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INTRODUCTION 
 

Primary liver cancer (PLC) is currently one of the 

most prevalent malignancies of the digestive system. 

Global Cancer Statistics reports that PLC ranks  
sixth in incidence and third in mortality among 

malignancies worldwide [1]. Hepatocellular carcinoma 

(HCC) accounts for approximately 80% of all PLC 

cases, and is the predominant subtype of liver cancer 

[2, 3]. Although targeted drugs, such as tyrosine  

kinase inhibitors (TKIs) and combination therapies, 

have improved survival outcomes of patients with 

HCC, the heterogenous nature of HCC significantly 

impacts treatment efficacy and patient prognosis [4, 5]. 

Hence, there is an urgent need to identify specific 

biomarkers to determine the clinical outcomes and 
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ABSTRACT 
 

Background: Cancer-associated fibroblasts (CAFs) regulate the malignant biological behaviour of hepatocellular 
carcinoma (HCC) as a significant component of the tumour immune microenvironment (TIME). This study aimed 
to develop a CAFs-based scoring system to predict the prognosis and TIME of patients with HCC. 
Methods: Data for the TCGA-LIHC and GSE14520 cohorts were downloaded from The Cancer Genome Atlas and 
the Gene Expression Omnibus databases. Single-cell RNA-sequencing data for HCC samples were retrieved from 
the GSE166635 cohort. The Least Absolute Shrinkage and Selection Operator algorithm was employed to 
develop a CAFs-related scoring system (CAFRss). The predictive value of the CAFRss was determined using 
Kaplan-Meier, Cox regression and Receiver Operating Characteristic curves. Additionally, the TIMER platform, 
single sample Gene Set Enrichment Analysis and the Estimation of STromal and Immune cells in MAlignant 
Tumour tissues using Expression data algorithms were performed to determine the TIME landscape. Finally, the 
pRRophic algorithm was utilised for drug sensitivity analysis. 
Results: The evaluation of the CAFRss system demonstrated its superior ability to predict the clinical outcome 
of patients with HCC. Additionally, CAFRss effectively distinguished HCC populations with distinct TIME 
landscapes. Furthermore, CAFRss-based risk stratification identified individuals with immune ‘hot tumours’ and 
predicted the survival of patients treated with ICBs.  
Conclusions: The developed CAFRss can serve as a predictive tool for determining the clinical outcome of HCC 
and differentiating populations with diverse TIME characteristics. 
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guide personalised therapeutic approaches for patients 

with HCC. 

 
The interaction between tumour cells and the tumour 

microenvironment (TME) plays a crucial role in 

tumourigenesis, progression, metastasis and treatment 

[6, 7]. Within the TME, cancer-associated fibroblasts 

(CAFs) are key components that influence malignant 

behaviours, such as tumour invasion, metastasis, 

immune escape and drug resistance [8–11]. Studies have 

demonstrated that CAFs contribute to the progression  

of HCC by altering tumour cell stemness, promoting 

metabolic reprogramming and enhancing tumour 

angiogenesis [12–15]. Additionally, CAFs shape the 

suppressive tumour immune microenvironment (TIME) 

in HCC by secreting macrophage migration suppressors 

[16]. Furthermore, CAFs modulate various immune cells 

in the TIME of HCC, either directly or through secreted 

components [17]. Therefore, exploring the biomarkers 

related to CAFs is vital for predicting the prognosis  

of HCC and assessing the diversity of TIME. 

In the present study, we developed a CAFs-related  

scoring system (CAFRss) using single-cell sequencing 

and The Least Absolute Shrinkage and Selection Operator 

(LASSO) algorithm. The system demonstrates superior 

predictability for the clinical outcome of patients with 

HCC. Additionally, CAFRss effectively characterises  

the TIME profile, enabling the differentiation between 

‘hot’ and ‘cold’ immune tumours and guiding the  

use of immune checkpoint blockades (ICBs). These 

findings provide a basis for selecting individualised 

therapeutic regimens for patients with advanced HCC. 

 

MATERIALS AND METHODS 
 

Data collection 

 

The flow chart of the study is presented in Figure 1.  

