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INTRODUCTION 
 

Tumor metabolic reprogramming is reported as an 

adaptive change to the microenvironment; the “Warburg 

effect” is known as aerobic glycolysis, and is the most 

widely accepted tumor feature [1, 2]. However, aerobic 

glycolysis in tumors cannot replace the contribution  

of the mitochondrial tricarboxylic acid (TCA) cycle in 
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ABSTRACT 
 

Background: Before the discovery of cuproptosis, copper-loaded nanoparticle is a wildly applied strategy for 
enhancing the tumor-cell-killing effect of chemotherapy. Although copper(ii)-related researches are wide, 
details of cuproptosis-related bioprocess in pan-cancer are not clear yet now, especially for prognosis and drug 
sensitivity prediction yet now. 
Methods: In this study, VOSviewer is used for the literature review, and R4.2.0 is used for data analysis. Public 
data are collected from TCGA and GEO, local breast cancer cohort is collected to verify the expression level of 
CDKN2A. 
Results: 7036 published articles exhibited a time-dependent linear relationship (R=0.9781, p<0.0001), and 
breast cancer (33.4%) is the most researched topic. Cuproptosis-related-genes (CRGs)-based unsupervised 
clustering divides pan-cancer subgroups into four groups (CRG subgroup) with differences in prognosis and 
tumor immunity. 44 tumor-driver-genes (TDGs)-based prediction model of drug sensitivity and prognosis is 
constructed by artificial intelligence (AI). Based on TDGs and clinical features, a nomogram is (C- index: 0.7, p= 
6.958e- 12) constructed to predict the prognosis of breast cancer. Importance analysis identifies CDKN2A has a 
pivotal role in AI modeling, whose higher expression indicates worse prognosis in breast cancer. Furthermore, 
inhibition of CDKN2A down-regulates decreases Snail1, Twist1, Zeb1, vimentin and MMP9, while E-cadherin is 
increased. Besides, inhibition of CDKN2A also decreases the expression of MEGEA4, phosphorylated STAT3, PD-
L1, and caspase3, while cleaved-caspase3 is increased. Finally, we find down-regulation of CDKN2A or MAGEA 
inhibits cell migration and wound healing, respectively. 
Conclusions: AI identified CRG subgroups in pan-cancer based on CRGs-related TDGs, and 44-gene-based AI 
modeling is a novel tool to identify chemotherapy sensitivity in breast cancer, in which CDKN2A/MAGEA4 
pathway played the most important role. 
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tumor energy provision [3–5]. Recent studies have 

shown that most cancer cells don’t undergo respiration 

and harness the TCA cycle to support tumor growth 

[6]. Increasing evidence suggests that some enzymes in 

the TCA cycle, such as pyruvate carboxylase, are 

critical for the growth of primary tumors or metastases 

[7, 8]. Furthermore, the precisely controlled intra-

cellular reactive oxygen species (ROS) levels in tumors 

during oxidative metabolism are important in promoting 

tumorigenesis and progression [9]. 

 

Metal ions, including Fe, Cu, and Zn, are important 

functional units in cellular energy metabolism [10]. 

Among them, Cu is involved in various metabolic 

activities in normal physiological processes, including 

mitochondrial respiration, iron transport, oxidative 

phosphorylation, and other processes [10]. In the 

mitochondrial respiratory chain, Cu is reported to be 

involved in the formation of the mitochondrial cyto-

chrome oxidase complex (COX), which also named 

mitochondrial electron transport chain complex IV,  

and in energy production and maintenance of the 

mitochondrial electrochemical gradient [11–13]. In 

other words, Cu plays a key role in tumor energy 

metabolism, especially for tumor which one depends  

on mitochondrial energy metabolism (breast cancer, 

colon cancer, etc.). In addition, depletion of intracellular 

Cu plays an important role in promoting glycolysis  

[14]. Furthermore, it has been established that the 

metabolites produced during aerobic glycolysis play  

an important role in tumor growth, metastasis, and  

drug resistance [15]. 

 

Given the importance of Cu in tumor energy metabolism, 

including regulation of the mitochondrial respiratory 

chain and ROS, a “copper-targeted antitumor” model that 

targeted mitochondrial Cu depletion to block TCA cycle-

mediated tumor energy metabolism is established to 

inhibit tumor growth [13, 16]. Intriguingly, Cu-overload-

induced ROS imbalance is widely thought to be a novel 

strategy for antitumor therapy [17, 18]. Interestingly, a 

pivotal study defined “copper-induced cell death” as an 

excess of Cu in tumor cells that directly binds to the 

lipoylation component (DLAT) in the CTA cycle to 

induce an abnormal aggregation of lipoylated proteins 

and interfere with intracellular iron-sulfur cluster 

proteins, to induce cell death by proteotoxicity [19]; this 

process is termed cuproptosis. 

 

Cuproptosis is a novel copper metabolism-mediated 

tumor-suppressive process independent of ferroptosis, 

which provides a novel strategy for copper-loaded 

nanoparticles in antitumor therapy. However, more 
research is warranted to uncover the roles of cuproptosis 

in pan-cancer, including cuproptosis-induced tumor 

microenvironment (TME) immune cell infiltration and 

energy metabolism reprogramming. Up to now, few 

studies have assessed the effects of cuproptosis-related 

genes (CRGs) in chemotherapy sensitivity prediction 

[20], especially for breast cancer. 

 

This study aims to explore the relationship between 

cuproptosis and tumor immunity, and to construct a risk 

model to predict clinical outcomes and chemotherapy 

resistance. 

 

MATERIALS AND METHODS 
 

The research process of bibliometric analysis is shown 

in Figure 1. The bibliometric analysis is conducted until 

April 23, 2022, and data analysis is performed by two 

researchers independently. All abbreviations are listed 

in Supplementary Table 1. 

 

Bibliometric analysis 

 

Data sources and search strategies 

Web of Science (WOS) is used to collect copper(II)-

related publications until April 23, 2022. The search 

strategy is as follows: TS= (copper OR cuproptosis) 

AND TS= (cancer OR carcinoma OR neoplasm  

OR tumor). 11800 pieces of literature are obtained, 

including articles (n=9989) and non-articles (reviews, 

proceeding papers, or others, n=1811) (Figure 1).  

After screening studies published between 2011 to 

2021, 7037 studies are finally included. 

 

Data analysis 

First, we applied VOS viewer 16.0 (Leiden University 

Science and Technology Research Center, Leiden, 

Netherlands, a software used in bibliometric analysis 

before [21]) software to clean the collected data and 

merge duplicates or synonyms through the thesaurus file. 

We finally collected keywords, journal names, research 

institution, research country, and article citations for 

further data analysis, yielding a total of 7036 articles. 

VOSviewer 16.0 is used for literature review and 

bibliometric analysis, amongst which keywords are used 

for quantifying copper(II)-related studies in different 

cancers. R4.2.0 is used for cox regression analysis; 

results are visualized in nomograms, calibration curves, 

and gene expression heatmaps. Data from Kaplan Meier-

plotter are divided into training and internal validation 

groups. Data from TGCA (The Cancer Genome Atlas) 

are used for external validation. 

