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INTRODUCTION 
 

Pancreatic adenocarcinoma (PAAD) is a serious kind of 

cancer with high mortality and increasing morbidity 

worldwide [1]. Likewise, the incidence and mortality 

rate of PAAD remains on the rise in China but relatively 

stable in Japan and South Korea [2]. It is not easy to 

detect PAAD at an early stage until late in progression, 

thus losing effective treatment opportunities, which is 

an important reason for the high mortality in pancreatic 

cancer. Although carbohydrate antigen 19-9 (CA19-9) 

and carcinoembryonic antigen (CEA) are commonly 

used in clinical practice for tumor markers, they have 

limited specificity and sensitivity to screen patients with 

early pancreatic ductal adenocarcinoma (PDAC) [3]. 

Therefore, it is essential to identify effective prognostic 

biomarkers and to establish a valid prognostic model in 

PAAD.  
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ABSTRACT 
 

Objective: The purpose of the study was to investigate the role of exosome and lipid metabolism-related genes 
(EALMRGs) mRNA levels in the diagnosis and prognosis of Pancreatic Adenocarcinoma (PAAD). 
Methods: The mRNA expression pattern of PAAD and pan-cancers with prognostic data were obtained from 
The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. EALMRGs were acquired from 
GeneCards and MSigDB database after merging and deduplication. Prognostic EALMRGs were screened through 
univariate COX regression analysis, and a prognostic model was constructed based on these genes by least 
absolute shrinkage and selection operator (LASSO) regression. The prognostic value of EALMRGs was then 
validated in pan-cancer data. The time characteristics ROC curve analysis was performed to evaluate the 
effectiveness of the prognostic genes. 
Results: We identified 5 hub genes (ABCB1, CAP1, EGFR, PPARG, SNCA) according to high and low-risk groups of 
prognoses. The risk formula was verified in three other cohort of pancreatic cancer patients and was explored 
in pan-cancer data. Additionally, T cell and dendritic cell infiltration was significantly increased in low-risk 
group. The expression of the 5 hub genes was also identified in single-cell sequencing data of pancreatic cancer 
with pivotal pathways. Additionally, functional enrichment analysis based on pancreatic cancer data in 
pancreatic cancer showed that protein serine/threonine kinase activity, focal adhesion, actin binding, cell-
substrate junction, organic acid transport, and regulation of transporter activity were significant related to the 
expression of genes in EALMRGs.  
Conclusions: Our risk formula shows potential prognostic value in multiple cancers and manifest pivotal 
alterations in immune infiltration and biological pathway in pancreatic cancer. 
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Exosomes are nanosized (30-150nm), physiologically 

released extracellular vesicles of endosomal origin, and 

carry substances such as nucleic acids, proteins, and 

lipids [4, 5]. Cancer derived exosomes are involved in 

multiple biological processes, including epithelial-to 

mesenchymal transition, cell proliferation, and angio-

genesis [6–9]. Furthermore, there is a considerable 

amount of literature on deregulation of lipid metabolism 

in cancer cells. Considering the increasing evidence that 

lipid metabolism disorder plays a key role in PAAD 

patients, it is necessary to comprehensively evaluate  

the prognostic significance of exosome and lipid 

metabolism-related genes, which might provide 

potential prognostic biomarkers. However, studies on 

this problem have received scant attention in research 

literature. 

 

This study acquired the transcriptome profiling data of 

PAAD with clinical information from the TCGA database 

and GEO. A total of 52 exosome and lipid metabolism-

related genes (EALMRGs) were obtained from the 

GeneCards and MSigDB databases after merging and 

deduplication. We constructed a prognostic model and 

implemented external and internal validation to evaluate 

the effectiveness and availability of the model. Finally, 5 

significant prognoses related EALMRGs were identified 

and verified in GEO. To further explore the potential 

mechanism and relationship of these genes, Gene 

Ontology (GO), Kyoto Encyclopedia of Genes and 

Genomes (KEGG), and protein-protein interaction (PPI) 

analysis were conducted. We also performed Gene Set 

Enrichment Analysis (GSEA) and Gene Set Variation 

Analysis (GSVA) to understand the functional enrichment 

and differences between high and low-risk groups based 

on the prognostic model. We constructed a potential 

prognostic model and identified 5 significant prognosis 

EALMRGs and explored the potential mechanism. In this 

way, our study reveals the value of EALMRGs in 

predicting the prognosis of PAAD patients and provides 

clues for the specific mechanisms associated with lipid 

metabolism and cancer.  