The transcriptomic and clinical data for individuals  

with HCC were downloaded from The Cancer Genome 

Atlas (TCGA) (https://portal.gdc.cancer.gov/repository) 

repository. The nucleotide variation matrix downloaded 

 

 
 

Figure 1. The flow chart of the study. 

https://portal.gdc.cancer.gov/repository
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from the TCGA-LIHC cohort was collated using Perl 

scripts (V.5.32.1.1) to generate the tumour mutation 

burden (TMB) matrix for subsequent analysis. The 

transcriptomic and clinical parameter data for the  

HCC cohort GSE14520 were downloaded from the 

Gene Expression Omnibus (GEO) database (https:// 

www.ncbi.nlm.nih.gov/). Single-cell sequencing data 

for the GSE166635 cohort were obtained from the 

Tumor Immune Single-cell Hub (TISCH) database 

(http://tisch.comp-genomics.org/), wherein annotations 

referring to the major-lineage entry in the TISCH  

and the existing classical cell markers were made. 

Immunohistochemical (IHC) staining images of proteins 

encoded by CAFRss-related genes ANGPT1, IGFBP4, 

S100A9, SERPING1, ANGPT2, SQSTM1, SPINK1, 

FGB, SPP1 and AKR1B10 in HCC tumour tissue  

were obtained from the Human Protein Atlas V.22.0 

(HPA) (https://www.proteinatlas.org) (Supplementary 

Table 1) [18]. Finally, the set of CAFs-associated genes 

were obtained from The Human Gene Database (https:// 

www.genecards.org/) [19]. 

 
Identification of differentially expressed genes 

(DEGs) between CAFs and other cells 

 
DEGs (fold change >1.5, P < 0.05) between CAFs  

and other cell types were extracted from single- 

cell sequencing data from the GSE166635 cohort. 

Furthermore, the R package ‘VennDiagram’ was used 

to draw a Venn diagram of DEGs and CAFs-associated 

genes to identify overlapping CAFs-associated genes. 

Protein interactions of the intersecting genes were mapped 

using the STRING platform (https://cn.string-db.org/). 

 
Development of a CAFRss for HCC 

 
CAFs-related genes associated with survival in the 

TCGA-LIHC cohort were identified using a univariate 

(uni-) Cox regression algorithm (P < 0.05). To  

avoid overfitting, the LASSO regression algorithm was 

employed to select the relevant genes for developing the 

scoring system. The risk scores for patients with HCC 

were calculated based on the risk coefficients of the 

selected genes using the following equation: 

 

1
Risk score (CAFRss) Coefficient( ) Expression( )

n

i
i i

=
=   

 
Risk stratification was performed for all patients with 

HCC based on the median risk score of individuals in 

the TCGA-LIHC cohort. 

 
Verification and assessment of the CAFRss 

 
Survival validation was conducted using Kaplan- 

Meier (K-M) curves for patients in the TCGA-LIHC 

and GSE14520 cohorts, utilising the ‘survivor’ and 

‘survminer’ packages. The ‘pheatmap’ was utilised to 

generate the expression status graph of genes in the 

scoring system. Uni- and multivariate (multi-) Cox 

regression analyses were performed to assess the inde-

pendent prognostic ability of the CAFRss. Additionally, 

the predictive performance of the CAFRss was analysed 

using the ‘ggplot2’, ‘grid’, ‘RcolorBrewer’, ‘reshape2’ 

and ‘tidyverse’ R packages, wherein Receiver Operating 

Characteristic (ROC) curves were drawn and compared 

with other clinicopathological parameters. Furthermore, 

K-M curves were plotted for different stratified sub-

groups based on various clinical parameters to evaluate 

the applicability of the CAFRss. 

 

CAFRss-based nomogram construction 

 

Cox regression identified CAFRss and TMN stage  

as independent prognostic predictors of HCC. These 

factors were incorporated into the construction of  

the prediction nomogram to enhance the prediction  

of patient prognosis. The predictive accuracy of the 

nomogram was evaluated using calibration curves 

generated by the Hosmer–Lemeshow test (method = 

‘boot’). The nomogram was constructed with the 

packages ‘survival’, ‘regplot’ and ‘rms’. 

 

CAFRss-based functional enrichment analysis 

 

Gene Set Variation Analysis (GSVA) was performed 

using the ‘limma’, ‘GSVA’, ‘reshape2’, ‘GSEABase’, 

‘pheatmap’ and ‘ggplot2’ packages to determine the the 

enrichment of the Kyoto Encylopaedia of Genes and 

Genomes (KEGG) pathways in different risk subgroups 

[20]. Additionally, we analysed the correlation between 

CAFRss-related gene expression and tumour-associated 

signalling pathways, constructing a correlation heat map. 

 

DEGs between the two risk groups were determined 

using the ‘limma’ (fold change >2). Gene Ontology 

(GO) analyses were performed to explore the extent of 

enrichment of DEGs in biological processes, molecular 

function and cellular components. Furthermore, KEGG 

analysis was also performed to investigate the enrich-

ment of DEGs between different signalling pathways. 