 

The number of publications (NP) and the number of 

citations (NCs) are used for calculating the mean 

number of citations (MNCs). The relationship between 
NPs and time (year) is analyzed via simple linear 

regression in Statistical Product Service Solutions 20.0 

(SPSS 20.0) and plotted by GraphPad Prism 7.0. The 
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worldwide distribution map of the NPs is plotted in 

R4.2.0 (packages: maps, ggplot). The entry frequency 

threshold of the keyword is 50, and the entry 

frequency threshold of the journal is 20. The tumor 

distribution of copper(II) is calculated based on the 

frequency of the tumor name and the applied cell line 

mentioned in the keywords and plotted by VOS viewer 

16.0. In addition, the keyword distribution is also 

plotted by VOS viewer 16.0. 

 

Cuproptosis in pan-cancer 

 

Data collection 

All expression profiles and clinical data of pan-cancer 

(31 types of cancer: Adrenocortical Carcinoma  

[ACC], Bladder Urothelial Carcinoma [BLCA], Breast 

Invasive Carcinoma [BRCA], Cervical Squamous  

Cell Carcinoma and Endocervical Adenocarcinoma 

[CESC], Cholangiocarcinoma [CHOL], Colon 

Adenocarcinoma [COAD], Lymphoid Neoplasm 

Diffuse Large B-cell Lymphoma [DLBC], Esophageal 

Carcinoma [ESCA], Glioblastoma Multiforme  

[GBM], Head and Neck Squamous Cell Carcinoma 

[HNSC], Kidney Chromophobe [KICH], Kidney  

Renal Clear Cell Carcinoma [KIRC], Kidney Renal 

Papillary Cell Carcinoma [KIRP], Acute Myeloid 

Leukemia [LAML], Brain Lower Grade Glioma 

[LGG], Liver Hepatocellular Carcinoma [LIHC], Lung 

Adenocarcinoma [LUAD], Lung Squamous Cell 

Carcinoma [LUSC], Mesothelioma [MESO], Ovarian 

Serous Cystadenocarcinoma [OV], Pancreatic 

Adenocarcinoma [PAAD], Pheochromocytoma and 

Paraganglioma [PCPG], Prostate Adenocarcinoma 

[PRAD], Rectum Adenocarcinoma [READ], Sarcoma 

[SARC], Skin Cutaneous Melanoma [SKCM], 

Stomach Adenocarcinoma [STAD], Testicular Germ 

Cell Tumors [TGCT], Thyroid Carcinoma [THCA], 

Thymoma [THYM], Uterine Corpus Endometrial 

Carcinoma [UCEC], Uterine Carcinosarcoma [UCS], 

Uveal Melanoma [UVM]) are obtained from TCGA 

(https://portal.gdc.cancer.gov), and data cleaning is 

performed in R4.2.0. The normalized expression 

profile of the pan-cancer is collected from UCSC Xena 

(http://xena.ucsc.edu), and 9593 samples are finally 

included. Breast cancer gene expression profiles are 

collected from Gene Expression Omnibus (GEO: 

https://www.ncbi.nlm.nih.gov/geo/), in which 538 

samples with follow-up data are collected from 

GSE20685, GSE58812, and GSE42568. Triple-

negative breast cancer (TNBC) gene expression profile 

is collected from GSE18864, GSE58812, GSE76124, 

GSE83937, and GSE95700 (n=517). 16 independent 

GEO cohorts (GSE5460, GSE12276, GSE27830, 

GSE31448, GSE32646, GSE42568, GSE58984, 

GSE65194, GSE66305, GSE76275, GSE102484, 

GSE129556, GSE146558, GSE147472, GSE167213, 

GSE199135) are merged into a 2953-sample-

constructed verification cohort. Immunohistochemistry 

of CDKN2A in breast cancer tissues is collected from 

The Human Protein Atlas (https://www.proteinatlas. 

org). Cuproptosis-related genes (CRGs) are collected  

from Todd R Golub et al.’s research (PMID: 

 

 
 

Figure 1. Bibliometric analysis process. WOS is used for researching copper(II)-related studies in tumors, using the search strategy “TS= 

(copper OR cuproptosis) AND TS= (cancer OR carcinoma OR neoplasm OR tumor)” for publications from 2011-2021, and only articles are 
collected until April 23, 2022, yielding 7037 articles. 

https://portal.gdc.cancer.gov/
http://xena.ucsc.edu/
https://www.ncbi.nlm.nih.gov/geo/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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35298263, DOI: 10.1126/science.abf0529), including 

CDKN2A (Cyclin-dependent Kinase Inhibitor 2A), 

DLAT (Dihydrolipoamide S-acetyltransferase), DLD 

(Dihydrolipoamide Dehydrogenase), FDX1 (Ferredoxin 

1), GLS (Glutaminase), LIAS (Lipoic Acid Synthetase), 

LIPT1 (Lipoyltransferase 1), MTF1 (Metal-regulatory 

Transcription Factor 1), PDHA1 (Pyruvate Dehydro-

genase α1), PDHB (Pyruvate Dehydrogenase). 

 
Data analysis 

 
Univariate cox regression and expression map 
The prognosis hazard ratio of CRGs in pan-cancer is 

calculated by R4.2.0 using the survival packages; p-

value<0.05 is statistically significant, and the distribution 

map of pan-cancer is plotted by the online tool in 

“OmicShare Tools” (https://www.omicshare.com/tools). 

The different expression genes are gained from Gene 

Expression Profiling Interactive Analysis 2 (GEPIA2, 

http://gepia2.cancer-pku.cn/), with the significance criteria: 

log2FC>1.0 and q-value<0.01. The gene heatmap is 

plotted in OmicShare Tools. 

 
Multivariate cox regression and risk model 

10 CRGs are used to construct multi-gene risk model by 

multivariate cox regression in R4.2.0 (coxph function). 

 
IRGs-based subgroups identification 

ConsensusClusterPlus package in R4.2.0 is used to 

perform consensus clustering analysis, based on the 

CRGs (parameter: maxK=10, reps=50).  

 
CRG-TDGs-based artificial intelligence (AI) modeling 

Simply, the limma package is used to identify CRGs-

related TDGs (48 genes are identified), followed by 

univariate cox regression, and finally 44 prognosis-

related CRG-TDGs are identified. Then, artificial 

intelligence (AI) is used to construct and train the 

model, in which six AI functions are applied, including 

K-Nearest Neighbor (KNN, kknn package), extreme 

gradient boosting (XGboost, xgboost package), multi-

logistic (nnet packages), support vector machine (SVM, 

e1071 packages), random forest (RF, randomForest 

package), and deep learning (DL, h2o package). In 

model construction, 75% samples in cohort are selected 

as the training cohort randomly, and the last one is 

testing cohort. Gene expression is standardized to a 

range of “0~1” with preProcess function (caret and 

tidyverse packages). The parameters and of AI and their 

codes are listed in supplementary-1 (AI_code.R). 