 

MATERIALS AND METHODS 
 

Data collection and pre-processing 

 
We downloaded high-throughput sequencing RNA 

data and clinical information on PAAD from the 

TCGA database (https://portal.gdc.cancer.gov/). 

Excluding 4 samples of para-carcinoma tissues, a total 

of 179 PAAD patients were enrolled. RNA sequencing 

data were transformed from fragments per kilobase per 

million (FPKM) formats to transcripts per million 
(TPM) reads for this study. Corresponding clinical 

information was downloaded from the UCSC Xena 

browser (http://genome.ucsc.edu) [10]. The count 

sequencing and clinical data in the TCGA-PAAD 

dataset were standardized using R packet limma [11]. 

In addition, two raw gene expression datasets; 

GSE62452 [12] and GSE57495 [13] downloaded from 

the GEO database [14] were used to validate further 

analysis using GEOquery.  

 

Human genes with comprehensive information were 

provided by the GeneCards database [15]. Based on the 

term “Exosome” as a keyword and “Protein Coding”, 

“Relevance score>2” as a screening criterion, we 

obtained 589 exosome-related genes (ERGs) from the 

GeneCards database. Furthermore, we also collected 77 

ERGs on the Molecular Signatures Database (MSigDB 

database) [16] website using “Exosome” as the 

keyword. A total of 628 ERGs were obtained after 

merging and removing duplicates. Likewise, we used 

“lipid metabolism” as the keyword on the GeneCards 

database, and 680 lipid metabolism-related genes 

(LMRGs) were collected. Meanwhile, 102 LMRGs 

were obtained on the MSigDB database using keywords 

“lipid metabolism”. A total of 747 LMRGs were 

collected after merging and removing duplicates. 

Finally, we obtained 52 EALMRGs by intersecting 628 

ERGs and 747 LMRGs (Supplementary Table 1). 

 

Construction and evaluation of EALMRGs 

prognostic models 

 

We selected TCGA-PAAD tumor samples (Table 1) and 

performed univariate COX regression analysis on overall 

survival (OS) related EALMRGs by survival packet. A 

total of 10 prognosis-related EALMRGs were acquired 

with P<0.1. Based on these 10 EALMRGs, the software 

package “glmnet” [17] was used to perform the Least 

absolute shrinkage and selection operator (LASSO) [18] 

logistic regression analysis with tenfold cross-validation. 

LASSO regression is a common machine learning 

technique for constructing prognostic diagnostic models. 

It is used to solve the problem of overfitting by adding a 

penalty term (lambda × absolute value of slope), using 

regularization based on linear regression, and 

additionally, improve the model’s generalization ability. 

 

i
i

i

riskScore Coefficient(Hubgene )

mRNAExpression(Hubgene )

= 
 

 

Subsequently, prognostic-related genes were identified 

as key genes. We drew KM curves and AUC to evaluate 

the prognosis value of these key genes. A risk factor 

graph was drawn to show the groups according to each 

sample’s risk score and survival outcomes in this 
prognostic model. We also used calibration analysis to 

evaluate the performance of the prognostic model based 

on EALMRGs using the rms R package. Decision curve 

https://portal.gdc.cancer.gov/
http://genome.ucsc.edu/
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Table 1. Baseline characteristics in TCGA-PAAD. 

Characteristics Overall 

Pathologic T stage, n (%)  

  T1 7 (4) 

  T2 24 (13.6) 

  T3 143 (80.8) 

  T4 3 (1.7) 

Pathologic N stage, n (%)  

  N0 50 (28.7) 

  N1 124 (71.3) 

Pathologic M stage, n (%)  

  M0 80 (94.1) 

  M1 5 (5.9) 

Gender, n (%)  

  Female 80 (44.7) 

  Male 99 (55.3) 

Age, median (IQR) 65 (57, 73) 

  OS event, n (%)  

  Alive 86 (48) 

  Dead 93 (52) 

DSS event, n (%)  

  Yes 73 (42.2) 

  No 100 (57.8) 

PFI event, n (%)  

  Yes 105 (58.7) 

  No 74 (41.3) 

 

analysis (DCA) is a simple method for evaluating 

clinical predictive models, diagnostic trials, and 

molecular markers. We also drew DCA maps to 

evaluate the predictive effect of the model on the 1-, 3-, 

and 5-year survival state of PAAD patients using the 

ggDCA R package. 

