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INTRODUCTION 
 

Ovarian cancer is one of the deadliest malignancies 

among females. An estimated of 22,000 patients  

are diagnosed with this malignancy in the USA each  

year, ranking the eleventh most common malignancy  

and the fifth leading cause of cancer-related death 

among women [1]. The management of ovarian  
cancer has shifted from surgery alone to a multi-

disciplinary approach including surgery, chemotherapy, 

endocrine therapy, and immunotherapy. However,  

the 5-year overall survival (OS) rate for ovarian 

cancer patients are still less than 50% [2]. High 

recurrence and drug resistance remain the main 

reasons leading to the poor clinical outcomes for 

ovarian cancer patients [3]. Increasing evidences 

suggest immunotherapy as a promising modality  

for many malignancies, especially for advanced 

malignancies [4]. However, few drugs have been 

approved for the immunotherapy of ovarian cancer, 
which need to be further investigated. Moreover, 

limited biomarkers for monitoring the prognosis, drug 

sensitivity of immunotherapy and chemotherapy have 

been used for clinical application. 
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ABSTRACT 
 

Background: Ovarian cancer is one of the deadliest malignancies among females, generally having a poor 
prognosis. The PI3K/Akt pathway plays a vital role in the oncogenesis and progression of many types of cancer. 
Limited studies have fully clarified the role of PI3K/Akt pathway in the prognosis of ovarian cancer and its 
correlation with drug sensitivity. 
Methods: A prognostic PI3K/Akt pathway related signature (PRS) was constructed with 10 machine learning 
algorithms using TCGA, GSE14764, GSE26193, GSE26712, GSE63885 and GSE140082 datasets. Gaussian mixture 
and logistic regression were performed to identify the optimal models for classifying lymphatic and venous 
invasion. 
Results: The optimal prognostic PRS developed by Lasso + survivalSVM algorithm acted as an independent risk 
factor for overall survival (OS) of ovarian cancer patients and had a good performance in evaluating OS rate of 
ovarian cancer patients. Significant correlation was obtained between PRS-based risk score and Immune score, 
ESTIMATE score, immune cells and cancer-related hallmarks. Low risk score indicated a lower immune escape 
score, TIDE score, and higher PD1&CTLA4 immunophenoscore in ovarian cancer. Moreover, PRS-based risk 
score acted as an indicator for drug sensitivity in the immunotherapy and chemotherapy of ovarian cancer 
patients. 
Conclusions: All in all, our study developed a prognostic PRS showing powerful and good performance in 
predicting clinical outcome of ovarian cancer patients. PRS could serve as an indicator for drug sensitivity in the 
chemotherapy and immunotherapy. 
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After being activated by other genes, 

Phosphatidylinositol‑4,5‑bisphosphate 3‑kinase (PI3K) 

could result in protein kinase B (Akt) binding to the cell 

membrane in the PI3K/Akt signal transduction pathway 

[5]. As an intracellular signaling pathway, the PI3K/Akt 

pathway is correlated to cell cycle, proliferation, cancer 

and longevity [6]. Moreover, the PI3K/Akt pathway 

shows significant correlation with glycolysis, hypoxia, 

apoptosis, epithelial mesenchymal transition (EMT), 

tumor recurrence, and treatment resistance [5, 7–9]. 

Attacking the PI3K/Akt signaling pathway is suggested 

as one of therapeutic strategies in human cancer [10]. 

Some of genes in the PI3K/Akt signaling pathway have 

proved to be prognostic biomarkers in ovarian cancer, 

such KRAS [11]. However, limited studies have fully 

clarified the role of the PI3K/Akt signaling pathway 

related genes (PRGs) in the prognosis of ovarian cancer 

and its correlation with drug sensitivity. 

 

After obtaining PRGs from Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database, we then explored 

their expression and prognostic value in ovarian cancer. 

We then constructed an optimal PI3K/Akt signaling 

pathway related signature (PRS) for predicting the 

prognosis of ovarian cancer using 10 machine learning 

algorithms. Moreover, we also explored the correlation 

between PRS and tumor microenvironment as well as 

drug sensitivity in ovarian cancer. Our result may provide 

more evidences about the significant functions of the 

PI3K/Akt signaling pathway in the prognosis and drug 

sensitivity of cancers. 

 

MATERIALS AND METHODS 
 

Datasets sources 

 

Supplementary Figure 1 showed the work flow of  

our study. Gene sets of PI3K/AKT pathway (n=354)  

were generated from KEGG PATHWAY Database 

(https://www.kegg.jp/kegg/pathway.html). RNA sequencing 

(RNA-seq) data of 374 ovarian cancer patients and 64 

normal human ovarian samples were downloaded from 

TCGA database (https://portal.gdc.cancer.gov/repository) 

and GTEx database (https://xenabrowser.net/datapages/), 

respectively. Another five GEO datasets, including 

GSE14764 (n=80), GSE26193 (n=107), GSE26712 

(n=185), GSE63885 (n=75) and GSE140082 (n=380), 

were used as testing cohorts for prognostic signature 

validation. The single cell expression data were isolated 

from GSE184880 dataset, including 5 normal tissues 

and 7 ovarian cancer tissues. Two immunotherapy cohorts 

(IMvigor210 (n=298) and GSE91061 (n=98) dataset) 

containing clinical information about the patients  

being treated with anti-PD-L1 and anti-CTLA4 agents 

were used to evaluate the performance of prognostic 

signature in predicting immunotherapy benefit. 

Integrative machine learning algorithms constructed 

an optimal PRS 

 

After obtaining the differentially expressed genes 

(DEGs) with “limma” package using |LogFC| ≥ 1.5 as 

the cutoff, we then detected potential prognostic 

biomarkers for ovarian cancer among PRGs with 

univariate cox analysis (p<0.05). In order to develop an 

accurate and stable prognostic PRS for ovarian cancer, 

we then performed integrative analysis with 10 machine 

learning algorithms, including random survival forest 

(RSF), elastic network (Enet), Lasso, Ridge, stepwise 

Cox, CoxBoost, partial least squares regression for Cox 

(plsRcox), supervised principal components (SuperPC), 

generalized boosted regression modelling (GBM),  

and survival support vector machine (survival-SVM). 

Consistent with a previous study [12] and the link to  

the R scripts available on the Github website (https:// 

github.com/Zaoqu-Liu/IRLS), we set the TCGA cohort 

as the training cohort and GEO cohorts as the testing 

cohort. Harrell’s concordance index (C-index) was 

calculated in all cohorts. The optimal prognostic PRG 

was regarded as the prognostic model with the highest 

average C-index. Based on the expression of genes in 

PRS and their corresponding coefficients, we then 

calculated the PRS score (risk score) of each OC 

patient. And OC patients were separated into high risk 

score and low risk score groups in each cohorts. 

 
Evaluation of the performance of PRS 

 

The cut-off value was determined by the 

“surv_cutpoint” function of the R package “survminer”, 

which calculated statistics based on maximally selected 

rank statistics. Using “timeROC” package, we then 

generated time ROC curves, which could evaluate the 

performance of PRS in predicting the clinical outcome 

of ovarian cancer. We also randomly collected 54 

prognostic signatures (Supplementary Table 1) that 

have developed for ovarian cancer and calculated their 

C-indexes using “rms” package. Moreover, univariate 

and multivariate cox analysis were performed to 

identify the risk factors among clinical characters and 

PRS for the prognosis of ovarian cancer. A predict 

nomogram based on PRS and clinical characters was 

constructed for ovarian cancer with “nomogramEx” R 

package. 

 
Immune infiltration analysis  

 

Immunedeconv, an R package integrating 7 state-of-

the-art algorithms, including CIBERSORT, MCPcounter, 

QUANTISEQ, XCELL, CIBERSORT-ABS, TIMER 

and EPIC [13], was used to explore the correlation 

between risk score and abundance of immune cells. 

The ESTIMATE algorithm was also used to calculate 
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the Immune score and ESTIMATE score of OC 

patients by using the R package “estimate” [14].  

 

Drug sensitivity and gene set enrichment analyses 

 

Two approaches, including immunophenoscore and 

Tumor Immune Dysfunction and Exclusion (TIDE) 

score, were suggested as reliable tools for predicting 

immunotherapy response. Immunophenoscore (IPS)  

of ovarian cancer cases were downloaded from The 

Cancer Immunome Atlas (TCIA, https://tcia.at/home). 

