and Macrophages M2 decreased significantly 

decreased (Figure 7A). 

 

We also analyzed the correlation between GPT 

expression and 48 immune checkpoint molecules 

(ICM), in which GPT expression was correlated  

with 26 ICM, including positive correlations with  

17 ICM and negative correlations with 9 ICM  

(Figure 7B). 

 

Furthermore, we explored the somatic mutation profile 

in patients with CRC and identified the 10 most 

mutated genes in different GPT expression level 

groups. The results showed that APC, TP53, KRAS, 

TTN, PIK3CA, MUC16, and SYNE1 were the 8  

most mutated genes in different groups of expression 

level groups, and APC had the highest mutation rate 

(Figure 7C, 7D). 

 

Prediction of potentially sensitive drugs 

 

In order to explore the sensitivity of patients  

with different GPT expression groups to common 

chemotherapy drugs, we used the R package 

“oncoPredict” to analyze the IC50 values of CRC 

patients in the TCGA-CRC cohort to 5−Fluorouracil, 

Oxaliplatin, Gefitinib, Tamoxifen, Sorafenib and 

Dabrafenib. The results showed that the IC50 values of 

5−Fluorouracil (Figure 8A), Oxaliplatin (Figure 8B), 

Gefitinib (Figure 8C), Tamoxifen (Figure 8D) and 

Sorafenib (Figure 8E) were higher in the GPT  

low expression group, whereas those of Dabrafenib 

(Figure 8F) were lower. 

 

Diagnostic performance of GPT in pancancer 

 

As mentioned above, the diagnostic performance of 

GPT in pancancer is evaluated by the ROC curve. We 

found that GPT had excellent diagnostic performance in 

CHOL (AUC: 0.985). In BRCA (AUC: 0.711), CESC 

(AUC: 0.790), ESCA (AUC: 0.785), GBM (AUC: 

0.780), HNSC (AUC: 0.894), KICH (AUC: 0.775), 

KIRP (AUC: 0.827), LUAD (AUC: 0.767), LUSC 
(AUC: 0.748), PCPG (AUC: 0.887), THCA (AUC: 

0.716) and THYM (AUC: 0.786) had higher diagnostic 

performance (Figure 9). 

Expression of GPT in pancancer 

 

GPT was differentially expressed in 16 cancers 

compared to normal tissues. Specifically, GPT was low 

expressed in BRCA, CHOL, ESCA, GBM, HNSC, 

KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PCPG, 

STAD, UCS, and highly expressed in BLCA, LUAD, 

LUSC, THCA (Figure 10A). Furthermore, we sorted the 

expression of the tumor tissues, we found that GPT had 

the lowest expression level in TGCT and the highest 

expression level in LIHC (Figure 10B). 

 

Prognostic value of GPT in pancancer 

 

As previously mentioned, we explored the role of GPT 

expression in the prognosis of pancancer using 

univariate Cox analysis and drew a forest plot. We 

found that GPT expression can affect the prognosis of 

ACC, BRCA, KIRC, KIRP, LGG, LIHC, and THYM. 

Specifically, GPT acts as a protective factor affecting 

the prognosis of ACC (HR: 0.373), BRCA (HR: 

0.832), KIRC (HR: 0.869), KIRP (HR: 0.720), LGG 

(HR: 0.739), LIHC (HR: 0.840) and acts as a risk 

factor affecting the prognosis of THYM (HR: 2.495) 

(Figure 11A). Finally, for these 7 cancer types, we 

used the Kaplan-Meier method to analyze the survival 

curves of different expression levels of GPT, and the 

results showed that the GPT high expression group had 

a better prognosis in ACC (Figure 11B), BRCA 

(Figure 11C), KIRC (Figure 11D), KIRP (Figure 11E), 

LGG (Figure 11F), LIHC (Figure 11G), and in THYM 

(Figure 11H) The prognosis is poor. 

 

DISCUSSION 
 

CRC is a malignant tumour of the digestive system with 

high incidence rate, and its morbidity and mortality  

are still on the rise. CRC is a highly heterogeneous 

malignant tumor, so it is necessary to find new 

biomarkers as the diagnosis, prognosis, and treatment 

target of CRC. Current research shows that glutamine 

metabolism plays a key role in the growth, metastasis, 

recurrence and drug resistance of CRC [34–36]. 

Therefore, in this study, we systematically analyzed the 

GMRGs in order to find powerful and promising 

biomarkers for diagnosis and prognosis. In this study, we 

first performed differential analysis on 113 GMRGs, and 

found that a total of 27 GMRGs were highly expressed 

in the TCGA-CRC cohort, and 4 GMRGs were lowly 

expressed. Then, we performed two machine learning 

algorithms, SVM-REF and RandomForest, on the 31 

DEG to find more representative eigengenes. Based on 

the two algorithms, we found that 9 GMRGs can be 

regarded as characteristic genes of CRC. Furthermore, 

we further explored the cellular composition of the 

tumor microenvironment in CRC in order to understand 
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Figure 7. Correlation between GPT expression and the tumor microenvironment. (A) Differential analysis of immune cell 
infiltration levels with different levels of GPT expression. (B) Correlation between GPT expression and immune checkpoint molecules.  
(C, D) Somatic mutation profiles at different GPT expression levels. 
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the heterogeneity of CRC tissue. The results showed that 

