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INTRODUCTION 
 

Renal cell carcinoma (RCC) is a globally endemic 

cancer and the sixth most common malignancy in  

the United States, occurring in approximately 5% men 

and 3% women in the United States [1, 2]. The most 

common subtype of RCC is kidney renal clear cell 

carcinoma (KIRC), accounting for approximately 75% 

of all kidney cancers. When one kidney is damaged, 

both kidneys compensate for the damage; therefore, the 

loss of kidney function is often not detected at an early 

stage. Therefore, in terms of cancer development, about 

one-third of RCC patients present with metastases in 
addition to typical symptoms such as pain, lumps, and 

hematuria, this limits surgical treatment options [3, 4]. 

Despite early surgical treatment, up to 30% of patients 

develop recurrence and metastasis after surgery. Patients 

with advanced KIRC also have a poor prognosis due to 

their insensitivity to radiotherapy, chemotherapy, and 

drug resistance. This results in lower survival rates for 

patients with KIRC, with 5-year survival rates of only 

10–20%. Therefore, owing to the dual difficulties in 

diagnosis and treatment, there is an urgent need to 

explore new therapeutic targets and prognostic markers 

for KIRC [5–7]. 

 

NF-κB was first described in 1986 when a “B cytokine” 

was discovered in the B cells that bind to a site 

encoding the enhancer region of the immunoglobulin 

kappa light chain gene and exerts biological effects. 

Nuclear factor kappa B (NF-κB) is a family of five 

transcription factors, including NF-κB1, NF-κB2, RelA, 
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ABSTRACT 
 

Kidney renal clear cell carcinoma (KIRC), a common malignant tumor of the urinary system, is the most 
aggressive renal tumor subtype. Since the discovery of nuclear factor kappa B (NF-κB) in 1986, many studies 
have demonstrated abnormal NF-κB signaling is associated with the development of various cancers, including 
kidney renal clear cell carcinoma. In this study, the relationship between NF-κB and kidney renal clear cell 
carcinoma was confirmed using bioinformatics analysis. First, we explored the differential expression of copy 
number variation (CNV), single nucleotide variant (SNV), and messenger RNA (mRNA) in NF-κB-related genes in 
different types of cancer, as well as the impact on cancer prognosis and sensitivity to common chemotherapy 
drugs. Then, we divided the mRNA expression levels of NF-κB-related genes in KIRC patients into three groups 
through GSVA cluster analysis and explored the correlation between the NF-κB pathway and clinical data of 
KIRC patients, classical cancer-related genes, common anticancer drug responsiveness, and immune cell 
infiltration. Finally, 11 tumor-related genes were screened using least absolute shrinkage and selection 
operator (LASSO) regression to construct a prognostic model. In addition, we used the UALCAN and HPA 
databases to verify the protein levels of three key NF-κB-related genes (CHUK, IKGGB, and IKBKG) in KIRC. In 
conclusion, our study established a prognostic survival model based on NF-κB-related genes, which can be used 
to predict the prognosis of patients with KIRC. 
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RelB, and c-Rel, which share a Rel homologous 

domain, which is responsible for its binding to DNA 

[8–10]. NF-κB is mainly present in the cytoplasm of 

most eukaryotic cells as dimers (p60/p50) and remains 

inactive in the cytoplasm due to binding to the 

inhibitory molecule, IκB (inhibitor of NF-κB). In the 

classical NF-κB-activated pathway, after the cell 

receives a foreign stimulus signal, IκB kinase in the 

cytoplasm is activated, IκBα is phosphorylated, and 

ultimately enabling IκBα to be specifically recognized 

by E3 ubiquitin ligase for ubiquitination and thereafter 

specifically recognized and degraded by the 26S 

proteasome. Then, the p60/p50 dimer is freed and 

translocated to the nucleus, where it acts as a nuclear 

transcription factor and participates in regulating the 

cell transcription process [11, 12]. Activation of NF-

κB may be triggered by different signals, such as the 

binding of a variety of growth factors and cytokines to 

receptors on the cell membrane, including epidermal 

growth factor, insulin growth factor, and tumor 

necrosis factor family members. In addition, the 

activation of other signaling pathways, such as 

Ras/MAPK and PI3K/Akt, are also involved in NF-kB 

activation [13]. 

 
The stability of the NF-κB pathway is necessary for cell 

proliferation, differentiation, and body development. 

Moreover, the activated NF-κB signal, in addition to 

participating in cell proliferation and anti/proapoptotic 

signaling, also maintains the balance of immune 

regulation in epithelial tissue and inhibits the inter-

ference of inflammation with the internal environmental 

homeostasis of epithelial tissue; increasing evidence 

also indicates that it plays a key role in the occurrence 

and development of cancer [14–16]. For example, NF-

κB is involved in the proliferation of the breast cancer 

cell line, T47D, by regulating cyclin D1 and inducing 

the upregulation of matrix metalloproteases (MMP) 2 

and 9; metastasis of liver cancer cell lines, QGY-8024 

and PLC97, was increased; and activation of the 

expression of VEGF, MMP9, and interleukin (IL)-8 in 

the human prostate cancer cell line, PC-3M, leading to 

the formation of new blood vessels and invasion of 

cancer cells. However, such reports in kidney cancer 

cells are rare [17–21]. 