And the TIDE score and T cells exclusion scores  

of ovarian cancer cases were determined by TIDE 

(http://tide.dfci.harvard.edu). Gene sets of immune 

escape, immune surveillance and proliferation, were 

downloaded in previous publication (Supplementary 

Table 2) [15]. Hallmark gene sets were downloaded 

from Molecular Signatures Database (MSigDB). Using 

the R packages “clustersProfiler”, “enrichplot”, and 

“ggplot2”, we performed Gene Set Enrichment 

Analyses (GSEA) to improve our understanding of PRS 

related function and pathways. After downloading the 

drug sensitivity data of Genomics of Drug Sensitivity  

in Cancer (GDSC) (https://www.cancerrxgene.org/),  

we then calculated the half maximal inhibitory 

concentration (IC50) value of common drugs correlated 

with chemotherapy and endocrinotherapy of ovarian 

cancer cases with “oncoPredict” package.  

 
Gaussian mixture and logistic regression models for 

classifying lymphatic and venous invasion 

 

Lymphatic and venous invasion were vital factors 

affecting the prognosis of ovarian cancer patients. We 

then identified the best model among PRS genes to 

classify lymphatic and venous invasion. Classification 

was conducted with model-based hierarchical agglo-

merative clustering based on the Gaussian finite  

mixture model. The PRS genes related clusters were 

classified by the Gaussian mixture model (GMM). 

Logistic regression analysis was performed to construct 

combined models to classify whether the patients had 

lymphatic and venous invasion. 

 
Single-cell RNA-seq analysis 

 

ScRNA-seq data were under quality control prior to 

analysis. Cells with >25% of mitochondria-associated 

genes were filtered out. The top 2000 highly variable 

genes of each sample were normalized using the 

ScaleData function. RunPCA function was used to 

reduce the dimensionality of the PCA. Using “seurat” 

package, we then performed T-SNE analysis, which 

could map high dimensional cellular data into a  

two-dimensional space, grouping cells with similar 

expression patterns and separating those with different 

expression patterns. Cell types were determined by using 

SingleR method. 

 

Pseudotime analysis and cell-cell interaction analysis 
 

Pseudotime analysis, also named cell trajectory 

analysis, could evaluate the evolutionary trajectory  

of apoptosis pathways and cell subtypes and infer  

the differentiation trajectory of certain cells during 

disease progression. We performed pseudotime analysis 

using “Monocle2” package. The pseudotime value was 

used by monocle to model the gene expression level  

as a nonlinear smooth pseudotime function to show 

change in gene expression with time. FDR < 0.05 was 

regarded as significant difference. We then explored the 

communication between immune cell subtypes using 

CellChat software, which contained the ligand-receptor 

information. 

 

ceRNA network 

 

The upstream miRNA targets of PRS genes were 

predicted using several databases, including TargetScan, 

ENCORI, miRDB, RNAIter, TargetMiner, RNA22, 

miRwalk. And the upstream circRNAs interacting with 

miRNA were explored with StarBase 3.0. 

 

Statistical analysis 

 

Statistical analyses were conducted with R software 

(version 4.2.1). Wilcoxon rank-sum test or student T 

test was performed to explore the difference between 

continuous variables. Pearson’s or Spearman's rank 

correlation analysis was conducted to analyze the 

correlations between two continuous variables. The 

two-sided log-rank test was used to test the difference  

in different Kaplan-Meier survival curves.  

 

Availability of data and materials  

 

The analyzed data sets generated during the study  

were sourced from the TCGA database (https://portal. 

gdc.cancer.gov/repository) and GEO database (https:// 

www.ncbi.nlm.nih.gov/geo). 

 

RESULTS 
 

The relationship of PRGs with ovarian cancer 

prognosis  

 

As shown in Supplementary Figure 2A, a total of 174 

DEGs were obtained in ovarian cancer with |LogFC| ≥ 

1.5 as the cutoff (p<0.05). Supplementary Figure 2B 

showed the top 50 DEGs in ovarian cancer. Among 

these genes, 29 genes were significantly correlated with 

the prognosis of ovarian cancer (Figure 1A). To be 

https://tcia.at/home
http://tide.dfci.harvard.edu/
https://www.cancerrxgene.org/
https://portal.gdc.cancer.gov/repository
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more specific, ANGPT2, PPP2R5C, LPAR2, IL2RG, 

AKT1, CREB3, RHEB, GNG5, and HSP90AA1 were 

significantly correlated with a good clinical outcome in 

ovarian cancer (Figure 1A, HR<1, p<0.05). While 

COL1A1, COL1A2, FN1, CCND1, KRAS, THBS2, 

COL6A3, ITGB5, LAMB2, AKT2, CSF1R, PDGFRB, 

CDKN1B, ITGB8, ITGA11, ITGA5, BCL2L11, EFNA5, 

PDGFRA, and FGF7 were significantly correlated with 

a poor clinical outcome in ovarian cancer (Figure 1A, 

HR>1, p<0.05). 

 
Integrative machine learning algorithms developed 

an optimal prognostic PRS 

 
Above 29 potential prognostic biomarkers were  

then subjected to an integrative procedure including  

10 machine learning-based methods, with which we  

could develop an accurate and stable prognostic PRS. 

Aa result, a total of 101 kinds of prediction models 

were obtained, and their C-index of training cohort 

(TCGA) and testing cohort (GSE14764, GSE26193, 

GSE26712, GSE63885 and GSE140082) were shown 

in Figure 1B. We could see that the model constructed 

by Lasso + survivalSVM method was considered as 

the optimal model and they had a highest average C-

index of 0.6 (Figure 1B). In the Lasso regression, the 

optimal λ was obtained when the partial likelihood 

deviance reached the minimum value based on the 

LOOCV framework (Figure 1C). A total of 19 genes 

with nonzero Lasso coefficients were submitted to 

survivalSVM, which identified a final set of 19 PRS 

and their coefficients were shown in Figure 1D. Using 

the cut-off value, we then divided into ovarian cancer 

cases into high and low risk groups based on their risk 

scores (PRS score). As expected, ovarian cancer 

patients with high risk score had a poor OS rate in 

TCGA (p<0.0001, Figure 1E), GSE14764 (p=0.012, 

Figure 1F), GSE26193 (p=0.0036, Figure 1G), 

GSE26712 (p=0.0024, Figure 1H), GSE63885 

(p=0.006, Figure 1I) and GSE140082 (p=0.00015, 

Figure 1J) cohort. tSNE analysis about the classi-

fication of ovarian cancer cases into high- and low-risk 

groups of training cohort and testing cohort were 

shown in Figure 1K–1P. On the basis of above 

findings, we concluded that this PRS was capable of 

predicting the prognosis of ovarian cancer patients. 

 
Evaluation of the performance of PRS 

 
ROC analysis was performed to evaluate the 

discrimination of PRS in training cohort and testing 

cohort, with 1-, 3-, and 5-year AUCs of 0.741, 0.718, 
and 0.738 in TCGA cohort (Figure 2A); 0.620, 0.666, 

and 0.641 in GSE14764 cohort (Figure 2B); 0.493, 

0.568, and 0.552 in GSE26193 cohort (Figure 2C); 

0.684, 0.657, and 0.604 in GSE26712 cohort (Figure 

2D); 0.569, 0.667, and 0.678 in GSE63885 cohort 

(Figure 2E), respectively. In GSE140082 cohort, 1-, and 

3-year AUCs were 0.550 and 0.640, respectively (Figure 

2F). Further univariate and multivariate cox regression 

analysis demonstrated risk score as an independent risk 

factor for the prognosis of ovarian cancer patients  

in TCGA, GSE14764, GSE26193, GSE63885 and 

GSE140082 cohort (Figure 2G, 2H). We then compared 

the C-index of our PRS and 54 prognostic signatures  

that have been established for ovarian cancer. As shown 

in Supplementary Figure 3A, the C-index of the current 

PRS was higher than most of 54 random prognostic 

signatures. All in all, our PRS had a relatively good 

performance in predicting the clinical outcome of 

ovarian cancer patients. Considering PRS-based risk 

score, clinical stage and tumor grade, we then developed 

a nomogram for predicting the overall survival of 

ovarian cancer patients (Supplementary Figure 3B), 

which could help the clinicians evaluate the clinical 

outcome of ovarian cancer patients and make an 

appropriate follow-up project. Compared with the idea 

curve, nomogram-based calibration curves had a relative 

well predictive value in predicting the 1-, 3-, and 5-year 

OS rate (Supplementary Figure 3C). 