 
Drug sensitivity prediction 

Drug sensitivity prediction is performed with genome 

by the oncoPredict package in R4.2.0, which is used in 

the previous study [22, 23]. 

Biological experiments 

 

Clinical sample collecting 

50 breast cancer and 21 para-tumor slides are collected 

from patients who underwent surgery in the department 

of breast surgery of The First Affiliated Hospital  

of Anhui Medical University from February 2022  

to December 2022. All of the above experiments are 

approved by the Medical Ethics Committee of The First 

Affiliated Hospital of Anhui Medical University. All 

patients with breast cancer are confirmed by at least  

two pathologists. 

 

Immunohistochemistry 

Procedure of immunohistochemistry (IHC) for CDKN2A 

expression level are performed as previously described 

(PMID: 23200678 and 20571492). Simply, the work 

concentration of antibody against CDKN2A (GB111143, 

Servicebio, China) is 1:100. The protein expression level  

is assessed by Mean of Integrated Option Density  

(IOD) with Image-ProR Plus. Briefly, all of the 

immunohistochemical sections are photographed for 

three yields in the same standard, and then select Area  

of Interesting (AOI) and detect IOD to gain the Mean  

of IOD (IOD/AOI, MI). Finally, CDKN2A expression 

level is divided into a high and low group according  

to the Mean of MI. 

 

Statistical analysis 

 

All data analyses are performed in R4.2.0, amongst 

which Pearson’s test and Wilcox rank sum test and 

Kruskal Wallis rank sum test are used for calculating 

the correlation between different genes and assessing 

differences for continuous variables, respectively. 

Univariate cox regression is performed to calculate the 

hazard ratio (HR) and the log-rank test is used to 

compare survival differences. Receiver operating 

characteristic (ROC) curves and the AUC value is 

performed by pROC package in R4.2.0. GO and KEGG 

analyzes are performed by clusterProfiler package in 

R4.2.0. P<0.05 is considered to indicate a statistically 

significant difference. 

 

Data availability statement 

 

The original contributions presented in the study are 

included in the article Supplementary Material. Further 

inquiries can be directed to the corresponding authors. 

 

RESULTS 
 

We explore the correlation between cuproptosis and 

tumor immunity evasion, and further uncover the  

effects of cuproptosis-related genes in predicting tumor 

prognosis and chemotherapy sensitivity in pan-cancer. 

https://www.omicshare.com/tools
http://gepia2.cancer-pku.cn/
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Overview of research status and tumor distribution 

of copper (II)-related studies 

 

The literature retrieval process is conducted until April 

23, 2022, and the number of publications (NPs) from 

2010 to 2021 is quantified, yielding 7037 articles 

which meet the inclusion criteria (Figure 1). We 

analyze the worldwide distribution of publications, 

which showed that CHINA (n=2209, 31.4%), USA 

(n=114, 16.3%), and INDIA (n=1057, 15.0%) are the 

most prolific countries (Figure 2A). Analysis of the 

mean number of citations (MNCs) shows SLOVENIA 

(MNCs=38.3) make the most impact in copper(II)-

related research, while the USA, CHINA, and INDIA 

ranked 4th, 18th, and 24th, respectively, in contributing 

to copper(II)-related research (Figure 2B). In addition, 

the Journal of Inorganic Biochemistry held the most 

publications on copper(II)-related studies (Table 1). In 

addition, the top 10 prolific organizations are 

calculated, and results show that University of the 

Chinese Academy of Sciences (NPs= 61, MNCs=55.3) 

make the most impact in copper(II)-related research, 

and the Chinese Academy of Sciences (NPs= 211, 

MNCs=39.3) is the most prolific (Table 2). Besides, 

Duke University ranked second in making an impact in 

copper(II)-related research, and Aligarh Muslim 

University (NPs=106, MNCs=24.7) ranks second in 

NPs (Table 2). Annual publication analysis shows  

that NPs increasing in a linear model (R2 = 0.978, 

P<0.0001) (Figure 2C). Moreover, the frequency  

of copper(II)-related studies in various tumors is 

calculated by the frequency of tumor name and cell 

line in the keywords. Results show that breast cancer 

(n=450, 33.4%) is the most researched topic associated 

with copper(II), which is followed by lung (n=174, 

12.9%), prostate (n=143, 10.6%), and liver (n=136, 

10.1%) cancers (Figure 2D). Keyword statistics 

showed that “copper(II) (n=1627), cancer (n=1591), 

copper(II) complexes (n=883), cytotoxicity (n=830), 

apoptosis (n=702), in-vitro (n=672), crystal-structure 

(n=636), metal-complexes (n=536), oxidative stress 

(n=528), and DNA-banding (n=424)” are top 10 most 

researched fields (Figure 2E). 

 

Expression and prognosis hazard of CRGs in  

pan-cancer 

 

To learn the effects of CRCGs in cancers, we explored 

the expression features and prognosis hazard ratio (HR) 

in pan-cancer. As the results show in Figure 3A, 

 

 
 

Figure 2. Research status and publication trend of copper(II)-related studies. (A) Analysis of the worldwide distribution of 

publications showed China, India and USA are the most prolific countries. (B) Analysis of the mean article citations in the most prolific 20 
countries showed the USA made the most significant impact in copper(II)-related research. (C) A linear relationship is found between NPs and 
time (R square = 0.9781, p<0.0001). (D) Copper(II)-related studies distribution in pan-cancer showed breast cancer, lung cancer and prostate 
cancer are the top 3 research fields. (E) Keywords distribution. 
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Table 1. The top 10 most prolific journals on copper(II)-related publication. 

Rank Journal NPs NCs MNCs IF (2020) 

1 J INORG BIOCHEM 213 4862 22.8 4.155 

2 DALTON T 175 5377 30.7 4.390 

3 INORG CHIM ACTA 145 2051 14.1 2.545 

4 J MOL STRUCT 143 1768 12.4 3.196 

5 RSC ADV 136 2355 17.3 3.361 

6 APPL ORGANOMET CHEM 131 1163 8.9 4.105 

7 EUR J MED CHEM 111 4233 38.1 6.514 

8 NEW J CHEM 99 1301 13.1 3.591 

9 POLYHEDRON 92 1517 16.5 3.052 

10 MOLECULES 81 839 10.4 4.411 

All journals (entry frequency threshold = 20) are ranked, and the most prolific 
journal is J INORG BIOCHEM (NPs=213, MNCs=22.8, IF=4.155). 

 

Table 2. The top 10 most prolific organizations. 

Rank Organization Country NPs NCs MNCs 

1 CHINESE ACAD SCI CHINA 211 8294 39.3 

2 ALIGARH MUSLIM UNIV INDIA 106 2622 24.7 

3 GUANGXI NORMAL UNIV CHINA 84 1537 18.3 

4 KING SAUD UNIV SAUDI ARABIA 84 1897 22.6 

5 UNIV LISBON PORTUGAL 81 1512 18.7 

6 SUN YAT SEN UNIV CHINA 70 1523 21.8 

7 NANJING UNIV CHINA 67 1297 19.4 

8 UNIV CHINESE ACAD SCI CHINA 61 3374 55.3 

9 UNIV SAO PAULO BRIZAL 60 733 12.2 

10 SHANGHAI JIAO TONG UNIV CHINA 58 1697 29.3 

All organizations (entry frequency threshold = 20) are ranked, and the most prolific organization is 
CHINESE ACAD SCI (NPs=211, MNCs=39.3). 