 
In our study, 21 NF-κB-related genes were selected, 

and the Cancer Genome Atlas (TCGA) database and 

GSCALite website were used to analyze the copy 

number variation (CNV), single nucleotide variant 

(SNV), and messenger RNA (mRNA) expression of 

these genes in 32 human tumors, as well as their 

relationship with patient prognosis and anticancer 

drug sensitivity. Then, Gene Set Variation Analysis 

(GSVA) cluster analysis was used to divide KIRC 

patients into three groups to explore the correlation 

between the NF-κB pathway and occurrence, 

development, and clinical pathological features of 

KIRC, aiming to accurately interpret the mechanism 

of action of the NF-κB pathway in KIRC. Finally,  

11 NF-κB-related genes were screened using least 

absolute shrinkage and selection operator (LASSO) 

regression to establish a KIRC prognostic model, and 

the accuracy of the model was further verified at  

the protein level. These results will guide the clinical 

diagnosis, treatment, and prognosis of patients with 

KIRC. 

 
RESULTS 

 
NF-κB-related genes are differentially expressed in 

different cancers and associated with cellular 

pathways and drug sensitivity 

 
To investigate variation and expression changes of NF-

κB-related genes in a variety of human tumors, we 

measured the SNV of NF-κB-related genes in various 

tumors (Figure 1A and Supplementary Table 1), mRNA 

expression (Figure 1B and Supplementary Table 2) and 

frequency of CNV (Figure 1D) based on sample data 

from the TCGA database. In the mRNA expression 

profile, we can observe the expression level of NF-κB-

related genes in various cancer types; particularly in 

patients with KIRC, TRADD, MYD88, TNFRSF1A, 

TNFRSF1B, MAP3K14, TNFAIP3, and NFKBIA were 

higher in KIRC tissues than in normal tissues, and the 

expression of IL1A, MAP3K1, CHUK, and IL1R1 were 

lower in the KIRC tissues than in normal tissues. The 

survival curve of patients with KIRC showed that the 

expression of most NF-κB-related genes was correlated 

with patient prognosis (Figure 1C). Such as CHUK, 
MAP3KI FADD TRAF6, TAB1 and RIPK1 raised related 

to the prognosis of patients with KIRC good genes, and 

IKBKB IL1R1, MAP3K7, IL1A, IKBKG raised KIRC 

patient’s prognosis related genes. CNV and SNV data 

obtained from the TCGA database and GSCALite 

website were analyzed, and the results showed that 

TRADD, TNFRSF1A, TNF, MAP3K14, IKBKG, and 

IKBKB showed CNV amplification in different types of 

tumors, whereas TRAF6, TNFRSF1B, TNFAIP3, TAB1, 

NFKB1, MYD88, MAP3K7, and CHUK showed CNV 

deletion. From the SNV results, it can be seen that NF-

κB-related genes had different degrees of single-

nucleotide variation in the 32 tumors. The methylation 

data of the NF-κB gene set obtained in pancancer through 

the GSCALite platform showed that the level of NF-κB 

gene methylation in a variety of cancers differed from 

that of normal samples, and the expression of MYD88, 

TNFRSF1A, TNFRSF1B, MAP3K14, and other genes had 

a strong correlation with the level of methylation, and all 

affected the survival of cancer patients, and the results 
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were statistically different (Figure 2A). The relationship 

between NF-κB-related genes and classical cellular 

pathways, such as apoptosis, cell cycle, EMT, etc., 

showed that NF-κB plays a role in activation or 

inhibition, such as DNA damage response manifested  

as a high-intensity activation effect (Figure 2B. The 

expression of the NF-κB gene is also closely related to 

drug sensitivity, such as TNF expression is negatively 

correlated with the sensitivity of various targeted drugs, 

whereas TNFRSF1A is mainly positively correlated 

(Figure 2C). The u2-os cells are epithelial morphologic 

cell lines obtained from meso-differentiated sarcomas of 

the tibia of patients with osteosarcoma; due to the bone 

metastatic nature of KIRC, we selected the u2-os cell 

lines for verification, and based on the HPA website, 

expressions of IKBKB and IKBKG in u2-os cell lines 

were found. According to the immunofluorescence 

results, the target genes, IKBKB and IKBKG, were clearly 

expressed in the cytoplasm of the cells (Figure 2D). 

Unsupervised hierarchical clustering and prognostic 

analysis 

 

Based on the mRNA expression of the NF-κB-related 

genes, all TCGA samples of KIRC were divided into 

three clusters using the GSVA clustering analysis 

algorithm; the NF-κB score showed different expression 

levels of NF-κB related genes (Figure 3A), and the 

resulting C1, C2, and C3 clusters represented normal, 

active, and inactive scores, respectively. The violin  

plot (Figure 3B) showed the degree of difference in  

NF-κB expression between the three clusters, with the 

p-value <0.05, indicating that the difference between 

cluster groups, obtained by cluster analysis, was 

statistically significant. The survival curve highlighted 

the difference in prognosis among patients in the three 

clusters, indicating that the difference in NF-κB-related 

gene expression was related to prognosis; combined 

with the violin diagram results, it showed that patients

 

 
 

Figure 1. (A) SNV frequencies of 21 NF-κB pathway genes in 32 tumor types. Red and blue indicate high and low frequencies, respectively. 

(B) Expression levels of the NF-κB-related genes in 20 cancers. The color code bar shows the corresponding value of log2 (FC) on the right, 
with values ranging from 3.00 to -3.00 from red to blue. (C) Survival curve analysis of all statistically significant KIRC genes in TCGA samples. 
Red and green represent the high- and low-expression groups, respectively. (D) CNV frequencies of the 21 NF-κB pathway genes in 32 tumor 
types. Red and blue indicate amplification and loss of CNV, respectively. (E) Prognostic performance of the 11-gene NF-κB score in 32 types of 
cancers. The center color of the circle indicates the type of cancer, the color of the circle indicates “Risky/Protective”, and the size of the 
circle indicates statistical differences. 



www.aging-us.com 11316 AGING 

in the C3 group, whose NF-κB pathway became inactive, 

had the worst prognosis (Figure 3C). The heat map 

showed that NF-κB-related gene expression in the three 

clusters is closely related to patient clinical data and 

survival outcomes (Figure 3D). 