 

Development of the optimal model for evaluating the 

status of lymphatic and venous invasion 
 

Lymphatic and venous invasion were vital factors 

affecting the prognosis of ovarian cancer. We then 

identified the optimal model among PRS genes to 

classify lymphatic and venous invasion. Logistic 

regression analysis was firstly performed to evaluate the 

association between the expression values of 19 genes in 

PRS and the AUC values that were screened the status of 

lymphatic and venous invasion. As a result, a total of 

32767 formulas were generated from the logistic 

regression model. Furthermore, we used decisive GMM-

based clustering, a very feasible approach with a good 

clustering performance [16, 17], to clustered gene sets 

into eight clusters (lymphatic invasion classifying) or 

nine clusters (venous invasion classifying) in our 

proposed algorithm. The cluster that had the highest 

AUC was considered as the best model to predict the 

status of lymphatic and venous invasion. As shown in 

Supplementary Figure 4B, the lymphatic invasion 

classifying model developed by 10 TRGs (CCND1, 

CDKN1B, CSF1R, EFNA5, FGF7, HSP90AA1, IL2RG, 

KRAS, LPAR2, RHEB) had a max AUC of 0.749 by the 

GMM classifier in one of the 32767 formulas. And 

venous invasion classifying developed by 11 TRGs 

(AKT2, CDKN1B, CREB3, CSF1R, EFNA5, FGF7, 
GNG5, HSP90AA1, ITGA5, ITGB8, RHEB) had a max 

AUC of 0.816 by the GMM classifier in one of the 32767 

formulas (Supplementary Figure 4B). 
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Figure 1. Integrative machine learning analysis constructed a prognostic PI3K/Akt pathway related signature. (A) Potential 
biomarker identified by univariate cox analysis. (B) The C-index of 101 kinds prognostic models constructed by 10 machine learning 
algorithms in training and testing cohort. (C) The determination of the optimal λ was obtained when the partial likelihood deviance reached 
the minimum value, and further generated Lasso coefficients of the most useful prognostic genes. (D) Coefficients of 19 genes finally 
obtained in survivalSVM regression. The survival curve of ovarian cancer with high and low risk score in TCGA (E), GSE14764 (F), GSE26193 
(G), GSE26172 (H), GSE63885 (I) and GSE140082 (J) cohort. Cluster analysis of ovarian cancer cases with high and low risk score in TCGA (K), 
GSE14764 (L) GSE26193 (M), GSE26172 (N), GSE63885(O) and GSE140082 (P) cohort by using tSNE method. 
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PRS showed significant correlation with cancer-

related hallmark 

 

In order to clarify the vital role of PRS in ovarian cancer, 

we then perform GSEA analysis and explore PRS 

related biological process and internal connection in 

ovarian cancer. As expected, ovarian cancer with high 

risk score had a higher proliferation score, angiogenesis 

score, DNA repair score, EMT signaling score, 

Glycolysis score, and Hypoxia score (Figure 3A–3F, all 

 

 
 

Figure 2. Evaluation of the performance of prognostic PI3K/Akt pathway related signature (PRS). ROC curve evaluated 

discrimination of PRS in predicting 1-, 3-, and 5-year OS rate of ovarian cancer in TCGA (A), GSE14764 (B), GSE26193 (C), GSE26172 (D), 
GSE63885 (E) and GSE140082 (F) cohort. (G, H) Univariate and multivariate cox regression analysis considering grade, stage and risk score in 
training and testing cohort. 
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p<0.05). Moreover, high risk score indicated a higher 

IL2-STAT5 signaling score, IL6-JAK-STAT3 signaling 

score, NOTCH signaling score, P53 pathway score,  

and G2M checkpoint score in ovarian cancer (Figure 

3G–3K, all p<0.05). Interestingly, apoptosis score  

was significantly higher in ovarian cancer patients  

with low risk score (Figure 3L, p=0.028). Increasing 

evidences have highlighted vital role of macrophages 

M2/M1 proportion in tumor progression, prognosis and 

immunotherapy [18–20]. We found that high risk score 

indicated a higher level of macrophages M2/M1 

proportion in TCGA, GSE26193, and GSE26712 cohort 

(Supplementary Figure 5A–5C, all p<0.05). These 

results implied that the activation of PI3K/ATK 

signaling participated in the tumor progression and 

shortened prognosis in ovarian cancer patients.  

 

The correlation between PRS and tumor 

microenvironment (TME) in ovarian cancer 
 

Tumor immune landscape could be clustered into  

six different types, including wound healing (C1),  

IFN-g dominant (C2), inflammatory (C3), lymphocyte 

depleted (C4), immunologically quiet (C5) and TGF-b 

dominant (C6) [21]. As shown in Figure 4A, C2 ranked 

most of TCGA ovarian cancer cases in both low and 

high risk group. However, the proportion of C4 in high 

risk group was significantly higher than that in low risk 

group (Figure 4A, p=0.001). With several algorithms 

including CIBERSORT, MCPcounter, QUANTISEQ, 

XCELL, CIBERSORT-ABS, TIMER and EPIC, we 

provided insights into the immune landscape in low and 

high risk groups to avoid inaccuracy and bias caused by 

 

 
 

Figure 3. Gene set enrichment analysis of PI3K/Akt pathway related signature (PRS). The gene score of hallmark gene sets 

correlated with proliferation (A), angiogenesis score (B), DNA repair score (C), EMT signaling score (D), Glycolysis score (E), Hypoxia score (F), 
IL2-STAT5 signaling score (G), IL6-JAK-STAT3 signaling score (H), NOTCH signaling score (I), P53 pathway score (J), G2M checkpoint score (K) 
and apoptosis (L) in low and high risk score. 



www.aging-us.com 11169 AGING 

 
 

Figure 4. Dissection of PI3K/Akt pathway related signature (PRS)-based tumor microenvironment (TME). (A) Tumor immune 

landscape in ovarian cancer with high and low risk score. (B) Correlation between PRS and immune infiltration in ovarian cancer. (C) The TME 
score difference in different risk score group of ovarian cancer. The difference of the score of immune cells (D), immune-related functions (E), 
immune checkpoint (F), HLA-related genes (G) in different risk score group of ovarian cancer. *p<0.05, **p<0.01, ***p<0.001. 



www.aging-us.com 11170 AGING 

the use of a single algorithm. Significant negative 

correlation was obtained between risk score and the 

abundance of most immune cells (Figure 4B). As 

expected, negative correlation was obtained between 

risk score and the abundance of most immune cells 

(Figure 4C, all p<0.05). As expected, low risk score 

indicated a higher ESTIMATE score and Immune  

score in ovarian cancer (Figure 4C, all p<0.05). In 

CIBERSORT algorithm, ovarian cancer with low risk 

score had a higher level of aDcs, B cells, CD8+ T cells, 

DCs, neutrophils, NK cells, pDCs, T helper cells,  

Tfh, Th1 cells, Th2 cells, TIL and Treg (Figure 4D). 

Moreover, low risk score was associated with a higher 

score of immune related functions in ovarian cancer, 

including APC_co_inhibition and stimulation, cytolytic 

activity, MHC cluss I, parainflammation, T cell 

co_inhibition, and type_I_IFN_reponse (Figure 4E, all 

p<0.05). Low risk score indicated a higher level of most 

of HLA-related genes (Figure 4F, p<0.05) and immune 

checkpoints (Figure 4G, p<0.05) in ovarian cancer 

patients. These results suggested that low risk score 

may be a relatively “hot” tumor phenotype compared 

with high risk score in ovarian cancer. 