 

CDKN2A has prognostic significance in 6 types of 

cancer (ACC, COAD, KICH, KIRC, LIHC, THCA, 

UCEC), and DLAT, DLD, FDX1, GLS, LIAS, LIPT1, 

MTF1, PDHA1 and PDHB have different prognosis 

significance in pan-cancer (Figure 3A). ANOVA 

analysis result of differential expression levels in pan-

cancer performed in GEPIA2 are shown in Figure  

3B, with a threshold of p<0.01 and logFC≥1. 

 

CRGs-based multi-gene risk-score in pan-cancer 

 

CRGs-based Multi-gene Risk-score (CRGScore) is not 

significant in DLBC, OV, PCPG, and TGCT (Figure  

4, P>0.05), while a relatively good performance of  

the CRGScore is observed in ACC (C-index=0.739, 

P=8.25e-05), KICH (C-index=0.851, P=3.78e-05), KIRP 

(C-index=0.724, P=6.73e-07), THCA (C-index=0.795, 

P=4.58e-06), and UVM (C-index=0.833, P=1.30e-07). 
Moreover, different CRGs are used to construct the  

risk-score model in ACC (CDKN2A, DLAT, and 

PDHA1), KICH (CDKN2A, DLD, GLS, LIPTA, and 

PDHA1), KIRP (DLAT, GLS, and PDHA1), THCA 

(CDKN2A, DLD, LIAS, PDHA1, and PDHB), and 

UVM (DLD, LIAS, MTF1, and PDHB). Kaplan-Meier 

(K-M) analysis shows that a higher CRGScore predicts a 

worse prognosis in ACC, KICH, KIRP, THCA, and 

UVM (Figure 5A). Besides, ROC analysis assessed the 

efficiency of CRCGScore in predicting prognosis. The 

results show that ROC values for survival at 1, 3, and 5 

years are 0.56, 0.79, and 0.80 in ACC, 0.92, 0.86, and 

0.86 in KICH, 0.80, 0.71, and 0.66 in KIRP, 0.81, 0.76, 

and 0.81 in THCA and 0.94, 0.87, and 0.74 in UVM, 

respectively (Figure 5B). 

 

Identification of CRG subgroups and features in 

pan-cancer 

 

The results display that four groups are the best division 

strategy (Figure 6A, 6B), and the clustering is observed 
obviously (Figure 6C, 6D). Besides, the proportion of 

pan-cancer in each subgroup is significantly different 

(Figure 6E). At the same time, the proportion of sub-
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groups in different single tumor types is also different 

(Figure 6F). Then, features of CRG subgroups are 

explored. As the Figure 7A shows, CSG4 holds highest 

score of stromalscore, immunescore and estimatescore 

(p<2.2e-16, Figure 7A). Kaplan-Meier analysis shows 

higher immunescore with better prognosis (p<0.0001, 

Figure 7B). Following, immune cells infiltration in tumor 

tissues is explored, and the results showed that immune 

cells are differently infiltrate in four CRG subgroups 

(Figure 7C). Then, CRGs-related genes are put into 

KEGG and GO analysis to further unclear the roles  

of cuproptosis in regulating tumor immunity. As the 

results show, CRGs-related genes are involved in Drug 

Metabolism, Cytokine-cytokine Receptor Interaction, 

Immune Response, and Inflammatory Response, et al. 

(Figure 7D, 7E). Both of the above molecular pathway 

analyses imply that cuproptosis is related with tumor 

immunity. 

Next, the prognosis differences amongst CRGs are 

explored. As Figure 8A shows, CRGs hold different 

expressions amongst CRG subgroups, especially for 

CDKN2A (Figure 8A). Then, we found there is a 

significant difference in prognosis amongst different 

CRG subgroups (Figure 8B) in pan-cancer, while the 

prognosis differences only appeared in 12 single cancer 

cohorts (CESC, HNSC, KICH, KIRC, LGG, LIHC, 

LUAD, SO, READ, SARC, UCEC, UCS) (Figure 8C). 

 

CRG-TDGs-based AI modeling 

 

With the development of artificial intelligence (AI) in 

medicine, AI is also applied in the identification of tumor 

subgroups, by which a novel assessment of prognosis  

and drug sensitivity is constructed. Therefore, we 

comprehensively assess the AI in identification of CRG 

subgroups in pan-cancer. Firstly, 44 prognosis-related 

 

 
 

Figure 3. Expression distribution and prognosis hazard of CRGs in pan-cancer. (A) CDKN2A has prognostic significance in 6 types 

of cancer; DLAT in 10 types of cancer; DLD in 6 types of cancer; FDX1 in KIRC and LGG; GLS in 4 types of cancer; LIAS in 5 types of cancer; 
LIPT1 in 9 types of cancer; MTF1 in 3 types of cancer; PDHB1 in 7 types of cancer; LIAS in 5 types of cancer; PDHB in 5 types of cancer.  
(B) Differential expression of FDX1 in 7 types of cancer; LISA in DLBC and THYM; LIPT1 in DLBC, GBM, and THYM; DLD in 5 types of cancer; 
GLS in 16 types of cancer; DLAT in 6 types of cancer; PDHB in DLBC, KIRC, PAAD, and THYM; PDHA1 in DLBC, KIRC, LAML, and THYM; MTF1 
in CHOL, LAML, and TGCT; CDKN2A in 27 types of cancer. 
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Figure 4. CRCGs-based multi-gene risk-score. TCGA data are used to construct a multi-gene risk-score model, and C-index is higher than 
0.7 in ACC (HR=1.254[1.121-1.], P=8.25e-05), KICH (HR=1.117[1.060-1.178], P=3.78e-05), KIRP (HR=1.172[1.101-1.248], P=6.73e-07), THCA 
(HR=1.066[1.037-1.095], P=4.58e-06), and UVM (HR=1.157[1.096-1.222], P=1.30e-07). 

 

 
 

Figure 5. Prognosis hazard and assessment efficiency of CRCGs-based multi-gene risk-score. (A) Higher CRCGScore predicted 

worse prognosis in ACC (HR=1.254, P=8.250e-05), KICH (HR=1.117, P=3.780e-05), KIRP (HR=1.172, P=6.730e-07), THCA (HR=1.066, P=4.580e-
06), and UVM (HR=1.157, P=1.300e-07). (B) ROC values for survival at 1, 3 and 5 years 0.56, 0.79, and 0.80 in ACC, 0.92, 0.86, and 0.86 in 
KICH, 0.80, 0.71, and 0.66 in KIRP, 0.81, 0.76, and 0.81 in THCA and 0.94, 0.87, and 0.74 in UVM, respectively. 
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CRGs-related tumor driver genes (CRG-TDGs) are 

screened out, and are put into machine learning. Amongst 

the six types of AI, XGboost holds the best prediction 

efficiency, in which the training AUC is 1.000, and the 

testing AUC is 0.9481 (Figure 9A). In fact, the other four 

AI functions also perform well (Figure 9A). Following, 

prognosis differences amongst subgroups are explored. 