 

The NF-κB pathway is closely related to the 

expression of histone-modified genes and classical 

oncogenes 

 

Here, we first explored the relationship between the  

NF-κB pathway and expression of various classical 

protooncogenes, for example, the low-expression of 

BRAF, PTEN, KRAS, MTOR, and PIK3CA in the NF-κB 

downregulation group (C3), indicating that the inter-

ruption of the NF-κB pathway is related to tumor 

promotion. The high expression of CTNNB1, MYC, 
STAT3, TP53, etc. in the NF-κB upregulated group (C2) 

suggested that targeting these genes to treat cancer 

progression in the NF-κB upregulated group may be 

effective. In addition, acetylation and deacetylation  

of transcription factors have also been shown to be 

associated with a variety of kidney diseases, including 

diabetic nephropathy [22, 23], the analysis of histone 

acetylation-related genes showed that abnormal 

expression of SIRT and HDACs also had a strong 

correlation with abnormalities in the NF-κB pathway, 

the expression of HDACs in the NF-κB downregulated 

 

 
 

Figure 2. (A) The three figure parts show the different degrees of methylation of NF-κB-related genes in several human cancers, the 
relationship between methylation and mRNA expression level, and the correlation with patient prognosis. The colored circles indicate the 
value, and the size indicates the relationship with the p-value. (B) The relationship of NF-κB-related genes to 20 classical cellular pathways, 
“A” indicates activation and “I” indicates inhibition. (C) The relationship between NF-κB-related genes obtained in the GDSC database and 
drug sensitivity of individual targeted drugs, with blue indicating a positive correlation and orange indicating a negative correlation. (D) 
Immunofluorescence results from the HPA website showed the expression of IKBKB and IKBKG in the cytoplasm of u2os cells and the staining 
of the nucleus by DAPI. 
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group (C3) was slightly lower than that in the other two 

groups (Figure 4C). Then, to elucidate the correlation 

between any two genes in the NF-κB pathway, we 

conducted a co-expression analysis of 21 NF-κB-related 

genes, and found that the NF-κB1 gene was highly 

correlated with most other genes in the pathway, such as 

RIPK1, TRAF6, and TNFAIP3, and most of the positive 

correlation. In addition, the correlation between CHUK 

and MAP3K1, TNFAIP3 and NFRSF1, IKBKG and 

MYD88 were also strong (Figure 4A). 

 

Prediction of the efficacy of KIRC-targeted drugs 

 

To further explore the potential value of the NF- 

κB pathway in the clinical treatment of patients with  

KIRC, we plotted box plots based on drug susceptibility 

predictions in the GDSC database to determine the 

effect of the NF-κB pathway on IC50 of 12 commonly 

renal carcinoma targeted drugs. In these drugs, sorafenib 

is the first targeted multi-kinase inhibitor and first-line 

chemical drug approved for the treatment of RCC, 

which blocks formation of tumor neovascularization 

and directly inhibits the proliferation of RCC cells  

by blocking RAF/MEK/ERK signaling pathway [24]; 

Sunitinib inhibits the development of tumor-associated 

vascular disorders and affects the infiltration of immune 

cells such as regulatory T cells and macrophages  

[25]; metformin inhibits RCC cell viability (including 

cell migration and invasion) and increases apoptosis  

by disrupting mitochondrial dynamics [26]; other drugs 

also show different mechanisms of action in cancer 

suppression. We found that sensitivity to sorafenib, 

gefitinib, and metformin was higher in the down-

regulated NF-κB group (C3) but not in the upregulated 

NF-κB group (C2). In contrast, the sensitivity of the 

upregulated NF-κB group (C2) to pazopanib, sunitinib, 

and bosutinib was higher than that of the other two 

groups (Figure 4B). These results may provide precise 

guidance for the development of KIRC-targeted drug 

therapies in the future. 

 

 
 

Figure 3. (A) All KIRC samples were divided into medium-, high-, and low-expression groups (clusters 1, 2, and 3), according to the level of 
NF-κB expression, and dark red and blue represent an increase and decrease in mRNA expression, respectively. The redder or bluer the color, 
the closer the NF-κB score is to 0.4 or -0.4, respectively. Cluster analysis is divided into three groups: red, green, and black for clusters 1, 2, 
and 3, respectively. (B) Enrichment and scores of the three clusters. (C) Survival curves for three cluster analyses. (D) Clinical pathological 
features of three clusters of KIRC patients. *: p<0.05, **: p<0.01, ***: p<0.001. 
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Immune cell infiltration based on ssGSEA 

 

In addition to targeted drugs, immunotherapy has 

gradually attracted widespread attention for cancer 

treatment. To examine the regulatory role of the NF-κB 

pathway in immunotherapy for KIRC, we investigated 

the relationship between immune cells and NF-κB. The 

bubble plot showed a correlation between classical 

immune infiltration-associated cells or functions and 

NF-κB (Figure 5A), it can be seen from the results in 

the figure that most of the immune cells were positively 

correlated with NF-κB score, and there was a statistical 

difference. Subsequently, the three immunomodulators 

most strongly correlated with NF-κB, namely Treg, 

CCR, and neutrophils, were selected for correlation 

analysis, and the results were all positively correlated, 

their correlation coefficients are 5.56, 0.60 and 0.51, 

respectively, all of them are statistically significant 

(Figure 5B–5D). Previous studies have also shown that 

the activity of Treg, CCR and neutrophils is closely 

related to the occurrence and development of KIRC, 

which is consistent with the conclusion of our study 

[27–29]. 