 

Assessment of response to immunotherapy and 

chemotherapy between high and low risk score group 

 

The above clarified the significant correlation between 

risk score and TME and the results suggested that ovarian 

cancer with low risk score may be a relatively “hot” tumor 

phenotype. Thus, we then explored whether risk score 

could predict the response to immunotherapy in ovarian 

cancer. As shown in Figure 5A, 5B, ovarian cancer with 

high risk score had a higher score of immune escape 

(Figure 5A, p<0.001) and immune surveillance (Figure 

5B, p<0.001). Higher TIDE score and low IPS scores 

indicate higher immune escape potential and lower 

immunotherapy response rates. In our study, high risk 

score indicated a higher TIDE score (Figure 5C, p=0.005) 

and T cell exclusion score (Figure 5D, p<0.001) in 

ovarian cancer. IPS was a superior predictor of response 

to anti-CTLA-4 and anti-PD-1antibodies and high IPS 

indicated a better response to immunotherapy [22]. The 

results suggested that ovarian cancer with low risk score 

had a higher CTLA4 IPS, PD1 IPS and CTLA4/PD1 IPS 

(Figure 5E, all p<0.05). These results suggested that 

ovarian cancer patients with low risk score may be more 

sensitive to immunotherapy. In order to verify these 

results, we then used two immunotherapy cohorts, 

including IMvigor210 cohort and GSE91061 cohort. As 

shown in Figure 5F, patients in CR/PR group had a 

significant lower risk score, with an AUC of 0.83 in  

ROC curve (p=0.005). Interestingly, high risk score was 
associated with a poor OS rate, with 1-, 2-, and 3- 

year AUCs of 0.706, 0.712, and 0.718 (Figure 5G). 

Similar results were obtained in IMvigor210 dataset, 

which showed that CR/PR group indicated a lower risk 

score, with an AUC of 0.75 in ROC curve (Figure 5H, 

p=0.004). And patients with high risk score had a poor OS 

rate, with 1-, and 2- year AUCs of 0.627, 0.846 (Figure 5I, 

p<0.001). These evidences may suggest that ovarian 

cancer patients with low risk score may be more sensitive 

to immunotherapy and PRS may be an indicator for 

immunotherapy response. We then estimated the IC50 

value of drugs correlated with chemotherapy and endo-

crinotherapy between high and low risk score group in 

order to guide clinical treatment in ovarian cancer. The 

result suggested that low risk score group tended to 

benefit from chemotherapy with 5-Fluorouracil, Cisplatin, 

Cyclophosphamide, Docetaxel, Epirubicin, Gemcitabine, 

Olaparib, Oxaliplatin, Topotecan, Tamoxifen, Erlotinib 

and Foretinib (Supplementary Figure 6A–6L, all p<0.05). 

 

The correlation between PRS and mutation 

landscape in ovarian cancer 

 

As genetic mutation played a vital role in tumor genesis 

and progression. We then compared the difference of 

mutation landscape in high and low risk score group. 

Supplementary Figure 7A, 7B showed the mutation 

landscape of ovarian cancer in these two groups. 

Patients in low risk score group had a higher tumor 

mutational burden (TMB) score (Supplementary Figure 

7C, p=0.001). Moreover, further prognostic analysis 

revealed that high TMB score and high risk score were 

associated with a poor OS rate (Supplementary Figure 

7D, 7E, p<0.001).  

 

High-resolution scRNA-seq revealed the immune 

landscape of ovarian cancer 

 

A total of 5 normal tissues and 7 ovarian cancer tissues 

were analyzed to characterize the immune landscape  

in ovarian cancer. As shown in Figure 6A, all the cells 

in these tissues could be clustered into 7 subtypes, 

including T cells, Smooth muscle cells, NK cell, 

Fibroblasts, Macrophage, NK cell, and Endothelial 

cells and Monocyte. We then explored the fraction of 

different immune cell types in each sample, revealing 

that different immune cell types varied significantly 

among different samples (Figure 6B). To be specific, T 

cells were prevalent in tumor tissues while smooth 

muscle cells were predominant in normal tissues 

(Figure 6B). Compared with normal tissues, ovarian 

tissues had a high PRG score (Figure 6C). With  

the progression of ovarian cancer, the PRG score  

was increasing (Figure 6D). These results further 

revealed that the activation of PI3K/ATK signaling 

participated in the tumor progression and shortened 
prognosis in ovarian cancer patients. As cancer-

associated Fibroblast (CAF) plays a vital role in tumor 

progression. We then collected Fibroblast in tumor for 
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further analysis. Using t-SNE analysis, CAF were 

categorized as myCAF and iCAF cells (Figure 6E). 

Further analysis revealed a different trajectory between 

different pseudotime, state, and cell subtypes in the 

development trajectory analyses of CAF cells (Figure 

6F–6H). Figure 6I revealed the expression of PRG in 

different state of CAF cells.  

Cell communication network analysis in ovarian 

cancer 

 

We studied the signaling pathway that allowed  

multiple cells to interact with each other during tumori-

genesis in order to illustrate how these cells regulate 

tumorigenesis. The number and strength of interactions 

 

 
 

Figure 5. PI3K/Akt pathway related signature (PRS)-based treatment strategy for ovarian cancer. The level of immune 

surveillance score (A), immune escape (B), TIDE score (C), T cell exclusion score (D), and immunophenoscore (E) in ovarian cancer patients 
with high and low risk score. The risk score in CR/PR and SD/PD group and corresponding ROC curve in GSE91061 dataset (F). The OS curve 
and corresponding ROC curve in patients with high and low risk score in GSE91061 dataset (G). The risk score in CR/PR and SD/PD group and 
corresponding ROC curve in IMvigor210 dataset (H). The OS curve and corresponding ROC curve in patients with high and low risk score in 
IMvigor210 dataset (I). **p<0.01, ***p<0.001. 
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were shown in Supplementary Figure 8A. We then 

focus on interaction number and weights/strength  

of CAF cells with other cell types. The CAF cells  

were strongly linked with smooth muscle cell, 

endothelial cells and Monocyte (Supplementary Figure 

8B). Further analysis revealed that PRS genes were 

involved in FGF signaling network in ovarian  

cancer. FGF signaling could be activated CAF-CAF 

interaction (Supplementary Figure 8C, 8D). In FGF 

signaling, FGF7 and FGFR1 were the ligand and 

receptor, respectively (Supplementary Figure 8E). 

FGF7 from CAFs may interact with those smooth 

muscle cells, endothelial cells and Monocyte have 

FGFR1 expression (Supplementary Figure 8F). 

 

ceRNA network 

 

The above results revealed that FGF7 may play a vital 

role in the progression of ovarian cancer. We then 

explore their upstream targets using several databases. 

As showed in Supplementary Figure 9A, miR-132- 

3p, miR-195-5p and miR-18b-5p were suggested as 

potential miRNA targets of FGF7 based on the result of 

TargetScan, ENCORI, miRDB, RNAIter, TargetMiner, 

RNA22, miRwalk. We then explored the upstream 

circRNAs interacting with miR-132-3p, miR-195-5p 

and miR-18b-5p. As a result, a total of 91 circRNAs 

were obtained. The circRNA-miRNA-mRNA network 

was showed in Supplementary Figure 9B. 

 

 
 

Figure 6. High-resolution revealing immune landscape of ovarian cancer. (A) t-SNE plot showing the identified cell types of all 
ovarian cancer and normal sample. (B) Fraction of cell types originating from each sample. (C, D) PI3K/Akt pathway related signature score in 
normal sample and ovarian cancer tissues. (E) Further sub-cell types of CAF cells. (F–H) Developmental trajectory of CAF cells inferred by 
monocle, colored by pseudotime, cell subtype and state. (I) Heatmap of the expression of PI3K/Akt pathway related signature genes in the 
developmental trajectory of CAF cells state. ***p<0.001. 
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DISCUSSION 

 
Ovarian cancer is one of the most common malignancies 

among women and its prognosis is poor [23]. Increasing 

evidences suggest the vital role of the PI3K/Akt pathway 

in cell cycle, proliferation, cancer, longevity, prognosis 

and therapy of cancer [24–27]. Moreover, the PI3K/Akt 

pathway showed significant correlation with glycolysis, 

hypoxia, apoptosis, epithelial mesenchymal transition 

(EMT), tumor recurrence, and treatment resistance  

[5, 7–9]. However, few studies have comprehensively 

and systematically described the characteristics of the 

PI3K/Akt pathway related genes in ovarian cancer. 

 
Differentially expressed analysis identified 174 differen-

tially expressed genes (DEGs) of the PI3K/Akt pathway 

in ovarian cancer. Among these DEGs, a total of 29 

genes were significantly correlated with the prognosis 

of ovarian cancer. We then performed an integrative 

pipeline including 10 machine learning algorithms, 

which could develop a powerful prognostic PRS. As a 

result, the model constructed by Lasso + survivalSVM 

method was considered as the optimal model with  

the highest average C-index of 0.6. Moreover, further 

analysis suggested TRS as an independent risk factor 

for the overall survival of ovarian cancer patients. 