As the results show, prognosis difference exists in each 

AI-identified CRG subgroups (Figure 9B). 

 

In order to decrease the bias caused by gene expression 

features in different cancers, an expression data stan-

dardization is performed, and after which the gene 

expression is adjusted into a range of 0 to 1. Then GEO-

derived breast cancer cohort (n=538) is put into AI-

driven CRG subgroup identification. Figure 9C, 9D 

show the expression feature of CRG-TDGs amongst 

CRG subgroups in breast cancer. Figure 9E shows 

prognosis significance of CRG-TDGs in each identified 

CRG subgroup in breast cancer. Following, immune 

cell infiltration is explored, and the result is showed  

in Figure 9F. Finally, Kaplan Meier (K-M) analysis 

showed there is a significant difference of prognosis 

amongst CRG subgroups (p=0.049, Figure 9G). 

 

CRG-TDGs-based prognosis prediction model 

 

Firstly, LASSO analysis is performed to narrow the 

number of selected CRG-TDGs (Figure 10A). Then 

multivariate cox regression is performed to construct a 

multi-genes risk model, and the results display that  

the C-index of the risk model is 0.7 (p=6.95832e-12, 

Figure 10B). K-M and univariate cox regression analysis 

show that risk model identifies hierarchical prognosis 

 

 
 

Figure 6. CRG subgroups identification in pan-cancer. Based on (A) delta area and (B) consensus CDF, clustering analysis divided pan-
cancer into (C) four groups, which are renamed CSG1 (green), CSG2 (purple), CSG3 (orange), and CSG4 (blue). (D) Co-PCA analysis displayed 
sample disturbance amongst four CRG subgroups. (E) Cancer-type disturbance in the subgroup and (F) subgroup disturbance in single cancer 
type are explored. 
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risk (HR=1.376[1.298-1.568], log-rank p<2e-16, K-M 

p<0.0001, Figure 10C). Gene expression feature is also 

displayed (Figure 10D). In order to assess the prediction 

efficiency of risk model, receiver operating characteristic 

curve (ROC) is performed, and results show that the 

AUC value of 1-year survival, 3-year survival, 5-year 

survival, and 7-year survival is 0.80, 0.72, 0.75, and 0.76 

in GEO cohort, while it is 0.59, 0.63, 0.65 and 0.65 in 

 

 
 

Figure 7. Tumor immunity and pathway features of CRG subgroups. (A) Stormalscore, immunescore, and estimatescore are 

predicted in R4.2.0. (B) K-M analysis showed the effect of immunescore on prognosis in pan-cancer. (C) Immune cell infiltration in CRG 
subgroups, including innate immunity and adjust immunity. (D) KEEG and (E) GO analysis showed CRG-related-genes-related molecular 
pathways. 
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TCGA cohort (Figure 10E, 10F). To further develop  

the nomogram, clinical characteristics are put into 

analysis. As Figure 10G shows, the N stage, T stage, and 

M stage are all risk factors in breast cancer (p<0.001, 

Figure 10G). Therefore, the N stage, T stage, M stage, 

and risk-score are selected to construct a new nomogram 

(C-index=0.77, p=1.9034e-16, Figure 10H), which is 

displayed in Figure 10I. And ROC analysis shows that 

the AUC value of 1-year survival, 3-year survival, 5-

year survival, 7-year survival, and 10-year survival is 

0.62, 0.84, 0.82, 0.80, and 0.80 in the GEO cohort,  

while it is 0.70, 0.72, 0.71, 0.66 and 0.66 in the TCGA 

cohort (Figure 10J, 10K). Finally, calibration analysis  

is performed, and the results show that GEO-based 

NOMOGRAM has appreciable efficiency in predicting 

breast cancer prognosis (Figure 10L). 

 

CRG-TDGs-based AI model predicted drug sensitivity 

 

To our knowledge, tumor immune cell infiltration is 

reported to be involved in tumor drug therapy sensitivity. 

Here, we find CRG subgroup division identified different 

tumor immunizations, including NK cell infiltration,  

T cell infiltration, macrophage cell infiltration, et al. 

(Figure 9F). Therefore, the CRG subgroup division may 

be linked to drug sensitivity. We use the OncoPredict 

package in R4.2.0 to assess the drug score in each single 

breast cancer sample. As the Figure 11A shows, the trend 

of different drugs score is almost similar in the GEO 

breast cancer cohort (n=538, p<0.05, Figure 11A). In the 

TCGA breast cancer cohort (n=1089), the same trend of 

the drug score is observed (p<0.001, Figure 11B), while 

in the TNBC cohort (from GEO, n=517), we find a same 

trend of the drug score in DTX, PTX, GEM, and 

Cisplatin (p<0.001, Figure 11C). In the following further 

verification cohort (combined with 16 independent GEO 

breast cancer cohorts, n=2953), we find the trend of the 

drug score is also similar (p<2e-16, Figure 11D). 

 

CDKN2A implies malignant subtypes and regulates 

drug sensitivity in breast cancer 

 

In order to identify the pivotal genes in regulating CRG 

subgroup division and tumor-immunity-mediated drug 

sensitivity change, an importance analysis is performed, 

and it shows CDKN2A is the most important gene 

(Figure 12A). As previous studies reported, CDKN2A-

mediated molecular subtypes identified drug sensitivity 

differences in afatinib, erlotinib, and lapatinib, and  

the higher expression of CDKN2A implied worse out- 

comes and molecular subtypes in breast cancer. In fact, 

CDKN2A overexpressed in 33 of 34 types of cancers, 

including breast cancer (Figure 12B). In order to further 

verify this phenotype, we collected IHC data from THPA 

(The Human Protein Atlas, https://www.proteinatlas.org), 

and the results show that CDKN2A is higher expressed in 

breast cancer tissues (Figure 12C). In metastasis breast 

cancer cohort, we find CDKN2A also overexpressed  

in breast cancer tissues, especially in malignant sub- 

types (TNBC) (Figure 12D). Collectively, in local breast 

 

 

 

Figure 8. Expression profiles and prognosis features of CRG subgroups. (A) Expression profile of 10 CRGs in CRGs. (B) Prognosis 

differences of CRG subgroups. (C) CRG subgroup division identified the prognosis differences in single cancers, including CESC, HNSC, KICH, 
KIRC, LGG, LIHC, LUAD, MESO, READ, SARC, UCEC, and UCS. 

https://www.proteinatlas.org/
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cancer cohort, we found CDKN2A also overexpress  

in breast cancer tissues (Figure 12E and Table 3). 

Meantime, patients with the higher expression level  

of CDKN2A accompanied with worse clinical stage  

(p= 0.0206, Table 3). However, although above results 

implied CDKN2A is an oncogene in breast cancer,  

the expression level of CDKN2A is negatively related 

with drug score (CTX, DTX, PTX, DDP, and TAM) 

(Figure 12G). 