 

Establishing a prediction model using LASSO 

regression 

 

By analyzing the NF-κB-related gene expression data in 

the normal control and KIRC groups in the TCGA 

database, we found that the 21 selected NF-κB pathway 

genes were significantly different between the two 

groups (Figure 5E). The figure shows that RIPK1, 

NFKB1, FADD IKBKG, TNFAIP3, TNFRSF1B, 

TNFRSF1A, MYD88, TAB1, RELA, NFKBIA and 

TRRAD genes expressed in tumor samples is higher. 

The expression of IL1R1, CHUK and MAP3K1 was 

higher in normal samples. The forest plot shows the 

results of the hazard ratio analysis for each gene, which 

were as follows: RIPK1, CHUK, TRAF6, NFKBIA, 
NFKB1, MAP3K1, and TRADD had a protective effect,

 

 
 

Figure 4. (A) Co-expression analysis showed that 21 NF-κB-related genes were associated in tumor tissues, with R-value indicating 

correlation size, red indicating positive correlation, and blue indicating negative correlation, p<0.05 was statistically significant. The regression 
relationship of NFκB1 with the remaining genes is represented by a scatterplot. (B) Based on three clusters, the IC50 predictions of 12 
common tumor-targeted drugs for drugs with KIRC cells were analyzed. (C) Association of acetylation-related genes (HDAC and SIRT) and 
classical tumor family genes with NF-κB scores. 
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whereas IKBKB, TNFPSF1A, MAP3K7, IL1A, RELA, 
TNFRSF1B, IL1R1, and IKBKG had a risk effect 

(Figure 5F). We then used LASSO regression analysis 

to select the appropriate genes to build a predictive 

model, (Figure 5G, 5H) and selected 11 genes:  

TRAF6, NFKBIA, NFKB1, MAP3K1, TRADD, IKBKB, 
TNFPSF1A, MAP3K7, RELA, TNFRSF1B, and IKBKG. 

In the TCGA dataset, we fit 101 prediction models 

through the LOOCV framework, and further calculate 

the C-index of each model on all validated datasets.  

If all the samples are paired and their outcomes are 

compared, the C-index refers to the proportion of 

combinations where the predicted outcome is consistent 

with the actual outcome. It can estimate the probability 

that the predicted results are consistent with the  

actual observed results, which is used to evaluate the 

predictive power of the model [30]. The model with the 

most accurate prediction was random survival forest 

(RSF), which had the highest average C-index (0.569), 

and this combined model led the C-index in all 

validated datasets (Figure 5I). 

 

Based on the median risk score calculated from patients 

with KIRC, patients can be divided into low- and high-

risk groups. The survival curves of both groups initially 

showed the predictive performance of the predictive 

model (Figure 6A and Supplementary Table 3).  

ROC curves for four different survival time nodes  

(3, 5, 7, and 10 years) (Figure 6B–6E) indicated that 

AUC values for all observed survival time nodes  

were greater than 0.7 (0.7 and above are considered to 

have predictive value). To further study the association 

between NF-κB-related genes and KIRC, we used the 

Kaplan–Meier “survival” software package to calculate 

the optimal cut-off value of the risk score, reclassified 

the cancer patient samples into low- and high-risk 

groups, and displayed the clinical data and genetic 

characteristics of the 11 genes from the two groups in 

the form of heat maps. The results showed that the risk 

score was strongly correlated with clinical features. The 

M and T stages, grade, and survival of patients in the 

high-risk group were worse than those of patients in the 

low-risk group. IKBKB, RELA, and TNFRSF1A showed 

a significant upregulation trend in the high-risk group, 

whereas TRAF6 and NFBIA showed a significant 

upregulation trend in the low-risk group (Figure 6F). 

The univariate Cox regression analysis showed that  

age, grade, stage, tumor size (T), tumor metastasis (M), 

 

 
 

Figure 5. (A) Correlation of immune infiltration with NF-κB-related genes. The area of the circle represents ABS (correlation), and the color 
shows the p-value. (B–D) Scatterplots show the specific relationship between the three immune cells (Treg, neutrophils and CCR) and NF-κB 
score; they are all positively correlated. (E) Expression of NF-κB-related genes between the two samples. Red and blue represent up- and 
downregulation, respectively, N (green) is the normal sample, and T (red) represents the tumor sample (*: p<0.05, **: p<0.01, ***: p<0.001). 
(F) Forest plot showing hazard ratio analysis and p-values for 95% confidence intervals for 21 NF-κB-related genes. (G, H) LASSO coefficient 
spectra of NF-κB-related genes in patients with KIRC. LASSO Cox regression analysis was used to screen out the 11 genes. (I) Build 101 
predictive models and calculate the C-index for each model on all validation datasets. 
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and survival model risk scores were associated with 

Overall Survival (OS) in patients with KIRC; the 

multivariate Cox regression analysis showed that  

age, grade, stage, and survival model risk scores were 

independent risk factors affecting the prognosis of 

patients with KIRC (Figure 6G, 6H and Supplementary 

Tables 4, 5). 