Actually, many prognostic models had been constructed 

for ovarian cancer, including Immune-related LncRNA 

signature [28], glycometabolism-related signature [29], 

oxidative stress-related signature [30], transcription 

factors-based signature [31], ferroptosis-related signature 

[32] and invasion-related gene signature [33]. In  

order to compare the performance of these prognostic 

signatures in evaluating the prognosis of ovarian cancer, 

we then calculated their C-index. Interestingly, the C-

index of PRS was higher than most of other signatures, 

suggesting that our PRS may have a better performance 

in predicting the prognosis of ovarian cancer patients. 

 
Immune cell recruitment to the tumor microenvironment 

is a promising therapeutic strategy, even in aggressive 

tumors. Increasing evidences have highlighted the vital 

role of the PI3K/ATK pathway in clinical management 

of cancer [34, 35]. Conventional chemotherapeutics 

exert tumor-suppressive effects mainly by inducing the 

release of DMAPs from cancer cells, activating the 

presentation of DC cells, thus activating CD8+ T cells to 

kill cancer cells. The efficacy of these immunotherapy 

agents and their correlation with the PI3K/ATK 

pathway [36, 37]. In order to further clarify the role of 

PRS in TME, we applied several algorithms to explore 

the underlying association of PRS with immune 

infiltration. As a result, some immune cells, including T 

cells, B cells, myeloid dendritic cells, and neutrophils, 

were more active in PRS-based low risk score group. 

Moreover, some cancer-related hallmarks were more 

active in PRS-based high risk score group, including 

proliferation, angiogenesis, DNA repair, EMT signaling, 

Glycolysis, Hypoxia, NOTCH signaling, and P53 

pathway. These evidences identified that PRS might be 

involved in the development of ovarian cancer by 

regulating tumor immunity.  

 
Targeting immune checkpoint molecules can activate 

anti-tumor immunity to help clear tumors [38]. 

 
Immunotherapy has revolutionized the situation of 

patients with unresectable cancers [39]. Until now, 

limited effective biomarkers for predicting immuno-

therapy efficacy have been used clinically, though 

some biomarkers, including PD-1, PD-L1, MSI, TMB 

etc., have been identified. Since significant correlation 

was obtained between PRS and immune infiltration, 

we further explored the role of PRS in predicting 

immunotherapy efficacy. As an increased TIDE score 

indicates a greater likelihood of immune escape and 

less effectiveness of ICI treatment [40]. IPS was a 

superior predictor of response to anti-CTLA-4 and 

anti-PD-1 antibodies and high IPS indicated a better 

response to immunotherapy [22]. In our study, ovarian 

cancer with high risk score had a higher immune 

escape score, higher immune surveillance score, higher 

TIDE, lower TMB and lower IPS scores. It seems 

reasonable to assume that patients with PRS-based  

low risk score benefit more from immunotherapy in 

terms of the treatment strategies for ovarian cancer. 

Further studies suggested that the risk score in CR/ 

PR group was lower than that in SD/PD group in 

GSE91061 and IMvigor210 dataset, which further 

verifies our results. 

 
Chemotherapy and endocrine therapy were vital 

therapeutic measures of ovarian cancer. Chemoresistance 

was one of the most reasons leading to treatment  

failure of ovarian cancer [41]. The result suggested that 

low risk group tended to benefit from chemotherapy  

and endocrine therapy with 5-Fluorouracil, Cisplatin, 

Cyclophosphamide, Docetaxel, Epirubicin, Gemcitabine, 

Olaparib, Oxaliplatin, Topotecan, Tamoxifen, Erlotinib 

and Foretinib, demonstrating that PRS was an indicator 

for the chemotherapy response of ovarian cancer. 

 
Some limitations and shortcomings remain in our study. 

All data are obtained from public databases and it 

would be better to validate this prognostic model using 

clinical data. Moreover, the mechanism of PRS related 

genes in the progression of ovarian cancer remains 

unknown. A more in-depth investigation of these genes 

in ovarian cancer development will be undertaken in 

vivo or in vitro. 
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CONCLUSIONS 
 

All in all, our study developed a prognostic PRS 

showing powerful and good performance in predicting 

the clinical outcome of ovarian cancer patients. PRS 

could serve as an indicator for drug sensitivity in 

chemotherapy and immunotherapy. 

 

AUTHOR CONTRIBUTIONS 
 

Xiaofang Han performed data analysis work and aided 

in writing the manuscript. Xiaofang Han and Liu 

Yang designed the study, assisted in writing the 

manuscript. Hui Tian and Yuanyuan Ji edited the 

manuscript. All authors read and approved the final 

manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of 

interest. 

 

FUNDING 
 

This study was funded by the Natural Science 

Foundation of Shanxi Province (201901D111443). 

 

REFERENCES 
 
1. Morand S, Devanaboyina M, Staats H, Stanbery L, 

Nemunaitis J. Ovarian Cancer Immunotherapy and 
Personalized Medicine. Int J Mol Sci. 2021; 22:6532. 

 https://doi.org/10.3390/ijms22126532 
PMID:34207103 

2. Armstrong DK, Alvarez RD, Backes FJ, Bakkum-Gamez 
JN, Barroilhet L, Behbakht K, Berchuck A, Chen LM, 
Chitiyo VC, Cristea M, DeRosa M, Eisenhauer EL, 
Gershenson DM, et al. NCCN Guidelines® Insights: 
Ovarian Cancer, Version 3.2022. J Natl Compr Canc 
Netw. 2022; 20:972–80. 

 https://doi.org/10.6004/jnccn.2022.0047 
PMID:36075393 

3. Liang L, Yu J, Li J, Li N, Liu J, Xiu L, Zeng J, Wang T, Wu L. 
Integration of scRNA-Seq and Bulk RNA-Seq to Analyse 
the Heterogeneity of Ovarian Cancer Immune Cells and 
Establish a Molecular Risk Model. Front Oncol. 2021; 
11:711020. 

 https://doi.org/10.3389/fonc.2021.711020 
PMID:34621670 

4. Zhang Y, Zhang Z. The history and advances in cancer 
immunotherapy: understanding the characteristics of 
tumor-infiltrating immune cells and their therapeutic 
implications. Cell Mol Immunol. 2020; 17:807–21. 

 https://doi.org/10.1038/s41423-020-0488-6 

PMID:32612154 

5. Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, Jiang B, Feng 
J, Li J, Gu Y. PI3K/Akt signaling transduction pathway, 
erythropoiesis and glycolysis in hypoxia (Review). Mol 
Med Rep. 2019; 19:783–91. 

 https://doi.org/10.3892/mmr.2018.9713 
PMID:30535469 

6. Ma L, Zhang R, Li D, Qiao T, Guo X. Fluoride regulates 
chondrocyte proliferation and autophagy via 
PI3K/AKT/mTOR signaling pathway. Chem Biol Interact. 
2021; 349:109659. 

 https://doi.org/10.1016/j.cbi.2021.109659 
PMID:34536393 

7. Xu W, Yang Z, Lu N. A new role for the PI3K/Akt 
signaling pathway in the epithelial-mesenchymal 
transition. Cell Adh Migr. 2015; 9:317–24. 

 https://doi.org/10.1080/19336918.2015.1016686 
PMID:26241004 

8. Jin Y, Chen Y, Tang H, Hu X, Hubert SM, Li Q, Su D, Xu H, 
Fan Y, Yu X, Chen Q, Liu J, Hong W, et al. Activation of 
PI3K/AKT Pathway Is a Potential Mechanism of 
Treatment Resistance in Small Cell Lung Cancer. Clin 
Cancer Res. 2022; 28:526–39. 

 https://doi.org/10.1158/1078-0432.CCR-21-1943 
PMID:34921019 

9. Noorolyai S, Shajari N, Baghbani E, Sadreddini S, 
Baradaran B. The relation between PI3K/AKT signalling 
pathway and cancer. Gene. 2019; 698:120–8. 

 https://doi.org/10.1016/j.gene.2019.02.076 
PMID:30849534 

10. Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR 
signaling pathway for targeted therapeutic treatment 
in human cancer. Semin Cancer Biol. 2022; 85:69–94. 

 https://doi.org/10.1016/j.semcancer.2021.06.019 
PMID:34175443 

11. Nodin B, Zendehrokh N, Sundström M, Jirström K. 
Clinicopathological correlates and prognostic 
significance of KRAS mutation status in a pooled 
prospective cohort of epithelial ovarian cancer. Diagn 
Pathol. 2013; 8:106. 