 

CDNK2A mutation-mediated up-regulation of 

MAGEA families lead to drug resistance 

 

To our knowledge, CDKN2A is a cell cycle inhibitor, 

and it participated P53 pathway to regulate cell 

apoptosis and drug sensitivity [24]. However, as an  

anti-tumor factor, CDKN2A is up-regulated in various 

types of cancers (31 types of cancers, Figure 12B).  

As previous studies show, a high expression level of 

CDKN2A accompanied by the high level of methylation 

of itself, and the latter one is related with the high level  

of DNA hypermethylation, which promoted initiation  

of oncogenesis [25]. Except for epigenetic changes-

mediated oncogenesis of CDKN2A, CDKN2A mutation-

mediated drug resistance is also needed to be explored  

in oncogenesis and drug resistance. As the Figure 13A 

shows, the alteration of CDKN2A implies malignant  

type (TNBC) of breast cancer, while the unalteration  

of CDKN2A implies mild subtype (LumA) of breast 

cancer (p= 5.44e-5, Figure 13A). To further explore  

 

 
 

Figure 9. Artificial intelligence identified CRG subgroups. (A) Processing of identifying 44 target genes, and they are put into AI 
training. In this part, 75% of pan-cancer data are defined as a training cohort, while the last 25% is defined as a testing cohort. Six types of AI 
functions are performed, including XGboost, RandomForest, Deep-Learning, SVM, Multi-logistics, and KNN. (B) Prognosis differences amongst 
CRG subgroups which are identified by AI. Then, the GEO breast cancer cohort (GSE58812, GSE42568, GSE20685, n=538) is divided into four 
CRG subgroups by XGboost, and here displayed 44-gene expression profile (C) and its disturbance differences (D) (the representatives 
selected in the black box have statistical differences). Single-gene-mediated prognosis signature is explored (E). CIBERSORT explored immune 
cell infiltration features in CRG subgroups (F), in which the representatives selected in the black box have statistical differences. (G) K-M 
analysis showed prognosis differences amongst four CRG subgroups in breast cancer. 
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the mechanism of CDKN2A-mediated oncogenesis, we 

explore the expression level of CDKN2A in regulating 

genomic alteration. As results showed, the higher 

mutation level of P53 appears in the CDKN2A over-

expression group (p=7.4e-16, Figure 13B). Following, 

we explore gene expression features in the CDKN2A 

mutation group. As the results showed, among the  

top ten genes with the most obvious expression change, 

the MAGE-A family gets our attention. MAGEA2, 

MAGEA3, MAGEA4, MAGEA6, and MAGEA12 are 

up-regulated in the CDKN2A alteration group, amongst 

which MAGEA3 (HR=1.61[1.27-2.04], p=8.2e-5), 

MAGEA4 (HR=1.38[1.08-1.77], p=0.011), and 

MAGEA12 (HR=1.65[1.10-2.48], p=0.015) are 

accompanied by worse prognosis in breast cancer 

(Figure 13C–13E). Then, MAGEA2, MAGEA3, 

MAGEA4, MAGEA6, and MAGEA12 are used to con-

struct a multi-gene risk model, which shows higher risk is 

accompanied by worse prognosis (p=0.028, Figure 13F). 

 

In order to uncover the mechanisms of MAGE-A family-

mediated drug resistance in the CDKN2A pathway, we 

make a literature review firstly. To our knowledge, 

CDKN2A participate in P53-mediated cellular cycle 

 

 
 

Figure 10. CRG-TDGs-based nomogram construction. (A) LASSO analysis. (B) Multivariate cox regression selected ARID1A, ARID1B, 
BCLAF1, BRCA2, CDK12, CDKN2A, DICER1, INO80, NPRL2, PRDM2, RBM10, TRAF3, TRIM33, and TRIP11 to construct multi-gene risk model, of 
which the C-index is 0.7 (log-rank p=6.9582e-12). (C) K-M analysis showed the prognosis difference between the high-risk group and the low-
risk group, and (D) the gene expression profile is also explored. ROC analysis is performed to assess the prediction efficiency of the risk model 
in (E) the GEO cohort and (F) the TCGA cohort. (G) Univariate cox regression displayed that T stage, N stage, and M stage are all prognosis-
related factors in the GEO breast cancer cohort, while (H) multivariate cox regression displayed only T stage, N stage, and risk-score are 
prognosis-related factors. (I) The multivariate cox regression model visualization display. ROC analysis is performed to assess the prediction 
efficiency of the nomogram in (J) the GEO cohort and (K) the TCGA cohort. (L) Calibration of GEO-based NOMOGRAM. 
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regulation in the normal status of CDKN2A, while its 

mutation is accompanied by dysfunction of anti-tumor 

pathways. CDKN2A-mutation un-regulates MAGE-A 

family, such as MAGEA2/3/4/6/12 (Figure 13H). 

MAGEA12 is reported to promote the expression of 

MAGEA2 and MAGEA3; The higher expression of 

MAGEA3 is reported to be accompanied by up-regulated 

expression and activity of ERα, which further leads 

tamoxifen resistance in breast cancer. And MAGEA3  

is reported to up-regulate the expression of survivin in 

P53-dependent and independent ways, and the latter one 

induced chemotherapy resistance, endocrinal therapy 

 

 

 

Figure 11. Drug sensitivity prediction in CRG subgroups. The OncoPredict function in R4.2.0 is performed to predict drug scores in four 

cohorts, and they are the (A) GEO breast cancer cohort (combined with GSE20685, GSE58812, GSE42568; n=538), (B) the TCGA breast cancer 
cohort (n=1089), (C) the GEO TNBC cohort (combined with GSE18864, GSE58812, GSE76124, GSE83937, GSE95700; n=517), and (D) the large 
GEO breast cancer cohort (combined with 16 independent cohorts; n=2953). 
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failure, and her2-target therapy tolerance in breast cancer 

[26–28]. Besides, MAGEA3 promotes MAGEA2-

mediated P53 inactivation (deacetylation of P53). 

MAGEA2 is another important regulator in CDKN2A-

mutation-mediated drug resistance. MAGEA2 is reported 

to promote phosphorylated activation of MAPK, which  

is the upstream of ERα to activate it. What more, the 

MAGE-A family is reported to interact with TRIM28  

to initiate ubiquitous degradation of AMPK, followed  

by the progression of oncogenesis. 

 

Inhibition of CDKN2A/MAGEA4 blocks EMT and 

immunity escape 

 

In order to verify the regulation effects of 

CDKN2A/MAGEA4 in breast cancer progression,  

in vitro experiments are performed. As Figure 14A,  

14B show, down-regulation of CDKN2A or MAGEA4 

inhibits cell migration in wound healing assay and 

transwell assay. To further uncover the potential mole-

cular mechanisms, small interfere RNA (siRNA) is  

used to decrease the expression of CDKN2A in TNBC 

cell lines. As the Figure 14C shows, down-regulation of 

CDKN2A decreases the expression of EMT markers, 

such as Snail1, Zeb1, Twist1 and MMP9, while E-cad  

is up-regulated. In Figure 14D, down-regulation of 

CDKN2A decreases the expression of phosphorylated 

STAT3, MAGEA4, Caspase3 and PD-L1, while cleaved-

csapase3 is increased. 