 

Predictive model analysis and validation 

 

We used a nomogram to predict the prognosis  

of patients with KIRC, and 10 parallel lines were 

generated; each successive line represented the score, 

age, grade, stage, and risk score, and the total score 

calculated by adding the scores of age, grade, stage, and 

 
 

Figure 6. (A) Two survival curves based on the model. Blue and red represent the low- and high-risk groups, respectively. (B–E) Three-, 5-, 7-, 

and 10-year receiver operating characteristic curves, area under the curve values of 0.72, 0.741, 0.774, and 0.782. (F) Heat map showing the 
correlation between the 11 selected genes and clinicopathological features of the two groups of samples. The two-colored bars indicate gene 
expression; red and green represent upregulation and downregulation, respectively. (G) Forest plot for the univariate Cox regression analysis. 
(H) Forest plot for the multivariate Cox regression analysis. (I) Nomogram of the prediction model was used to calculate the total score to 
obtain the 5-, 7-, and 10-year survival rates of patients with KIRC. 
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risk score, respectively, after which we could easily 

estimate the survival rate of patients with KIRC at  

5, 7, and 10 years (Figure 6I). The NF-κB scoring 

system also showed significant organ specificity in 

the prognosis of different cancers, tumors from the 

liver, adrenal glands, and testes generally had higher 

NF-κB scores, while tumors from the uvea, stomach, 

and breast generally had lower NF-κB scores. Based 

on the analysis of DSS, OS and PFI, it is suggested 

that NF-κB-related pathways play different roles in 

the prognosis of different cancers. The expression  

of NF-κB in LIHC, MESO, CHOL, and THYM is  

a protective trend, while the expression of NF-κB 

pathway in ACC, SARC, SKCM, and UVM is a risk 

trend (Figure 1E). 

 

Several additional analyses were conducted to verify 

the accuracy and validity of the model; we selected 

three genes for protein level verification, namely 

CHUK, IKGGB, and IKBKG. Among them, IKGGB 

and IKBKG are protective genes used to build the 

model, while CHUK is a risk gene associated with the 

prognosis of KIRC patients but not used to build  

the model. Firstly, the differential expression of 

CHUK, IKGGB, and IKBKG between normal and 

cancerous tissues was analyzed at the protein level 

using the UALCAN database, and the results were 

consistent with the mRNA expression results (Figure 

7A–7C). Subsequently, using the HPA database,  

we downloaded immunohistochemical images of 

IKBKG and IKBKB from normal and cancerous 

tissues and found that their expression of IKBKG  

and IKBKB in renal cancer tissues was higher than 

that in normal kidney tissues (Figure 7D). Finally,  

we demonstrated the correlation between high- and 

low-risk scores and the level of immune cell invasion 

using various immune infiltration algorithms, such  

as the low-expression of the endothelial cells and 

CD4+ T cells in the high-risk group in the EPIC 

algorithm (Figure 7E). These results can be used to 

identify and characterize the immune microenvironment 

in patients with different KIRCs and to further 

evaluate the efficacy of precision therapy, including 

immunotherapy. 

 

 
 

Figure 7. (A–C) Link between the NF-κB-related genes and KIRC was confirmed at the protein level. (D) Immunohistochemical comparison of 

IKBKG and IKBKB. (E) Based on different algorithms, showing the heat map of the response of immune cells in the high- and low-risk groups. 
Red and blue represent high and low infiltration levels, respectively, and different algorithms are represented by different colored area bars. 
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DISCUSSION 
 

NF-κB family transcription factors play an important 

role as stressors in the cellular environment, involved  

in several physiological processes, such as immunity, 

inflammation, cell proliferation, and death. NF-κB proteins 

are located in the cytoplasm and can be activated by 

various stimulus signals. There are two pathways for 

NF-κB activation, the typical and atypical pathways, 

and the activated NF-κB translocate to the nucleus, 

where gene expression is regulated [31]. In terms of  

cell proliferation and death, NF-κB participates in the 

expression of cell cycle regulators, including cyclin A, 

cyclin D1, and CDK6, and the activation of NF-κB  

can protect cells from TNF-α-induced apoptosis [32]. 

During cancer development, uncontrolled proliferation 

and insensitivity to cell death are often accompanied  

by the activation of NF-κB signaling [33], this is 

reflected in a variety of cancers, including breast cancer 

[34], prostate cancer [35], esophageal squamous cell 

carcinoma [36], lymphoma [37], lung adenocarcinoma 

[38], etc. Abnormal NF-κB signaling also frequently 

leads to abnormal changes in tumor resistance, local 

inflammatory response, and immune microenvironment 

[38–41]. 

 

As the most common subtype of renal cell carcinoma, 

increased activity of NF-κB in KIRC has been shown to 

be associated with upregulation of angiogenic markers, 

and knockout of NF-κB leads to downregulation of  

IL-6 [42]. Unfortunately, similar studies of NF-kappa 

B's mechanism in KIRC are currently known to be 

superficial. In this study, we first analyzed the mutations 

and expression of NF-κB-related genes in various 

human cancers by studying the correlation between 

gene expression and mutations using clinical report 

information in the TCGA database. To determine 

whether NF-κB may be a potential target for KIRC 

therapy, we compared the effects of NF-κB-related 

genes on prognosis and drug sensitivity in patients with 

KIRC; interestingly, we found that the genes involved 

in the NF-κB pathway are both protective and hazardous. 

 

Then, we divided the KIRC samples into three clusters 

according to the RNA expression levels of NF-κB-

related genes: high, normal, and low expression of NF-

κB-related genes, respectively. Based on these three 

clusters, we constructed a survival curve for NF-κB-

related genes. We found that patients with downregulated 

NF-κB pathways had the worst survival rates. In order 

to confirm the role of commonly used tumor-targeted 

therapy drugs in the treatment of KIRC, we conducted 

GDSC analysis, and the results showed that the IC50 of 

most targeted drugs for KIRC treatment is related to the 

level of gene expression in the NF-κB pathway, which 

indicates that the selection of different drugs according 

to the characteristics of patients can achieve better 

efficacy or appropriately reduce drug concentrations to 

reduce the side-effects of drugs. In addition, acetylation 

and deacetylation are common epigenetic modifications 

that play a vital role in the formation and development 

of tumors. By analyzing the expression of classical 

oncogenes, such as EGFR and mTOR, and acetylation-

related genes in the three clusters, we found that the 

expression of these genes is mainly related to NF-κB 

pathways, such as SIRT1, HDAC9, CTNNBI, KRAS, and 

PIK3CA. Therefore, it may be more efficient to select 

different targets in different NF-κB characteristic groups. 