 
Correlation analysis of the CAFRss with TMB 

 

Simple nucleotide variation data from the TCGA cohort 

were collated and processed using Perl to generate  

a TMB matrix. The ‘limma’ and ‘ggpubr’ software 

packages were employed to compare and visualize the 

difference in TMB between the two risk subgroups. 

K-M survival analysis explored survival differences 

between different TMB subgroups and combinations  

of risk subgroups. Additionally, the ‘maftools’ package 

http://tisch.comp-genomics.org/
https://www.proteinatlas.org/
https://cn.string-db.org/
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was utilised to generate mutation waterfalls for the 18 

genes with the highest mutation frequency in the two 

risk subgroups. 

 

Correlation analysis of the CAFRss and the TIME in 

HCC 

 

The TIMER platform, which uses six algorithms 

(MCPCOUNTER, TIMER, CIBERSORT, XCELL, 

QUANTISEQ and EPIC), was used to estimate the level 

of immune cell infiltration in tumour [21, 22]. Tumour-

infiltrating immune cell data were downloaded from  

the TIMER 2.0 (http://timer.comp-genomics.org/), and 

Spearman correlation analysis was conducted to 

determine the determined correlations between risk 

scores and different levels of immune cell infiltration. 

The process was implemented and visualised using the 

‘ggplot2’, ‘ggtext’, ‘scales’, ‘tidyverse’ and ‘ggpubr’ 

packages. 

 

Gene set enrichment analysis (GSEA) classifies 

genomes based on shared biological characteristics [23]. 

In this study, the single-sample GSEA (ssGSEA) was 

performed using the packages ‘GSEABase’ and ‘GSVA’ 

to quantify the degree of immune cell infiltration and 

immune-related function in each tumour sample from 

the TCGA-LIHC cohort. The ‘reshape2’ and ‘ggpubr’ 

packages were then utilised to generate the differential 

box plots for ssGSEA between the two risk subgroups. 

 

The Estimation of STromal and Immune cells in 

MAlignant Tumour tissues using Expression data 

(ESTIMATE) algorithm is commonly employed to 

estimate the number of infiltrating immune cells and 

stromal cells in tumour tissues [24]. We utilised the 

packages ‘ESTIMATE’ and ‘limma’ to estimate the 

number of immune cells and stromal cells in the tumour 

tissue of each sample in the TCGA-LIHC cohort to 

obtain the corresponding scores. Additionally, the R 

package ‘ggpubr’ was employed to plot differential box 

plots of immune and stromal scores in the two risk 

subgroups. Aberrant activation of immune checkpoints 

inhibits the killing of tumour cells by effector immune 

cells and promotes immune escape of tumour cells [25]. 

The differences in the expression of different immune 

checkpoint-related genes between the two subgroups 

were analysed. 

 
Analysis of clinical therapeutic drug sensitivity 

 

The ‘pRRophetic’ package was employed to estimate 

tumour sensitivity to anti-tumour chemotherapeutic 

agents at the transcriptome expression level [26].  

The IC50 values of different chemotherapeutic agents  

in different risk subgroups were determined using 

‘pRRophetic’ to assess the potential value of CAFRss  

in guiding clinical pharmacotherapy in patients with 

advanced HCC [27]. 

 

Statistical analysis 

 

All statistical analyses were processed using the R 

software (V 4.2.2), and all statistical algorithms were 

performed by using the corresponding R packages. K-M 

survival analysis was performed using the log-rank test. 

P-value < 0.05 indicated statistical significance. 

 

RESULTS 
 

Identification of CAFs-related genes in HCC 

 

Cells in the GSE166635 cohort were classified into 11 

types based on cell marker annotations in the TISCH 

database, namely B cells, CD8+ T cells, endothelial 

cells, fibroblasts, malignant cells, mast cells, dendritic 

cells, mono-macrophages, epithelial cells, regulatory T 

cells and proliferating T cells (Figure 2A). Additionally, 

the T-Distribution Stochastic Neighbour Embedding 

(tSNE) analysis divided the cell types into 20 clusters 

(Figure 2B). The pie chart presents the different cell 

types proportions (Figure 2C). Furthermore, the network 

diagram reveals the interaction between fibroblasts and 

other cells (Figure 2D). 