CRC tissue was mainly composed of 9 types of cells, and 

epithelial cells, B cells, and T cells dominated, suggesting 

that immune cells may play an important role in the 

occurrence and development of CRC. We also explored 

the expression of 9 GMRGs in cells. Notably, GPT is 

expressed almost exclusively in epithelial cells. On this 

basis, we explored the prognostic value of signature 

genes by Kaplan-Meier method and univariate Cox 

analysis, and found that only GPT showed some 

prognostic value in the TCGA-CRC cohort. CRC patients 

with high GPT expression had a better prognosis than 

those with low GPT expression and were a protective 

factor for the prognosis of CRC. Based on this, we 

evaluated the expression of GPT in CRC again, and we 

double verified the low expression of GPT in CRC at the 

mRNA level and protein level by GEPIA2, UALCAN, 

HPA and qRT-PCR experiments. In addition, GO 

analysis and KEGG results based on GPT co-expressed 

genes indicated that GPT may affect multiple metabolic 

pathways. 

 

Previous studies have shown that glutamine metabolism 

and the tumor immune microenvironment closely interact 

with each other [15, 37]. Interestingly, we also found that 

GPT expression was associated with the tumor micro-

environment in CRC through bioinformatics. First, in our 

study, we found that GPT expression can affect the 

infiltration levels of various immune cells through the 

CIBERSORT algorithm. Studies have shown that Plasma 

cells and Eosinophils play an important role in anti-

tumor, which means better clinical outcomes [38–41]. 

Whereas Macrophages M2 generally have tumor-

promoting effects [42–44], implying a worse prognosis. 

These results may explain the better prognosis of low 

GPT expression in CRC. Immunotherapy is currently the 

mainstay of cancer treatment, and drug development 

based on immune checkpoint inhibitors is a promising 

 

 
 

Figure 8. Drug sensitivity analysis. Sensitivity analysis of 5-Fluorouracil (A), Oxaliplatin (B), Gefitinib (C), Tamoxifen (D), Sorafenib (E), 
Dabrafenib (F) in different GPT expression levels. 
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strategy. Therefore, our research found that GPT 

expression was negatively correlated with 9 ICM and 

positively correlated with 17 ICM. This close 

correlation suggests that GPT may also be a promising 

immunotherapy marker. Finally, we explored the 

somatic mutations in different GPT expression levels, 

and found that the mutation rates of TP53 and TTN 

were decreased in the GPT high expression group 

compared with the GPT low expression group (TP53: 

51% vs. 63%, TTN: 39% vs. 49%). Previous studies 

have shown that TP53, TTN mutations usually mean 

poorer prognosis in CRC [45, 46]. This may also be one 

of the high-expression group of reasons why the GPT 

had a better prognosis than the low-expression group of 

GPT. 

 

We also predicted the correlation between GPT 

expression and the efficacy of common drugs. In this 

study, we predicted the sensitivity of 5-FU and 

Oxaliplatin, which are widely used in the first-line 

 

 
 

Figure 9. RUC curve to evaluate the diagnostic performance of GPT expression in 22 cancer types. 
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Figure 10. GPT expression patterns in pancancer. (A) Different expression of GPT in pancancer. (B) Ranking map of GPT expression in 
tumor tissues (from high to low). 
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treatment of CRC [47, 48]. However, due to the frequent 

drug resistance events, we also analyzed the sensitivity of 

other common chemotherapeutic drugs. These results 

may provide potential therapeutic drugs for CRC patients 

with different levels of GPT expression. 

 

Given that GPT is rarely reported in cancer, we also 

performed a pancancer analysis of GPT. First, we found 

that GPT was significantly differentially expressed in a 

variety of cancers (16/33). On the whole, GPT 

expression was reduced in most cancers. Through the 

ROC curve, we found that GPT showed relatively 

excellent diagnostic performance in 13 cancer types. 

Taken together, these results suggest that GPT may 

show promising promise in pancancer diagnostics. 

Finally, we also investigated the correlation between 

GPT expression and pancancer prognosis and found that 

GPT expression was a protective factor in 6 types of 

cancer and a risk factor in THYM. It shows that GPT 

plays different functions in different types of cancer. 

 

This study, like other studies, has some limitations. First 

of all, this study did not verify the carcinogenesis of 

GPT in CRC through in vivo and in vitro experiments. 

Second, the specific mechanism by which GPT affects 

CRC has not been elucidated. Our future research  

will focus on the carcinogenesis and mechanism of GPT 

in CRC. 

 

In summary, our systematic analysis of GMRGs 

screened for GPT as a potential diagnostic and 

prognostic marker for CRC, revealed the correlation 

 

 
 

Figure 11. Prognostic value of GPT in pancancer. (A) Univariate Cox analysis to evaluate the correlation between GPT expression and 

OS in the patient. (B–H) Survival curves of GPT expression in 7 cancers. 
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between GPT and the tumor microenvironment, and 

explored the relationship between GPT expression and 

sensitivity to common drugs. These correlations between 

them suggest that GPT may be a potential therapeutic 

target for CRC. Finally, we also explored the diagnostic 

performance and prognostic value of GPT in pancancer, 

providing new insights for the function of GPT in 

pancancer. 
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Supplementary Table 1. Detailed 
results of RandomForest and SVM-RFE.  

SVM-RFE.gene RandomForest.gene 

SLC7A5 SLC7A5 

MET MET 

SHMT2 SHMT2 

SLC3A2 CAD 

CAD PYCR1 

GPT GPT 

PYCR1 SLC3A2 

MYC MYC 

PPAT GMPS 

PSAT1 PPAT 

 CTPS1 

 