 
Tumors infiltrating immune cells (TIICs) are effective 

targets for drug improvement in tumor therapy [43]. 

Studies have shown that patients with KIRC have 

typical characteristics of immunogenic tumors, and TIICs 

in KIRC, including CD4 T cells, CD8 T cells, natural 

killer molecules, and dendritic cells, are inhibited to 

varying degrees, leading to antitumor immune disorders 

and successful evasion of immune recognition [44]. 

Additionally, the microenvironment contains a large 

number of tumor-infiltrating T lymphocytes and 

cytotoxic T cells that recognize and selectively destroy 

tumor cells [45]. It has been proved that the number of 

Treg cell subsets in peripheral blood can help predict 

the prognosis of immunotherapy, and can reflect the 

anti-tumor immune status in KIRC patients [46]. In 

addition, infiltrating neutrophils promote KIRC migration 

and invasion through VEGFa/HIF2α and estrogen 

receptor β signaling [47]. Chemokines and their 

receptor proteins have also been shown to regulate a 

variety of biological processes [48]. Exploring the 

relationship between NF-κB and immunity will help us 

gain a deeper understanding of immunotherapy. Our 

results show that NF-κB-related genes are closely 

related to immune cell infiltration, and three of these 

immunomodulatory factors, Treg, CCR, and neutrophils, 

are strongly positively correlated with the NF-κB 

pathway. These analyses will allow patients to receive 

personalized treatments and provide new ideas for the 

development of novel targeted therapies. 

 
Finally, 11 genes in the NF-κB pathway were screened 

out using LASSO regression, namely TRAF6, NFKBIA, 

NFKB1, MAP3K1, TRADD, IKBKB, TNFPSF1A, 

MAP3K7, RELA, TNFRSF1B, and IKBKG, among 

them, IKBKB, TNFPSF1A, MAP3K7, IL1A, RELA, 

TNFRSF1B, IL1R1, and IKBKG are risk genes for 

KIRC patients, and RIPK1, CHUK, TRAF6, NFKBIA, 

NFKB1, MAP3K1, and TRADD are protective genes 

for KIRC patients. We also constructed a survival 

prediction model to predict the survival rate of KIRC 

patients at 5, 7, and 10 years. The area under the ROC 

curve obtained using the model showed a high predictive 

value. The multivariate Cox regression analysis revealed 
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that the survival model risk score was an independent 

risk factor affecting the prognosis of patients with 

KIRC. The link between NF-κB-related genes and KIRC 

was confirmed at the protein level. We believe that  

this model has great value in future clinical research on 

the treatment and prognosis of KIRC. Specifically, 

using our survival model and existing clinical data,  

we can clearly predict the prognosis of KIRC patients. 

In addition, based on differences in the expression of 

NF-κB-related genes, each KIRC patient can receive 

personalized targeted drug therapy, which will greatly 

reduce the drug resistance of patients and improve the 

effectiveness of postoperative chemotherapy. 

 

There are few studies on the role of the genes  

screened in KIRC, all of which are consistent with our 

conclusions. For example, one study showed that the 

expression level of IKBKB in KIRC is decreased, and 

the upregulation of IKBKB protein levels is associated 

with an increase in the tumor nuclei grade and a 

significantly shortened survival period, suggesting that 

the gene plays a carcinogenic role in KIRC [49]. RIPK1 

is highly expressed in KIRC and is upregulated by 

TNF-α, which further induces necrotic apoptosis of 

cancer cells through the RIPK1/RIPK3/MLKL/Drp1 

axis [50]. Another study showed that the transcriptional 

activity of TRAF6 is regulated by miR146b-5p, and that 

inhibition of miR146b-5p can increase inflammatory 

cytokine secretion and TRAF6 expression in renal tumor 

mouse models, further inhibiting orthotropic tumor cell 

growth [51]. 

 
However, our study had some limitations. Although we 

predicted some of the results through bioinformatics 

analysis, this conclusion lacked support from the expe-

rimental data. In other words, although we conducted  

a preliminary verification of protein levels using the 

database, we hope that future experiments will further 

validate the results of our analysis because the role of 

NF-κB in the pathogenesis of KIRC has not been fully 

established. In addition, kidney cancer is a cancer prone 

to metastasis, but the samples we studied lacked lung, 

liver, brain and other metastatic sites, making this study 

incomplete. This part will also be an important link in 

our future research plan. 

 
In summary, our study found that most NF-κB-related 

genes differ significantly in KIRC expression compared 

with normal kidney tissue and can be used as risk  

or protective factors affecting KIRC treatment and 

prognosis and are closely related to drug sensitivity, 

immune cell infiltration, classical oncogenes, and histone 

modification. Classifying patients with KIRC according 

to NF-κB score is of great significance for evaluating 

the prognosis of patients and finding new targets,  

and the prognostic model we constructed may provide  

more comprehensive suggestions for the development 

of personalized treatment for patients with KIRC. 