 https://doi.org/10.1186/1746-1596-8-106 
PMID:23800114 

12. Liu Z, Liu L, Weng S, Guo C, Dang Q, Xu H, Wang L, Lu T, 
Zhang Y, Sun Z, Han X. Machine learning-based 
integration develops an immune-derived lncRNA 
signature for improving outcomes in colorectal cancer. 
Nat Commun. 2022; 13:816. 

 https://doi.org/10.1038/s41467-022-28421-6 
PMID:35145098 

13. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS. 
TIMER2.0 for analysis of tumor-infiltrating immune 
cells. Nucleic Acids Res. 2020; 48:W509–14. 

https://doi.org/10.3390/ijms22126532
https://pubmed.ncbi.nlm.nih.gov/34207103
https://doi.org/10.6004/jnccn.2022.0047
https://pubmed.ncbi.nlm.nih.gov/36075393
https://doi.org/10.3389/fonc.2021.711020
https://pubmed.ncbi.nlm.nih.gov/34621670
https://doi.org/10.1038/s41423-020-0488-6
https://pubmed.ncbi.nlm.nih.gov/32612154
https://doi.org/10.3892/mmr.2018.9713
https://pubmed.ncbi.nlm.nih.gov/30535469
https://doi.org/10.1016/j.cbi.2021.109659
https://pubmed.ncbi.nlm.nih.gov/34536393
https://doi.org/10.1080/19336918.2015.1016686
https://pubmed.ncbi.nlm.nih.gov/26241004
https://doi.org/10.1158/1078-0432.CCR-21-1943
https://pubmed.ncbi.nlm.nih.gov/34921019
https://doi.org/10.1016/j.gene.2019.02.076
https://pubmed.ncbi.nlm.nih.gov/30849534
https://doi.org/10.1016/j.semcancer.2021.06.019
https://pubmed.ncbi.nlm.nih.gov/34175443
https://doi.org/10.1186/1746-1596-8-106
https://pubmed.ncbi.nlm.nih.gov/23800114
https://doi.org/10.1038/s41467-022-28421-6
https://pubmed.ncbi.nlm.nih.gov/35145098


www.aging-us.com 11175 AGING 

 https://doi.org/10.1093/nar/gkaa407  
PMID:32442275 

14. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, 
Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, 
Levine DA, Carter SL, Getz G, Stemke-Hale K, et al. 
Inferring tumour purity and stromal and immune cell 
admixture from expression data. Nat Commun. 2013; 
4:2612. 

 https://doi.org/10.1038/ncomms3612 PMID:24113773 

15. Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang Z, Zhang Z, 
Xie J, Wang C, Chen D, Huang Y, Wei X, Shi Y, et al. 
Single-cell landscape of the ecosystem in early-relapse 
hepatocellular carcinoma. Cell. 2021; 184:404–21.e16. 

 https://doi.org/10.1016/j.cell.2020.11.041 
PMID:33357445 

16. Ficklin SP, Dunwoodie LJ, Poehlman WL, Watson C, 
Roche KE, Feltus FA. Discovering Condition-Specific 
Gene Co-Expression Patterns Using Gaussian Mixture 
Models: A Cancer Case Study. Sci Rep. 2017; 7:8617. 

 https://doi.org/10.1038/s41598-017-09094-4 
PMID:28819158 

17. Hong HC, Chuang CH, Huang WC, Weng SL, Chen CH, 
Chang KH, Liao KW, Huang HD. A panel of eight 
microRNAs is a good predictive parameter for triple-
negative breast cancer relapse. Theranostics. 2020; 
10:8771–89. 

 https://doi.org/10.7150/thno.46142  
PMID:32754277 

18. Dan H, Liu S, Liu J, Liu D, Yin F, Wei Z, Wang J, Zhou 
Y, Jiang L, Ji N, Zeng X, Li J, Chen Q. RACK1 
promotes cancer progression by increasing the 
M2/M1 macrophage ratio via the NF-κB pathway in 
oral squamous cell carcinoma. Mol Oncol. 2020; 
14:795–807. 

 https://doi.org/10.1002/1878-0261.12644 
PMID:31997535 

19. Sun M, Zeng H, Jin K, Liu Z, Hu B, Liu C, Yan S, Yu Y, You 
R, Zhang H, Chang Y, Liu L, Zhu Y, et al. Infiltration and 
Polarization of Tumor-associated Macrophages Predict 
Prognosis and Therapeutic Benefit in Muscle-Invasive 
Bladder Cancer. Cancer Immunol Immunother. 2022; 
71:1497–506. 

 https://doi.org/10.1007/s00262-021-03098-w 
PMID:34716763 

20. Wang H, Yung MMH, Ngan HYS, Chan KKL, Chan DW. 
The Impact of the Tumor Microenvironment on 
Macrophage Polarization in Cancer Metastatic 
Progression. Int J Mol Sci. 2021; 22:6560. 

 https://doi.org/10.3390/ijms22126560 
PMID:34207286 

21. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, 
Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy 

JA, Ziv E, Culhane AC, Paull EO, et al, and Cancer 
Genome Atlas Research Network. The Immune 
Landscape of Cancer. Immunity. 2018; 48:812–30.e14. 

 https://doi.org/10.1016/j.immuni.2018.03.023 
PMID:29628290 

22. Charoentong P, Finotello F, Angelova M, Mayer C, 
Efremova M, Rieder D, Hackl H, Trajanoski Z. Pan-
cancer Immunogenomic Analyses Reveal Genotype-
Immunophenotype Relationships and Predictors of 
Response to Checkpoint Blockade. Cell Rep. 2017; 
18:248–62. 

 https://doi.org/10.1016/j.celrep.2016.12.019 
PMID:28052254 

23. Wang JY, Lu AQ, Chen LJ. LncRNAs in ovarian cancer. 
Clin Chim Acta. 2019; 490:17–27. 

 https://doi.org/10.1016/j.cca.2018.12.013 
PMID:30553863 

24. Akbarzadeh M, Mihanfar A, Akbarzadeh S, Yousefi B, 
Majidinia M. Crosstalk between miRNA and 
PI3K/AKT/mTOR signaling pathway in cancer. Life Sci. 
2021; 285:119984. 

 https://doi.org/10.1016/j.lfs.2021.119984 
PMID:34592229 

25. He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li 
B. Targeting PI3K/Akt signal transduction for cancer 
therapy. Signal Transduct Target Ther. 2021; 6:425. 

 https://doi.org/10.1038/s41392-021-00828-5 
PMID:34916492 

26. Mortazavi M, Moosavi F, Martini M, Giovannetti E, 
Firuzi O. Prospects of targeting PI3K/AKT/mTOR 
pathway in pancreatic cancer. Crit Rev Oncol Hematol. 
2022; 176:103749. 

 https://doi.org/10.1016/j.critrevonc.2022.103749 
PMID:35728737 

27. Stefani C, Miricescu D, Stanescu-Spinu II, Nica RI, 
Greabu M, Totan AR, Jinga M. Growth Factors, 
PI3K/AKT/mTOR and MAPK Signaling Pathways in 
Colorectal Cancer Pathogenesis: Where Are We Now? 
Int J Mol Sci. 2021; 22:10260. 

 https://doi.org/10.3390/ijms221910260 
PMID:34638601 

28. Pan X, Bi F. A Potential Immune-Related Long Non-
coding RNA Prognostic Signature for Ovarian Cancer. 
Front Genet. 2021; 12:694009. 

 https://doi.org/10.3389/fgene.2021.694009 
PMID:34367253 

29. Liu L, Cai L, Liu C, Yu S, Li B, Pan L, Zhao J, Zhao Y, Li W, 
Yan X. Construction and Validation of a Novel 
Glycometabolism-Related Gene Signature Predicting 
Survival in Patients With Ovarian Cancer. Front Genet. 
2020; 11:585259. 