 

DISCUSSION 
 

Copper chelation as targeted therapy has been considered 

an antitumor therapy before the discovery of cuproptosis. 

However, no consensus has been achieved on the 

underlying mechanisms. On the one hand, it has been 

proposed that this approach leads to the depletion of 

intramitochondrial copper, given the pivotal role of 

 

 
 

Figure 12. The roles of CDKN2A in oncogenesis and drug sensitivity. (A) Importance analysis displayed CDKN2A ranked top 1 in 
XGboost-mediated CRG subgroup identification. (B) The expression level of CDKN2A in pan-cancer. (C) IHC of CDKN2A in the breast cancer 
tissues and adjacent tissues (THPA: https://www.proteinatlas.org). (D) The mRNA expression level of CDKN2A in subtypes of breast cancer 
(UALCAN: http://ualcan.path.uab.edu/tutorial.html). (E) IHC of CDKN2A from local breast cancer. (F) The relationship between CDKN2A and 
clinical stage. (G) The relationship between drug score and the expression of CDKN2A. 

https://www.proteinatlas.org/
http://ualcan.path.uab.edu/tutorial.html
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Table 3. The correlation between CDKN2A expression and 
clinical characteristics. 

Item 
CDKN2A Expression Level 

P value 
High (n=25) Low (n=25) 

IOD 23.26±17.84 15.56±11.47 0.0302* 

Clinical Stage 

I 4 13 

0.0206* II 13 9 

III 8 3 

Samples are grouped into high-expression and low-expression group by 
the level of CDKN2A. 

 

copper in the construction of PDH in the TCA cycle.  

On the other hand, this approach may be conducive to 

intracellular copper overload, given the well-documented 

role of copper in producing ROS. A bibliometric analysis 

of copper(II)-related research found that copper is widely 

applied in anti-tumoral nanoparticles, including copper-

containing compounds and complexes capable of binding 

copper. With mounting studies gradually uncovering  

the role of copper-induced cell death, simple intracellular 

overload of free copper (II) has emerged as a new 

antitumor strategy, which is verified by Todd R Golub  

et al.’s research using CuCl2. 

 

 
 

Figure 13. CDKN2A-mutation/MAGE-A regulated oncogenesis and drug resistance. (A) Subtype disturbance of breast cancer in 
CDKN2A altered group and unaltered group. (B) Differences of genomic mutation status between the high and low expression of CDKN2A.  
(C) Volcano plot of gene disturbance in CDKN2A altered and unaltered groups. (D) The top 15 different genes, amongst which MAGEA3, 
MAGEA4, MAGEA12, and CSAG3 are risk factors in breast cancer, while MMP1 and CA9 are protective factors in breast cancer. (E) The 
expression of the MAGE-A family in CDKN2A altered and unaltered groups. (F) K-M analysis of MAGE-A family-constructed multi-gene risk 
model. (G) Molecular network of MAGE-A family. (H) CDKN2A-mutation/MAGE-A family pathway on oncogenesis and drug resistance. 
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Since Todd R Golub et al.’s research is published, the 

copper-induced injury is defined as a novel form of 

metal ions-induced mitochondrial cell death, independent 

of ferroptosis, which is hence named cuproptosis. During 

mitochondrial respiration, inactive pyruvate dehydro-

genase complex (PDH) subunits (DLAT, GCSH, DBT, 

and DLST) are lipoylated by lipoylation enzymes LIAS, 

LIPT1/2, and DLD to transit to active PDH, and promote 

the TCA cycle. With the overloading of intracellular 

copper, lipoylation enzymes are inactivated by direct 

binding of copper, which results in aggregation-induced 

inactivity of lipoylation protein and destabilization of 

iron-sulfur cluster proteins. Finally, toxicity overload 

leads to cell death [19]. In the above study, FDX1, 

LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, 

GLS, and CDKN2A are identified as the core genes to 

regulate cuproptosis by genome-wide CRISPR-Cas9 

loss-of-function screen, amongst which FDX1 is the 

pivotal up-stream regulator of lipoylation enzymes,  

and determined cell fate upon intracellular copper 

overload [19]. Based on the above research, cuproptosis 

showed the importance of copper metabolism tumor 

development and supplied a novel strategy for anti-

tumor therapy. 

 

Recently, tumor immunity is developing into a  

pivotal research branch in the antitumor field. To our 

acknowledgment, copper also played a role in tumor 

immunity. Florida Voli et al.’s research showed that  

the increase of intracellular free copper(II) promoted 

phosphorylation of STAT3 and EGFR, which further 

maintained the expression level of PD-L1; Besides, 

tumor-infiltrating CD8+ T and NK cells are decreased 

by adding exogenous copper [29]. In Li X et al.’s study, 

increased intracellular copper(II) stabilized XIAP (E-3 

ligase), and further enhanced IL17-mediated inhibition 

of apoptosis by activating the NF-κB pathway. Besides, 

copper-induced persistent inflammation promoted colon 

tumorigenesis [30]. Simply, it implied that copper is a 

regulator of tumor immunity evasion. Cuproptosis is a 

manifestation of copper metabolism, and cuproptosis-

related proteins can regulate intracellular copper  

levels. Therefore, previous studies also concentrated  

on this problem. Qiang song et al. used CRGs to 

construct the multi-gene risk model, and the risk  

score identified T cells and dendritic cell infiltration 

differences in bladder cancer [31]. In fact, CRGs-based 

multi-gene risk models are constructed in multiple 

cancers, such as glioma, lung cancer, osteosarcoma, 

colorectal cancer, etc., and all of those studies displayed 

that cuproptosis is closely related to tumor immunity 

[32–35]. Here, we divided pan-cancer into four subtypes 

by CRGs-based clustering function in R4.2.0, and with 

the help of CIBERSORT in predicting immune cell 

 

 
 

Figure 14. Inhibition of CDKN2A weakens tumor metastasis and immune escape in breast cancer. (A) Wound healing assay and 
(B) transwell assay show down-regulation of CDKN2A or MEGEA4 inhibits the cell migration ability. (C) WB detection shows down-regulation 
of CDKN2A decreases the expression level of ZO1, MMP9, VIM, Twist1, Snail1, and Zeb1, while E-cad is up-regulated. (D) Down-regulation of 
CDKN2A decreases the expression of MAGEA, Cas3, c-cas4, p-STAT3 and PD-L1, while c-cas3 is up-regulated. 
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infiltration, we found the differences of stromalscore, 

immunescore, and estimatescore amongst subtypes in 

pan-cancer (Figure 7A). In addition, the immune cell 

infiltration ratio displayed differences amongst CRG 

subgroups (Figure 7C), and enrichment analysis also 

showed that CRGs-related genes are involved in 

immunity-related molecular pathways, such as Cytokine-

cytokine Receptor Interaction, Immune Response, and 

Inflammatory response (Figure 7D, 7E). 