 

MATERIALS AND METHODS 
 

Data acquisition and pancancer analysis 

 

The “Biocarta” dataset was found using the Gene Set 

Enrichment Analysis (GSEA) website (http://www.gsea-

msigdb.org/gsea/index.jsp) [52], and 21 genes closely 

related to the NF-κB pathway were selected for further 

analysis. The TCGA database is a genome-wide gene 

expression collection established through large-scale gene 

sequencing and multidimensional analysis. We used the 

TCGA database (https://portal.gdc.cancer.gov) to down-

load the changes in SNV and mRNA levels of NF-κB-

related genes in 32 cancers [53]. Data were analyzed 

using Perl, and visual analysis was performed using the 

“TBtools” software package. Data on CNV, methylation, 

and classical cellular pathways of genes associated  

with the 32 cancers were obtained from the GSCALite 

website (http://bioinfo.life.hust.edu.cn/web/GSCALite/) 

[54]. Genomics of Drug Sensitivity in Cancer (GDSC) is 

a publicly accessible database (https://www.cancerrxgene. 

org/) that provides information regarding drugs, genes, 

and tumors [55]; based on the GDSC database, we also 

analyzed the relationship between relevant genes and 

drug susceptibility of various chemotherapy drugs. 

 

Cluster analysis based on NF-κB score 

 

GSVA is an analytical method that transforms the 

expression matrix of genes between different samples 

into gene sets by unsupervised classification of samples 

[56]. We used the GSVA algorithm to calculate the NF-

κB enrichment score of KIRC patients, and the following 

three cluster samples were obtained by cluster analysis 

according to the NF-κB enrichment score of each sample: 

cluster 1, cluster 2, and cluster 3, which represented the 

normal, low expression, and high expression of NF-κB 

pathway-related genes in KIRC patients, respectively. 

The accuracy of the three clusters was verified with a 

violin plot and survival curve, and a heat map showing 

the relationship between gene expression levels and 

clinical pathological features was generated. A box plot 

was created using the “pRRophetic” software package 

in R software to depict the 50% inhibiting concentration 

(IC50) prediction of the three cluster samples for 

targeted drugs to treat KIRC [57]. Statistical significance 

was set at p<0.05. 

 

Expression of epigenetically-related regulatory genes 

and classical oncogenes 

 

To explore the different expression patterns of epi-

genetics and typical oncogenes in the three clusters, we 

http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
https://portal.gdc.cancer.gov/
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selected two histone acetylation-related genes, 

deacetylase (SIRT) and histone deacetylase inhibitors 

(HDACs), as well as classical oncogenes, such as AKT1 

and mTOR, analyzed their expression at different levels 

of NF-κB-pathway activity, and visualized the results 

in important cancer development processes, such as in 

the form of heat maps. Among them, SIRT was involved 

epithelial-mesenchymal transition (EMT), invasion, 

and metastasis, and plays a significant carcinogenic or 

cancer-suppressing role [58]. HDACs play an important 

role in the structural modification and gene expression 

regulation of chromosomes, and their activities are 

closely related to the occurrence of cancer and immune 

diseases [59]. We then used the “corrplot” software 

package to describe the co-expression relationship 

between any two NF-κB-pathway genes [60]. 

 
Immune cell infiltration 

 

Single-sample GSEA (ssGSEA) can be applied to gene 

signals expressed by immune cells in a single sample; 

we used ssGSEA combined with the expression of 

relevant genes in the TCGA database to quantify 

immune cells [61]. Based on the ssGSEA results, we 

showed correlations between NF-κB scores and 28 

types of immune cells, where the area of the spheroids 

indicated the degree of correlation. Color represents the 

p-value. The R software packages “ggplot2”, “dplyr”, 

“data.table”, “tidyr”, and “ggstatsplot” were used for 

analysis and plotting [62–65]. We then selected three 

classic immunomodulators: regulatory T cell (Treg), 

chemokine receptor (CCR), and neutrophil and gene-

rated scatter plots using the “ggdisterstats” package to 

show their correlation with NF-κB scores [66].  

 
Construction of predictive models 

 

We used the “pheatmap” software package to create 

heat maps to describe differences in NF-κB-related 

gene expression levels in KIRC and normal tissues 

[67]. The univariate Cox regression was used to 

analyze the relationship between NF-κB pathway-

related genes and risk indicators (stage, grade, etc.) in 

KIRC patients. The “glmnet” package was used to 

construct the LASSO regression model, risk score = 

∑Ni = 1 (Expi * Coei); where N, Coei, and Expi  

were the number of genes, regression correlation 

coefficient, and gene expression level obtained using 

LASSO regression analysis, respectively (Supplementary 

Materials: Table Coef). The cut-off value of the KIRC 

risk score was calculated using the “survival” package, 

according to which the samples were divided into 

high- and low-risk groups, and the survival curve was 

plotted. Concretely speaking, we calculated the risk 

score of each sample based on the “survival” package, 

thus obtaining the median score of all samples, and 

further divided all samples into high- and low- 

risk groups according to the median value and the 

score of each sample. Finally, the receiver operating 

characteristic (ROC) curve was plotted using the 

“survival ROC” package to obtain area under the 

curve (AUC) values for the 3-, 5-, 7-, and 10-year 

survival rates. AUC is the area value under the ROC 

curve used to measure the performance of the 

classifier. The closer the AUC value is to 1, the better 

the classifier performance, and the closer the AUC 

value is to 0, the worse the classifier performance. 

Heat map showed the clinicopathological features of 

the high- and low-risk groups. Statistical significance 

level was set at p < 0.05. We also investigated the role 

of NF-κB-based risk scores in survival of patients 

with different cancers. We used prognostic models to 

assess the association of NF-κB scores with disease-

specific survival (DSS) in patients with the TCGA 

pancancer series. 