 https://doi.org/10.3389/fgene.2020.585259 
PMID:33281878 

https://doi.org/10.1093/nar/gkaa407
https://pubmed.ncbi.nlm.nih.gov/32442275
https://doi.org/10.1038/ncomms3612
https://pubmed.ncbi.nlm.nih.gov/24113773
https://doi.org/10.1016/j.cell.2020.11.041
https://pubmed.ncbi.nlm.nih.gov/33357445
https://doi.org/10.1038/s41598-017-09094-4
https://pubmed.ncbi.nlm.nih.gov/28819158
https://doi.org/10.7150/thno.46142
https://pubmed.ncbi.nlm.nih.gov/32754277
https://doi.org/10.1002/1878-0261.12644
https://pubmed.ncbi.nlm.nih.gov/31997535
https://doi.org/10.1007/s00262-021-03098-w
https://pubmed.ncbi.nlm.nih.gov/34716763
https://doi.org/10.3390/ijms22126560
https://pubmed.ncbi.nlm.nih.gov/34207286
https://doi.org/10.1016/j.immuni.2018.03.023
https://pubmed.ncbi.nlm.nih.gov/29628290
https://doi.org/10.1016/j.celrep.2016.12.019
https://pubmed.ncbi.nlm.nih.gov/28052254
https://doi.org/10.1016/j.cca.2018.12.013
https://pubmed.ncbi.nlm.nih.gov/30553863
https://doi.org/10.1016/j.lfs.2021.119984
https://pubmed.ncbi.nlm.nih.gov/34592229
https://doi.org/10.1038/s41392-021-00828-5
https://pubmed.ncbi.nlm.nih.gov/34916492
https://doi.org/10.1016/j.critrevonc.2022.103749
https://pubmed.ncbi.nlm.nih.gov/35728737
https://doi.org/10.3390/ijms221910260
https://pubmed.ncbi.nlm.nih.gov/34638601
https://doi.org/10.3389/fgene.2021.694009
https://pubmed.ncbi.nlm.nih.gov/34367253
https://doi.org/10.3389/fgene.2020.585259
https://pubmed.ncbi.nlm.nih.gov/33281878


www.aging-us.com 11176 AGING 

30. Zhang J, Yang L, Xiang X, Li Z, Qu K, Li K. A panel of 
three oxidative stress-related genes predicts overall 
survival in ovarian cancer patients received platinum-
based chemotherapy. Aging (Albany NY). 2018; 
10:1366–79. 

 https://doi.org/10.18632/aging.101473 
PMID:29910195 

31. Cheng Q, Li L, Yu M. Construction and validation of a 
transcription factors-based prognostic signature for 
ovarian cancer. J Ovarian Res. 2022; 15:29. 

 https://doi.org/10.1186/s13048-021-00938-2 
PMID:35227285 

32. Wang H, Cheng Q, Chang K, Bao L, Yi X. Integrated 
Analysis of Ferroptosis-Related Biomarker Signatures 
to Improve the Diagnosis and Prognosis Prediction of 
Ovarian Cancer. Front Cell Dev Biol. 2022; 9:807862. 

 https://doi.org/10.3389/fcell.2021.807862 
PMID:35071242 

33. Liang L, Li J, Yu J, Liu J, Xiu L, Zeng J, Wang T, Li N, Wu L. 
Establishment and validation of a novel invasion-
related gene signature for predicting the prognosis of 
ovarian cancer. Cancer Cell Int. 2022; 22:118. 

 https://doi.org/10.1186/s12935-022-02502-4 
PMID:35292033 

34. Duan Y, Haybaeck J, Yang Z. Therapeutic Potential of 
PI3K/AKT/mTOR Pathway in Gastrointestinal Stromal 
Tumors: Rationale and Progress. Cancers (Basel). 2020; 
12:2972. 

 https://doi.org/10.3390/cancers12102972 
PMID:33066449 

35. Vasan N, Cantley LC. At a crossroads: how to translate 
the roles of PI3K in oncogenic and metabolic signalling 
into improvements in cancer therapy. Nat Rev Clin 
Oncol. 2022; 19:471–85.  

 https://doi.org/10.1038/s41571-022-00633-1 
PMID:35484287 

  

36. Guerrero-Zotano A, Mayer IA, Arteaga CL. 
PI3K/AKT/mTOR: role in breast cancer progression, 
drug resistance, and treatment. Cancer Metastasis Rev. 
2016; 35:515–24. 

 https://doi.org/10.1007/s10555-016-9637-x 
PMID:27896521 

37. Mayer IA, Arteaga CL. The PI3K/AKT Pathway as a 
Target for Cancer Treatment. Annu Rev Med. 2016; 
67:11–28. 

 https://doi.org/10.1146/annurev-med-062913-051343 
PMID:26473415 

38. Dai Y, Qiang W, Lin K, Gui Y, Lan X, Wang D. An 
immune-related gene signature for predicting survival 
and immunotherapy efficacy in hepatocellular 
carcinoma. Cancer Immunol Immunother. 2021; 
70:967–79. 

 https://doi.org/10.1007/s00262-020-02743-0 
PMID:33089373 

39. Riley RS, June CH, Langer R, Mitchell MJ. Delivery 
technologies for cancer immunotherapy. Nat Rev Drug 
Discov. 2019; 18:175–96. 

 https://doi.org/10.1038/s41573-018-0006-z 
PMID:30622344 

40. Fu J, Li K, Zhang W, Wan C, Zhang J, Jiang P, Liu XS. 
Large-scale public data reuse to model immunotherapy 
response and resistance. Genome Med. 2020; 12:21. 

 https://doi.org/10.1186/s13073-020-0721-z 
PMID:32102694 

41. Tian W, Lei N, Zhou J, Chen M, Guo R, Qin B, Li Y, Chang 
L. Extracellular vesicles in ovarian cancer 
chemoresistance, metastasis, and immune evasion. 
Cell Death Dis. 2022; 13:64. 

 https://doi.org/10.1038/s41419-022-04510-8 
PMID:35042862 

  

https://doi.org/10.18632/aging.101473
https://pubmed.ncbi.nlm.nih.gov/29910195
https://doi.org/10.1186/s13048-021-00938-2
https://pubmed.ncbi.nlm.nih.gov/35227285
https://doi.org/10.3389/fcell.2021.807862
https://pubmed.ncbi.nlm.nih.gov/35071242
https://doi.org/10.1186/s12935-022-02502-4
https://pubmed.ncbi.nlm.nih.gov/35292033
https://doi.org/10.3390/cancers12102972
https://pubmed.ncbi.nlm.nih.gov/33066449
https://doi.org/10.1038/s41571-022-00633-1
https://pubmed.ncbi.nlm.nih.gov/35484287
https://doi.org/10.1007/s10555-016-9637-x
https://pubmed.ncbi.nlm.nih.gov/27896521
https://doi.org/10.1146/annurev-med-062913-051343
https://pubmed.ncbi.nlm.nih.gov/26473415
https://doi.org/10.1007/s00262-020-02743-0
https://pubmed.ncbi.nlm.nih.gov/33089373
https://doi.org/10.1038/s41573-018-0006-z
https://pubmed.ncbi.nlm.nih.gov/30622344
https://doi.org/10.1186/s13073-020-0721-z
https://pubmed.ncbi.nlm.nih.gov/32102694
https://doi.org/10.1038/s41419-022-04510-8
https://pubmed.ncbi.nlm.nih.gov/35042862


www.aging-us.com 11177 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Study workflow. 

 

 

 
 

Supplementary Figure 2. Differentially expressed genes between ovarian cancer and normal tissues. (A) Volcanic map showed 

all differentially expressed genes in ovarian cancer among PI3K/Akt pathway related genes. (B) Heatmap showed top 50 differentially 
expressed genes in ovarian cancer among PI3K/Akt pathway related genes. 
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Supplementary Figure 3. The performance of prognostic PI3K/Akt pathway related signature (PRS) in predicting the 
prognosis of ovarian cancer. (A) C-index of PRS and other established signatures evaluated the prognosis of ovarian cancer patients. (B, C) 
Prediction nomogram for predicting the 1-, 3-, and 5-year OS rate of ovarian cancer. 

 

 
 

Supplementary Figure 4. The pattern of AUC and logistic regression models was based on Gaussian finite mixture models for 
classifying lymphatic and venous invasion. The pattern of the logistic regression model correlated with the AUC scores and was 
identified by a Gaussian mixture for classifying lymphatic (A) and venous invasion (B). 
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Supplementary Figure 5. The level of macrophages M2/M1 proportion in ovarian cancer patients with high and low risk score in TCGA (A), 
GSE26193 (B) and GSE26712 (C) cohort. 

 

 
 

Supplementary Figure 6. PI3K/Akt pathway related signature (PRS)-based treatment strategy for ovarian cancer. The IC50 
values of 5-Fluorouracil (A), Cisplatin (B), Cyclophosphamide (C), Docetaxel (D), Epirubicin (E), Gemcitabine (F), Olaparib (G), Oxaliplatin (H), 
Topotecan (I), Tamoxifen (J), Erlotinib (K), and Foretinib (L) in different risk score group of ovarian cancer. 
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Supplementary Figure 7. Dissection of PI3K/Akt pathway-related signature (PRS)-based genetic mutation. (A, B) Genetic 

landscape in different risk score group of ovarian cancer. (C) The tumor mutational burden score in different risk score of ovarian cancer.  
(D, E) The overall survival curve in ovarian cancer patients with different tumor mutational burden and risk score. 