 

Differential expression analysis identified 311 DEGs 

between fibroblasts and other cell types. Further inter-

section with 3683 CAFs-related genes identified 135 

DEGs (Figure 3A). The protein interaction network 

diagram demonstrated the relationships between the 

intersected genes (Figure 3B). 

 

Construction of a CAFRss 

 

We performed uni-Cox regression on the 135 CAFs-

related genes and identified 30 prognostic genes 

associated with overall survival (OS), including 10 

protective factors and the remaining as risk factors 

(Figure 3C). To prevent overfitting, the LASSO 

algorithm further screened 11 of these prognosis-

associated genes involved for the establishment  

of the risk-scoring system (Figure 3D, 3E) (Table 1). 

Among the 11 CAFRss-related genes, four were 

downregulated and seven were upregulated in tumour 

tissues compared to normal tissues (Figure 4A). 

Additionally, immunohistochemical images from the 

HPA displayed the protein expression of CAFRss-

related genes in HCC tumour tissues (Figure 4B). 

Furthermore, the expression of the 11 scoring system 

genes in different cells of HCC tissue is shown in 

Supplementary Figure 1. Using the risk formula, we 

obtained a risk score for each sample in the TCGA-

LIHC and GSE14520 cohorts. CAFRss (risk score) = 

http://timer.comp-genomics.org/
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ANGPT1 × (0.03519) − IGFBP4 × (0.05917) + PGF × 

(0.06325) + S100A9 × (0.12667) − SERPING1 × 

(0.02895) + ANGPT2 × (0.20089) + SQSTM1 × 

(0.16537) + SPINK1 × (0.00625) − FGB × (0.05420) + 

SPP1 × (0.05412) + AKR1B10 × (0.00365). 

Accordingly, we risk-stratified all patients into high- 

and low-risk subgroups according to the median risk 

score of the TCGA-LIHC cohort. 

 
Validation of the CAFRss 

 
First, we performed survival validation of the CAFRss 

in the TCGA-LIHC cohort. The K-M curves demon-

strated that the low-risk population had significantly 

better OS than the high-risk subgroup (Figure 5A).  

The heat map displayed the expression levels of the  

11 genes in the CAFRss, where the three protective 

factors (IGFBP4, SERPING1 and FGB) exhibited 

lower expression in the high-risk subgroup, while the 

eight risk factors exhibited higher levels of expression 

in the high-risk subgroup (Figure 5B). Furthermore,  

the risk score distribution and survival status maps  

for the TCGA-LIHC cohort showed an increasing 

proportion of individuals with mortality status as the 

high-risk scores rose (Figure 5C, 5D). The results  

were further validated in the GSE14520 cohort (Figure 

6A–6D). 

 
Evaluation of the CAFRss 

 
Uni- and multi-Cox regression analyses indicated  

that CAFRss was an independent prognostic indicator 

for patients with HCC, with hazard ratios of 3.654  

(P < 0.001) and 3.045 (P < 0.001) (Figure 7A,  

7B). Moreover, the stage was also identified as  

an independent prognostic indicator (P < 0.001). 

 

 

 
Figure 2. Single-cell sequencing analysis of HCC tissue. (A) Annotation of cell clusters into 11 cell categories. (B) Cluster classification 

of different cells. (C) The proportion of different cell types. (D) The communication network between CAFs and other cells. 
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Additionally, ROC curves were performed to assess  

the predictive efficacy of CAFRss in predicting survival 

in the TCGA-LIHC cohort. The area under the curve 

(AUC) values for CAFRss in predicting OS at 1, 3 and 5 

years were 0.757, 0.673 and 0.701, respectively (Figure 

7C–7F). Furthermore, the CAFRss was also confirmed 

as an independent prognostic factor in the GSE14520 

cohort (Figure 7G, 7H), with AUC values of 0.611, 

0.651 and 0.686 at 1, 3 and 5 years (Figure 7I–7L). 

Nomogram for HCC 

 

Based on the multi-Cox regression results, we 

incorporated the CAFRss and TNM staging into the 

construction of the nomogram to predict the OS of 

patients with HCC at 1, 3 and 5 years (Figure 8A). 

Moreover, the calibration curves showed that the 

nomogram’s predictions for HCC survival were in  

good agreement with the actual outcomes (Figure 8B). 

 

 
 

Figure 3. Identification of CAFs-associated genes in HCC. (A) A total of 311 DEGs and 3683 CAFs-related genes were overlapped to 

obtain 135 intersecting genes. (B) Protein interaction network map of the 135 intersecting genes. (C) A total of 30 prognosis-associated 
genes were obtained using uni-Cox regression. (D) The log (lambda) sequence plot of CAFs-related genes using the LASSO algorithm. (E) 
LASSO coefficient profiles of the eleven CAFs-associated genes. 
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Table 1. Risk coefficients for CAFs scoring system-related genes. 