 

Validation of the prediction model and nomogram 

 

We also integrated 10 machine learning algorithms  

and 101 algorithm combinations to develop prognostic 

models with high accuracy, algorithms include Random 

survival Forest (RSF), Elastic Network (Enet), Lasso, 

Ridge, stepwise Cox, and Cox boost, Cox Partial  

least squares regression (plsRcox), supervised Principal 

Component (SuperPC), Generalized Enhanced regression 

modeling (GBM), and survival support vector Machine 

(Survival-SVM) [68]. Univariate and multivariate Cox 

regression analyses were used to show the correlation 

between age, stage, grade, T stage, M stage, and risk 

scores in the model, with a p-value < 0.05 considered 

statistically significant. RStudio was used for data 

analysis. To confirm our conclusions, we performed 

controlled immunohistochemistry experiments on two 

key molecules involved in the model, IKBKG and 

IKBKB, using clinical KIRC specimens. The UALCAN 

database uses data obtained from TCGA to assess  

the expression of protein-coding genes and their  

impact on the survival of patients with 33 types of 

cancer. The HPA database is a tool based on proteomics, 

transcriptomics, and systems biology data, which is 

used to map tissues, cells, organs, etc. [69–71]. We 

obtained information on protein levels from the HPA 

(https://www.proteinatlas.org/) and UALCAN databases 

(http://ualcan.path.uab.edu/). IKBKB and IKBKG protein 

immunofluorescence assays were performed using the 

u2-os cell line. The nomogram was plotted using the 

“rms” package in R [72]. 

 

Abbreviations 
 

RCC: Renal cell carcinoma; KIRC: Kidney renal  

clear cell carcinoma; RHD: Rel homology domain;  

https://www.proteinatlas.org/
http://ualcan.path.uab.edu/
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IκB: Inhibitor of κB; IKK: Inhibitor of κB kinase;  

MMP: Matrix metalloproteinase; HCC: Hepatocellular 

carcinoma; VEGF: Vascular endothelial growth factor; 

ACC: Adrenocortical carcinoma; BLCA: Bladder 

Urothelial Carcinoma; BRCA: Breast invasive carcinoma; 

CESC: Cervical squamous cell carcinoma; CHOL: 

Cholangiocarcinoma; COAD: Colon adenocarcinoma; 

DLBC: Lymphoid Neoplasm Diffuse Large B-cell 

Lymphoma; ESCA: Esophageal carcinoma; GBM: 

Glioblastoma multiforme; GBML: Glioma; HNSC: 

Head and Neck squamous cell carcinoma; KICH: 

Kidney chromophobe; KIRP: Kidney renal papillary 

cell carcinoma; LAML: Acute myeloid leukemia; LGG: 

Brain lower-grade glioma; LIHC: Liver hepatocellular 

carcinoma; LUAD: Lung adenocarcinoma; LUSC: 

Lung squamous cell carcinoma; MESO: Mesothelioma; 

OV: Ovarian serous cystadenocarcinoma; PAAD: 

Pancreatic adenocarcinoma; PCPG: Pheochromocytoma 

and paraganglioma; PRAD: Prostate adenocarcinoma; 

READ: Rectum adenocarcinoma; SARC: Sarcoma; 

SKCM: Skin cutaneous melanoma; STAD: Stomach 

adenocarcinoma; STES: Stomach and esophageal 

carcinoma; TGCT: Testicular germ cell tumors; THCA: 

Thyroid carcinoma; THYM: Thymoma; UCEC:  

Uterine corpus endometrial carcinoma; UCS: Uterine 

carcinosarcoma; UVM: Uveal melanoma; CDK6: Cyclin-

dependent kinase 6. 
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SUPPLEMENTARY MATERIALS  
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. SNV frequencies of NF-κB gene families in 32 cancer types. 

 

Supplementary Table 2. Gene expression of NF-κB family in 32 cancer types. The number 0 indicates that there 
is no statistical difference. 

 

Supplementary Table 3. Gene coefficient in 
prognostic model formula. 

Gene Coef 

IKBKB 0.105495885 

IKBKG 0.388318763 

MAP3K1 -0.009572845 

MAP3K7 0.125520029 

NFKB1 -0.089029801 

NFKBIA -0.000478901 

RELA 0.020199135 

TNFRSF1A 0.012994433 

TNFRSF1B 0.009781082 

TRADD -0.017761371 

TRAF6 -0.236700274 

 

Supplementary Table 4. Univariate Cox regression analysis of the relationship between clinical pathological 
factors (including risk score) and overall patient survival in the TCGA database. 

id HR HR.95L HR.95H p-value 

age 1.02970383778191 1.01588047375704 1.04371530010957 0.0000218800056785669 

grade 2.28263412688221 1.84053080367777 2.8309325477171 5.72809215140472E-14 

stage 1.92576325059956 1.6769942015511 2.21143525358025 1.60470994747149E-20 

T 1.97255442351687 1.66095173766084 2.34261530031916 9.64753599422785E-15 

M 4.49932539630398 3.25414986954143 6.22095780262227 9.22084574027884E-20 

riskScore 1.28439312630962 1.22469433884851 1.34700198292944 6.56558798371527E-25 

 

Supplementary Table 5. Multivariate Cox regression analysis of the relationship between clinical pathological 
factors (including risk scores) and overall patient survival in the TCGA database. 

id HR HR.95L HR.95H p-value 

age 1.02973557962054 1.01451867297878 1.04518072676089 0.00011450822245073 

grade 1.36288775440025 1.06408584816641 1.74559508924478 0.0142110283383072 

stage 1.77943318876541 1.13410284890518 2.79197118350997 0.0121583728705431 

T 0.815289621154166 0.537599685077787 1.23641658433175 0.336480414876945 

M 1.21364722252324 0.617384208428384 2.38577462887801 0.574463212112357 

riskScore 1.17193429101268 1.11116445478337 1.2360276433781 5.22229271568087E-09 

 

 