 

 
 

Supplementary Figure 8. Cell communication network analysis in ovarian cancer. (A) Chord plot showing the number and 

weights/strength of interactions among all cell types. (B) The interaction number and weights/strength of CAF cells with other cell types.  
(C, D) The interaction of all cell types in PI3K/Akt pathway related signature (PRS) related FGF signaling network. (E) The sender and receiver 
pair in FGF signaling network. (F) Chart showing inferred intercellular communication network of FGF signaling pathway in all cell types. 
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Supplementary Figure 9. ceRNA network associated with hub gene FGF7. (A) miRNA target of FGF7 predicted by TargetScan, 
ENCORI, miRDB, RNAIter, TargetMiner, RNA22, miRwalk. (B) circRNA interacting with miRNA predicted by StarBase 3.0 and the circRNA-
miRNA-miRNA. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Other models had been established for ovarian cancer. 

Signature Title PMID 

An Development of a Novel Autophagy-related Prognostic Signature for Serous Ovarian Cancer 30410611 

Any The Comprehensive Analysis of Interferon-Related Prognostic Signature with regard to Immune Features in 

Ovarian Cancer. 

35769811 

Bao Novel gene signatures for prognosis prediction in ovarian cancer 32666642 

Bi Establishment of a novel glycolysis-related prognostic gene signature for ovarian cancer and its relationships 

with immune infiltration of the tumor microenvironment 

34496868 

Bing Novel Model for Comprehensive Assessment of Robust Prognostic Gene Signature in Ovarian Cancer 

Across Different Independent Datasets 

31681404 

Cao Development of a multi-gene-based immune prognostic signature in ovarian cancer 33509250 

Chaofan Establishment and validation of an RNA binding protein-associated prognostic model for ovarian cancer 33550985 

Chen Integrating cell cycle score for precise risk stratification in ovarian cancer 36061171 

Cheng Construction and validation of a transcription factors-based prognostic signature for ovarian cancer. 35227285 

Ding Construction of a new tumor immunity-related signature to assess and classify the prognostic risk of ovarian 

cancer 

33154188 

Fan A newly defined risk signature, consisting of three m6A RNA methylation regulators, predicts the prognosis 

of ovarian cancer 

32950970 

Fang Establishment, immunological analysis, and drug prediction of a prognostic signature of ovarian cancer 

related to histone acetylation 

36172179 

Fei Construction autophagy-related prognostic risk signature to facilitate survival prediction, individual 

treatment and biomarker excavation of epithelial ovarian cancer patients. 

33676525 

He Development of a novel transcription factors-related prognostic signature for serous ovarian cancer 33785763 

Hu Identification of a five-gene signature of the RGS gene family with prognostic value in ovarian cancer. 33845140 

Huan Integrated Analysis of Ferroptosis-Related Biomarker Signatures to Improve the Diagnosis and Prognosis 

Prediction of Ovarian Cancer 

35071242 

Huo Identification of a Prognostic Signature for Ovarian Cancer Based on the Microenvironment Genes 34054929 

Jiao N6-Methyladenosine-Related RNA Signature Predicting the Prognosis of Ovarian Cancer. 34137363 

Jin A panel of three oxidative stress-related genes predicts overall survival in ovarian cancer patients received 

platinum-based chemotherapy 

29910195 

JinC A 2-Protein Signature Predicting Clinical Outcome in High-Grade Serous Ovarian Cancer 28976449 

Jinwei Identification and verification of a ten-gene signature predicting overall survival for ovarian cancer 32805252 

Khadirnaikar Development and validation of an immune prognostic signature for ovarian carcinoma 32794637 

Lei Identification of an energy metabolism-related gene signature in ovarian cancer prognosis 32186777 

Leilei Establishment and validation of a novel invasion-related gene signature for predicting the prognosis of 

ovarian cancer. 

35292033 

Li Identification and validation of a gene-based signature reveals SLC25A10 as a novel prognostic indicator 

for patients with ovarian cancer 

36114504 

Liang A Novel Glycosyltransferase-Related Gene Signature for Overall Survival Prediction in Patients with 

Ovarian Cancer 

34992448 

Lin A methylation-driven genes prognostic signature and the immune microenvironment in epithelial ovarian 

cancer. 

35783253 

Liu Construction and validation of a novel aging-related gene signature and prognostic nomogram for predicting 

the overall survival in ovarian cancer. 

34825509 

Lixiao Construction and Validation of a Novel Glycometabolism-Related Gene Signature Predicting Survival in 

Patients With Ovarian Cancer. 

33281878 

Na Comprehensive Analysis of Tumor Microenvironment Identified Prognostic Immune-Related Gene 

Signature in Ovarian Cancer 

33679883 

Nie Prognostic signature of ovarian cancer based on 14 tumor microenvironment-related genes 34260536 
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Pan A Potential Immune-Related Long Non-coding RNA Prognostic Signature for Ovarian Cancer 34367253 

PanX A Novel Six-Gene Signature for Prognosis Prediction in Ovarian Cancer 33193589 

Peng A prognostic model based on immune-related long noncoding RNAs for patients with epithelial ovarian 

cancer 

35031063 

Qi A nine-gene signature related to tumor microenvironment predicts overall survival with ovarian cancer 32208363 

Qingyang Identifying the Role of Oxidative Stress-Related Genes as Prognostic Biomarkers and Predicting the 

Response of Immunotherapy and Chemotherapy in Ovarian Cancer. 

36561981 

Qiu A Liquid-Liquid Phase Separation-Related Gene Signature as Prognostic Biomarker for Epithelial Ovarian 

Cancer 

34168991 

Sheng Integrative network analysis identifies an immune-based prognostic signature as the determinant for the 

mesenchymal subtype in epithelial ovarian cancer. 

33031300 

Su A novel immune-related prognostic signature in epithelial ovarian carcinoma 33819196 

Sun Identification of a Prognostic Signature Associated With DNA Repair Genes in Ovarian Cancer. 31572446 

Wang Development of a five-gene signature as a novel prognostic marker in ovarian cancer. 30569721 

Xiang Construction of a prognostic signature for serous ovarian cancer based on lactate metabolism-related genes. 36185201 

Xiaoqing Identification of immunity- and ferroptosis-related genes for predicting the prognosis of serous ovarian 

cancer 

35777713 

Xin The cuproptosis-related gene signature serves as a potential prognostic predictor for ovarian cancer using 

bioinformatics analysis 

36267774 

Xu Integration of Transcriptome and Epigenome to Identify and Develop Prognostic Markers for Ovarian 

Cancer 

36081667 

Xueyuan Derivation, Comprehensive Analysis, and Assay Validation of a Pyroptosis-Related lncRNA Prognostic 

Signature in Patients With Ovarian Cancer 

35280739 

Xuyao A signature based on glycosyltransferase genes provides a promising tool for the prediction of prognosis and 

immunotherapy responsiveness in ovarian cancer 

36611197 

Yan Development and Verification of an Autophagy-Related lncRNA Signature to Predict Clinical Outcomes and 

Therapeutic Responses in Ovarian Cancer 

34671615 

Yilong Identification of a novel ferroptosis-related gene signature associated with prognosis, the immune landscape, 

and biomarkers for immunotherapy in ovarian cancer 

36386203 

Yang Integrated analysis of a competing endogenous RNA network reveals an 11-lncRNA prognostic signature in 

ovarian cancer 

33223503 

Yuanyuan Development and Validation of an Immune-Related Prognostic Signature for Ovarian Cancer Based on 

Weighted Gene Coexpression Network Analysis 

33381581 

Zeng Identification of a Gene Signature of Cancer-Associated Fibroblasts to Predict Prognosis in Ovarian Cancer 35873482 

Zhao Exploration of the Immunotyping Landscape and Immune Infiltration-Related Prognostic Markers in 

Ovarian Cancer Patients. 

35880167 

Zheng Identification three LncRNA prognostic signature of ovarian cancer based on genome-wide copy number 

variation 

32000042 

 

Supplementary Table 2. Signature related gene sets. 

 