Genes Coefficient HR HR.95L HR.95H p-value 

ANGPT1 0.03519 1.44180 1.09225 1.90321 0.00980 

IGFBP4 −0.05917 0.79059 0.65959 0.94759 0.01101 

PGF 0.06325 1.32261 1.10619 1.58136 0.00216 

S100A9 0.12667 1.29367 1.16479 1.43682 <0.001 

SERPING1 −0.02895 0.80617 0.67980 0.95602 0.01325 

ANGPT2 0.20089 1.60705 1.23309 2.09442 <0.001 

SQSTM1 0.16537 1.43713 1.18030 1.74983 <0.001 

SPINK1 0.00625 1.05565 1.00345 1.11055 0.03633 

FGB −0.05420 0.89696 0.81646 0.98540 0.02342 

SPP1 0.05412 1.15773 1.08954 1.23019 <0.001 

AKR1B10 0.00365 1.08531 1.02449 1.14975 0.00540 

Abbreviations: HR: hazard ratio; CAF: Cancer-associated fibroblasts. 

 

 

 
 

Figure 4. CAFRss-related genes in HCC. (A) Violin diagram of the expression of CAFRss genes in HCC tumour tissue and normal tissue. 

(B) Immunohistochemical images of proteins encoded by CAFRss-related genes in HCC tumour tissue. *P < 0.05, **P < 0.01, and ***P < 0.001. 



www.aging-us.com 11099 AGING 

 
 

Figure 5. CAFRss in the TCGA-LIHC cohort. (A) K-M curves for OS. (B) Heat map displaying the expression levels of the 11 genes in the 

CAFRss (Red genes represent risk factors; green genes represent protective factors). (C, D) Risk score distribution curves and survival status plots. 

 

 
 

Figure 6. Validation of the CAFRss in GSE14520 cohort. (A) K-M curves for OS. (B) Heat map displaying the expression levels of the 11 genes 

in CAFRss (Red genes represent risk factors; green genes represent protective factors). (C, D) Risk score distribution curves and survival status plots. 
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Stratified analysis of clinicopathological parameters 

 

Circle plots of the clinical parameters revealed 

significant differences in grade, tumour stage and  

T stage between the two risk subgroups (Figure 8C). 

To assess the applicability of CAFRss in patients  

with different clinical subtypes, we performed a stra-

tified analysis based on different clinicopathological 

 

 
 

Figure 7. Evaluation of the CAFRss. (A, B) Forest plots of uni- and multi-Cox analyses of the TCGA cohort. (C) ROC curves for the CAFRss. 
(D–F) Comparison of AUC of CAFRss with age, stage, grade and gender at 1, 3 and 5 years. (G, H) Forest plots of uni- and multi-Cox analyses 
of the GSE14520 cohort. (I) ROC curves for the CAFRss. (J–L) Comparison of AUC of CAFRss with age, stage and gender at 1-, 3- and 5-years 
in the GSE14520 cohort. 
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parameters and further validated the survival in 

different subgroups. K-M curves demonstrated that 

individuals with different tumour grade and age had  

a better survival in the low-risk subgroup (P < 0.05) 

(Figure 8D–8K). Although there is no significant 

difference in survival between risk subgroups for 

women and stage III–IV patients, a noticeable trend 

towards the separation of the K-M curves was observed. 

GSVA, GO and KEGG analysis 

 

We first utilised GSVA to identify the pathways 

enriched in the different risk subgroups. The analysis 

revealed that the pathways enrichment of the MAPK, 

WNT, Notch, NOD-like receptor, RIG I-like receptor 

and mTOR signalling pathways, which are extensively 

involved in tumour evolution, in the high-risk subgroup.

 

 
 

Figure 8. Nomogram and clinical subgroup analysis based on CAFRss. (A) Construction of a nomogram for HCC. (B) The calibration 

curves for the nomogram. (C) Circle plots show the differences in clinical parameters between the two risk subgroups. (D–K) The K-M 
curves show the survival differences between the high- and low-risk subgroups in the tumour grade (D, E), tumour stage (F, G), gender (H, I) 
and age (J, K) subgroups. 
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Additionally, the PPAR signalling pathway and 

multiple metabolic pathways were enriched in the low-

risk subgroup (Figure 9A). Furthermore, a significant 

correlation was observed between the expression of 11 

genes in the scoring system and key signalling pathways 

(Figure 9B). 