 
Although CRGs-based hierarchical risk implied 

different sensitivity of tumor immunity therapy, the 

CRGs-based risk model is not given much attention  

in predicting chemotherapy sensitivity, especially AI-

based drug sensitivity subtype identification. With the 

construction of the Genomics of Drug Sensitivity in 

Cancer (GDSC) platform and the tumor immune score 

(CIBERSORT, etc.) algorithm, genome-based drug 

sensitivity and immunotherapy sensitivity prediction are 

emerging. A model based on 9 non-coding RNAs 

associated with epithelial-mesenchymal transition (EMT) 

can predict the prognosis, survival, immune score,  

and drug sensitivity (XELOX) of colorectal cancer  

[36]. In another study, Hang Zheng et al. screened the  

gene set of colon cancer-related tumor fibroblasts by 

analyzing single-cell sequencing data and constructed 

the prognosis model and risk grouping by LASSO 

analysis. The results showed that there are significant 

differences in prognosis, survival, and drug sensitivity 

between different gene expression characteristic groups 

(capecitabine, pazopanib, gemcitabine, sunitinib, etc.) 

[37]. Here, based on AI and drug sensitivity prediction, 

we used CRGs-related tumor driver genes (CRG-TDGs) 

to construct a chemotherapy sensitivity prediction model, 

amongst which XGboost showed the best performance 

(training AUC=1.000, Testing AUC=0.9481, Figure 

9A). Following, we found drug sensitivity ranking is 

CSG1<CSG2<CSR3<CSG4, and this phenotype is 

verified in four different cohorts (n=5097) (Figure 11A–

11D). To our knowledge, this study provided hitherto 

undocumented evidence of cuproptosis-based AI iden-

tifying drug sensitivity stratification in breast cancer. 

 
To further uncover the mechanism of CRGs in 

regulating drug sensitivity and prognosis, we performed 

an importance analysis, which showed that CDKN2A  

is the key gene in CRG subtype identification (Figure 

12A). As the previous studies reported, CDKN2A is  

an unstable gene and appeared alteration in various 

types of cancer, including pancreatic cancer, esophageal 

cancer, head and neck cancer, melanoma, bladder 

cancer, glioma, lung cancers, and etc. al. [38]. And the 

epigenetic (DNA methylation) or genetic (mutation) 

changes of CDKN2A lead to the initiation of ovarian 

cancer and melanoma [39, 40]. What more, CDKN2A 

alteration is reported to be related to immunity therapy 

resistance and small molecular target drug resistance  

in lung cancer, melanoma, and breast cancer [25, 41, 

42]. However, the mechanism of CDKN2A-mutation-

mediated chemotherapy resistance is still not clear. 

Here, we found MAGE-A family is abnormally up-

regulated in the CDKN2A alteration group (Figure 

13C–13E). To our knowledge, the MAGE-A family is 

an oncogene in various cancers, and it is verified to 

decrease the phosphorylated activity of P53 to promote 

tumor progression and drug resistance [43–45]. In 

breast cancer, it is verified that overexpression of 

MAGEA2 and MAGEA3 enhanced the activity of  

ERα, by which it leads to tamoxifen resistance [46]. In 

addition, the MAGE-A family enhanced the activity of 

MAPK and Survivin, both of which are wildly reported 

to promote drug resistance and cancer progression in 

breast cancer [26–28, 47–50]. Therefore, it implied that 

expression change of the MAGE-A family is the result 

of CDNK2A mutation, and it also is a novel mechanism 

of CDNK2A-mutation-mediated drug sensitivity in 

breast cancer. 

 

Although, the detail of CDKN2A-mutation-mediated 

up-regulation of the MAGE-A family is not clear, and 

more work is necessary to uncover the mechanisms. 

 

CONCLUSIONS 
 

This study explored the roles of cuproptosis- 

related genes in tumor prognosis and tumor immunity, 

and some interesting phenotypes are observed: 1. 

Cuproptosis-related genes identified subtypes of pan-

cancer, and it implied different clinical outcomes; 2. 

Artificial intelligence constructed an efficient model to 

identify drug sensitivity subtypes in breast cancer; 3. 

CDKN2A has a pivotal role in subtype identification, 

and CDKN2A-mutation-mediated malignant subtype 

and drug resistance are related to the up-regulation  

of the MAGE-A family. However, further work is still 

needed to totally uncover the mechanisms of CDKN2A-

mutation-mediated up-regulation of the MAGE-A family. 
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Supplementary Table 

 

 

 

Supplementary Table 1. The abbreviation list. 

Total names Abbreviation 

Adrenocortical Carcinoma ACC 

Bladder Urothelial Carcinoma BLCA 

Breast Invasive Carcinoma BRCA 

Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma CESC 

Cholangiocarcinoma CHOL 

Colon Adenocarcinoma COAD 

Lymphoid Neoplasm Diffuse Large B-cell Lymphoma DLBC 

Esophageal Carcinoma ESCA 

Glioblastoma Multiforme GBM 

Head and Neck Squamous Cell Carcinoma HNSC 

Kidney Chromophobe KICH 

Kidney Renal Clear Cell Carcinoma KIRC 

Kidney Renal Papillary Cell Carcinoma KIRP 

Acute Myeloid Leukemia LAML 

Brain Lower Grade Glioma LGG 

Liver Hepatocellular Carcinoma LIHC 

Lung Adenocarcinoma LUAD 

Lung Squamous Cell Carcinoma LUSC 

Mesothelioma MESO 

Ovarian Serous Cystadenocarcinoma OV 

Pancreatic Adenocarcinoma PAAD 

Pheochromocytoma and Paraganglioma PCPG 

Prostate Adenocarcinoma PRAD 

Rectum Adenocarcinoma READ 

Sarcoma SARC 

Skin Cutaneous Melanoma SKCM 

Stomach Adenocarcinoma STAD 

Testicular Germ Cell Tumors TGCT 

Thyroid Carcinoma THCA 

Uterine Corpus Endometrial Carcinoma UCEC 

Uterine Carcinosarcoma UCS 

Uveal Melanoma UVM 

Cuproptosis-based subgroup CSG 

Artificial intelligence AI 

Least Absolute Shrinkage and Selection Operator LASSO 

Receptor operation curve ROC 

The Cancer Genome Atlas TCGA 

Gene Expression Omnibus GEO 

The University Alabama at Birmingham Cancer data analysis Portal UALCAN 

The Human Protein Atlas THPA 

Immunohistochemical staining IHC 

Matrix metalloproteinase 9 MMP9 

vimentin VIM 

E-cadherin E-cad 
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Support Vector Machine SVM 

Extreme Gradient Boosting XGboost 

Deep learning DL 

Simple sample Gene Set Enrichment Analysis ssGSEA 

Alternatively activated macrophages M2 

Classical activated macrophages M1 

CD4 T memory CD4 Tm 

CD4 T naive CD4 Tn 

CD4 T central memory CD4 Tcm 

CD4 T effective memory CD4 Tem 

CD4 T central memory CD4 Tcm 

CD4 T effective memory CD4 Tem 

 