 

Considering the differences in the enrichment 

pathways between the different risk subgroups, we 

identified DEGs between the two risk subgroups  

and further performed GO and KEGG analyses.  

GO analysis indicated that the DEGs were  

mainly enriched in the positive regulation of cell 

activation, leukocyte activation, leukocyte migration, 

lymphocyte activation, collagen-containing extra-

cellular matrix, immunoglobulin complex and antigen 

binding, among others (Figure 10A, 10B). Regarding 

KEGG, DEGs were mainly enriched in PI3K-Akt 

signalling pathway, cytokine-cytokine receptor inter-

actions, proteoglycans in cancer, Rap1 signalling 

pathway, focal adhesion and chemokine signalling 

pathways (Figure 10C, 10D). 

 

 
 

Figure 9. GSVA analysis based on the CAFRss. (A) The heat map displays the KEGG pathways enriched in the two risk subgroups. (B) 

The heat map demonstrates the correlation between the expression of 11 genes in the CAFRss and key tumour-related signalling pathways. 
*P < 0.05, **P < 0.01, and ***P < 0.001. 
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Correlation of the CAFRss and TMB 

 

Mutation waterfall plots revealed the top three genes 

with the highest mutation frequencies in the low-risk 

subgroup as CTNNB1 (24%), TTN (24%) and TP53 

(19%), whereas, in the high-risk group it was TP53 

(33%), CTNNB1 (28%) and TTN (23%) (Figure 11A, 

11B). K-M curves demonstrated that patients with  

low TMB had significantly better survival compared  

to those with high-TMB (Supplementary Figure 2). 

Although there was no significant difference in TMB 

levels between the two risk subgroups (Figure 11C), 

there was a significant difference in survival between 

the TMB subgroup and the risk subgroup combination 

(P < 0.001) (Figure 11D), suggesting that the combination 

of risk score and TMB could provide a better prediction 

of clinical outcomes for patients. 

Correlation of the CAFRss with TIME 

 

Considering the enrichment of immune-associated 

functions in GO analysis, we further explored the 

relationship between CAFRss and the TIME in  

HCC. TIMER 2.0 analysis indicated that the degree  

of infiltration of most immune cells was positively 

correlated with risk scores (Figure 12A). Additionally, 

ssGSEA revealed that immune-related functions such  

as APC co-stimulation and co-inhibition, chemokine 

receptors, immune checkpoints, human leukocyte 

antigens, MHC class I, para-inflammation, T cell co-

stimulation and co-inhibition and type II IFN response 

were significantly higher in the high-risk subgroup 

compared to the low-risk subgroup (Figure 12B). In 

terms of immune cells, the high-risk subgroup showed 

significantly higher levels of dendritic cells, activated 

 

 

 
Figure 10. GO and KEGG enrichment analysis. (A, B) GO analysis of DEGs between the two risk subgroups. (C, D) KEGG analysis of the 

DEGs between the two risk subgroups. 
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dendritic cells, immature dendritic cells, macro-

phages, follicular helper T cells, helper T cells, 

tumour-infiltrating lymphocytes and regulatory T  

cells (Figure 12C). Furthermore, ESTIMATE analysis 

revealed higher ESTIMATE scores and immune scores 

in the high-risk subgroup, while stromal scores did  

not differ significantly between the two subgroups 

(Figure 12D–12F). 

 
ICBs therapy mainly involves the blockade of immune 

checkpoints, thereby restoring the immune system’s 

ability to recognise tumour cells. The analysis of immune 

checkpoints, including Programmed Cell Death Protein 

1 (PD1, encoded by PDCD1), Programmed Cell Death-

Ligand 1 (PD-L1, encoded by CD274) and cytotoxic T-

lymphocyte associated antigen 4 (CTLA-4), indicated 

higher expression levels in the high-risk group (Figure 

12G), suggesting that the high-risk group may be a 

beneficial population for ICBs treatment. 

The predictive value of CAFRss for anti-tumour 

drug sensitivity 

 

To explore the potential of CAFRss in the personalised 

treatment of patients with HCC, we analysed the 

differences in IC50 values for different anti-tumour 

agents between the two risk subgroups. Notably,  

with the exception of erlotinib, the IC50 for sorafenib 

and most chemotherapeutic agents was lower in the 

high-risk group compared to the low-risk subgroup 

(Figure 13A–13G). Additionally, the IC50s for the 

targeted drugs dasatinib, imatinib, lisitinib, sunitinib 

and ruxolitinib were also significantly lower in the  

high-risk subgroup (Supplementary Figure 3). 

 

DISCUSSION 
 

Tumour development is influenced by both intrinsic 

properties and the specific tumour microenvironment  

 

 
 

Figure 11. Correlation of the CAFRss with TMB. (A, B) Mutation waterfall plots in the two subgroups. (C) Comparison of TMB between 

the two risk subgroups. (D) K-M curves for the TMB subgroups combined with the risk subgroups. 
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(TME) [28]. The different components of the TME  

play an important role in tumour growth, invasion, 

metastasis, angiogenesis, immunosuppression and drug 

resistance [29–31]. Among the components of the TME, 

CAFs play a crucial role. CAFs interact extensively 

with tumour cells throughout tumourigenesis and 

tumour development, affecting tumour growth, 

metastasis, invasion, treatment resistance and 

 

 
 

Figure 12. TIME analysis based on the CAFRss. (A) Bubble plots display the correlation between risk scores and different immune cells in 
the TIMER 2.0 platform. (B) ssGSEA shows differences in immune function score across the subgroups. (C) ssGSEA shows differences in immune 
cells score across the risk groups. (D–F) Box plots display the differences in immune, stromal and ESTIMATE scores across the two subgroups. 
(G) Box plots show the differences in expression of immune checkpoints across the risk subgroups. *P < 0.05, **P < 0.01, and ***P < 0.001. 
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immunosuppression [32–34]. There is increasing 

evidence linking CAFs to the effectiveness of tumor 

immunotherapy, making them a potential target for 

improving immunotherapy outcomes [19, 35–37]. 

Previous studies have demonstrated the impact of  

CAFs on the biological behaviour of tumours and their 

involvement in targeted therapy and immunotherapy 

resistance [16, 38, 39]. Thus, understanding the unique 

function of CAFs in assessing the clinical outcomes and 

the efficacy of immunotherapy in patients with HCC 

will aid in the development of more effective predictive 

biomarkers and molecular targets. 

 

Interdisciplinary analyses based on large amounts of 

sequencing data and diverse bioinformatics algorithms are 

increasingly being used for the identification of tumor 

subtypes, providing a valuable reference in the discovery 

of potential biomarkers [40–43]. In this study, a combined 

analysis of single-cells and bulk RNA sequencing was 

performed to construct a CAFRss comprising 11 CAFs-

related genes. The CAFRss was developed using Cox  

and LASSO algorithms to predict clinical outcome  

in patients with HCC. The prognostic predictive value  

of the CAFRss was validated in independent cohort 

GSE14520. Cox regression further confirmed CAFRss as 

an independent prognostic factor in HCC. Additionally, 

ROC curves indicated superior prognostic predictive 

efficacy of the CAFRss, indicating its reliability as a 

prognostic prediction tool for patients with HCC. 

 

Tumourigenesis induces and establishes a TIME  

that favours immunosuppression, leading to the loss  

of anti-tumour function of effector immune cells and  

the activation of immunosuppressive molecules, thus 

triggering immune escape. Immune checkpoints (ICs)  

are important regulators of this process, as ICs can signal 

‘immune brakes’ to suppress effector immune function, 

and their dysregulation can contribute to immune escape 

in tumours [44, 45]. Recently, ICBs, the classical rep-

resentatives of immunotherapy, have revolutionised the 

treatment landscape for solid tumours [46]. Despite the 

promising potential of ICBs, their overall inefficiency is a 

pressing issue in clinical immunotherapy. Thus, there is 

an urgent need to explore reliable predictive biomarkers 

that can identify populations that would benefit from 

treatment with ICBs, thereby aiding clinical decision-

making and enhancing individualised treatment regimens. 

 

Recent studies have confirmed that low levels of 

infiltration of effector immune cells in tumour tissues, 

also known as immune ‘cold tumour’, are speculated to 

be the main contributors to the low response rate of 

ICBs [47]. Conversely, immune ‘hot tumours’ have a 

better response rate to ICBs, featuring the activation  

of immune checkpoints and a high infiltration level of 

immune cells [48, 49]. Notably, most of the immune 

checkpoints including PD1, PD-L1 and CTLA-4 were 

significantly higher in the high-risk subgroup than in the 

low-risk population for CAFRss, indicating a higher 

state of immunosuppression in the high-risk subgroup, 

which may partly explain the poorer prognosis in  

this population. Additionally, the systematic analysis of 

the TIMER 2.0, ssGSEA and ESTIMATE algorithms 

demonstrated a higher degree of immune infiltration in 

the high-risk subgroup, suggesting that the high-risk 

population in the CAFRss is more consistent with an 

immune ‘hot tumour’ profile. These findings imply that 

the high-risk population based on CAFRss may benefit 

 

 
 

Figure 13. Drug sensitivity analysis based on the CAFRss. (A–G) Box plots display the drugs with different IC50 values across the risk 
subgroups. 
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more from treatment with ICBs compared to low-risk 

populations. 

 

Targeted therapies, especially tyrosine kinase  

inhibitors (TKIs), are a mainstay of systemic therapy for 

advanced HCC. Based on the results of the SHARP  

and ORIENTAL studies, sorafenib was identified as  

the first multi-targeted small molecule TKI and 

approved for unresectable HCC. The median survival 

time was prolonged by 2.8 months in the sorafenib 

group compared to the placebo group [50]. In this study, 

patients in the high-risk subgroup showed greater 

sensitivity to sorafenib, suggesting that this subgroup 

may benefit more from sorafenib treatment. Additionally, 

a meta-analysis showed that the TKI erlotinib was 

effective in combination with bevacizumab in patients 

with sorafenib-resistant HCC [51]. In the present  

study, low-risk patients were observed to benefit more 

from erlotinib treatment. Notably, chemotherapeutic 

agents such as 5-fluorouracil, doxorubicin, gemcitabine, 

paclitaxel and vinorelbine had lower IC50 values in the 

low-risk subgroup, suggesting potential chemotherapy 

resistance in the low-risk group. 

 

Despite the comprehensive methodological evaluations 

and validations of the developed CAFRss in this study, 

certain limitations should be acknowledged. Firstly,  

this study was unable to examine the potential biases of 

the data included in this retrospective study. Secondly, 

the clinical value of CAFRss in HCC remains to be 

further validated in a prospective clinical trial with a 

large sample size. 

 

CONCLUSION 
 

The CAFRss developed in this study show superior 

predictive ability for the clinical outcome of patients 

with HCC compared to traditional clinicopathological 

parameters. Moreover, CAFRss-based population stra-

tification could effectively differentiate between ‘hot’ 

and ‘cold’ immune tumours, providing a basis for the 

application of ICBs and the selection of personalised 

therapeutic plans for patients with HCC. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Single-cell sequencing analysis of CAFRss-related genes. (A–K) The expression of the 11 scoring system-

related genes in the different cell types of HCC tissue. 
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Supplementary Figure 2. Kaplan Meier curves of the high- and low-TMB groups in the TCGA-LIHC cohort. 

 

 

 
 

Supplementary Figure 3. Drug sensitivity analysis based on the CAFRss. (A–E) Box plots display the targeted drugs with different 

IC50 values between the risk groups. 
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Supplementary Table 
 

Supplementary Table 1. IHC staining images of proteins encoded by CAFRss-related genes in HPA. 

CAFRss-related genes Human protein atlas 

ANGPT1 https://www.proteinatlas.org/ENSG00000154188-ANGPT1/pathology/liver+cancer 

IGFBP4 https://www.proteinatlas.org/ENSG00000141753-IGFBP4/pathology/liver+cancer 

S100A9 https://www.proteinatlas.org/ENSG00000163220-S100A9/pathology/liver+cancer 

SERPING1 https://www.proteinatlas.org/ENSG00000149131-SERPING1/pathology/liver+cancer 

ANGPT2 https://www.proteinatlas.org/ENSG00000091879-ANGPT2/pathology/liver+cancer 

SQSTM1 https://www.proteinatlas.org/ENSG00000161011-SQSTM1/pathology/liver+cancer 

SPINK1 https://www.proteinatlas.org/ENSG00000164266-SPINK1/pathology/liver+cancer 

FGB https://www.proteinatlas.org/ENSG00000171564-FGB/pathology/liver+cancer 

SPP1 https://www.proteinatlas.org/ENSG00000118785-SPP1/pathology/liver+cancer 

AKR1B10 https://www.proteinatlas.org/ENSG00000198074-AKR1B10/pathology/liver+cancer 
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https://www.proteinatlas.org/ENSG00000149131-SERPING1/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000091879-ANGPT2/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000161011-SQSTM1/pathology/liver+cancer
https://www.proteinatlas.org/ENSG00000164266-SPINK1/pathology/liver+cancer
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https://www.proteinatlas.org/ENSG00000198074-AKR1B10/pathology/liver+cancer