 

Identification of DEGs based on EALMRGs 

prognostic models 

 

For data analysis, the dataset TCGA-PAAD was 

corrected and standardized by limma R packet. We 

calculated the risk score of the TCGA-PAAD sample 

based on the prognostic model and then divided the 

samples into high and low-risk groups according to 

the risk score. Differentially expressed genes (DEGs) 

between two groups in the TCGA-PAAD dataset were 

obtained and presented by plotting volcanic maps 
using ggplot2.package. By selecting DEGs with 

|logFC| >0 and P.adj<0.05, we drew heat maps and 

group comparison maps to display the key gene 

expression in the TCGA-PAAD dataset using 

pheatmap R packet. In addition, we standardized 

GSE62452 and GSE57495 from the GEO dataset  

and selected samples of pancreatic cancer patients  

to batch merge them into a Dataset-PAAD using  

the sva package. According to the risk score, we 

divided Dataset-PAAD into high and low-risk groups 

and drew a group comparison map. Genes  

with consistent trends of TCGA-PAAD and Dataset-

PAAD were selected as hub genes for subsequent 

analysis. 

 

Bulk data download and pre-processing 

 

The clinical phenotype data of PAAD was downloaded 

from the TCGA database. The samples lacking survival 

time and survival state were removed, and all those with 

survival time greater than 0 days were saved. 
Meanwhile, TCGA expression profile data (log2 

(TPM)) was downloaded. Finally, 176 tumor samples 

were obtained. 
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The clinical phenotype data of three external validation 

datasets: PACA_AU, PACA_CA, and PAEN-AU were 

downloaded from the ICGC database. The samples 

lacking survival time and survival state were removed, 

and all those with survival time greater than 0 days were 

saved. Meanwhile, the corresponding expression profile 

data (log2 (TPM)) was downloaded. 

 

GDC Pan Cancer (PANCAN) 33 pan-cancer sequencing 

data and corresponding survival information were 

downloaded from UCSC Xena to analyze the pan-

cancer section. 

 

scRNA data download 

 

Single-cell sequencing data in the GEO database, 

GSE155698, was downloaded. It contained 16 

pancreatic cancer tissue samples and 3 adjacent normal 

pancreas samples. The procedure of single-cell 

sequencing is exerted using the Seurat package in R 

software. 

 

Functional similarity analysis 

 

In this study, GO and KEGG enrichment was 

performed by the clusterProfiler [19–22] R package 

with a screening criterion of P.adj < 0.1 and a P-value 

correction method of Benjamin Hochberg (BH). Gene 

Set Enrichment Analysis (GSEA) and GSVA [23–25] 

were performed to determine differentially enriched 

signaling pathways between high and low-risk groups. 

A function or pathway term with adjusted P.adj < 

0.05, and false discovery rate (FDR) < 0.25 was 

considered statistically significant. In our study, the 

PPI network was constructed using the STRING 

database [26] to obtain the interactions among hub 

genes in EALMRGs, and the least required interaction 

score was 0.4. Furthermore, we used the GeneMANIA 

website [27] to predict the functionally similar genes 

of the screened hub genes and constructed an 

interaction network. We used the miRDB database 

[28] to predict miRNAs that interacted with  

Hub genes and then plotted the mRNA-miRNA 

interaction network using data with Target Score>90. 

Besides, we searched for TF that binds to hub genes 

through the CHIPBase and hTFtarget database, and 

the common parts were retained in both databases  

[29, 30].  

 

Cell culture 

 

Pancreatic carcinoma cell lines of Homo sapiens, 

including PANC-1, SW1990, BXPC-3, CFPAC1, 
ASPC1, and normal pancreatic cell line HPDE6-C7 

were obtained as a gift from Dr. Deyu Zhang in 

Changhai Hospital. Cells were cultured in DMEM 

with 10% fetal bovine serum (Gibco, USA), 100 

μg/mL streptomycin, and 100 U/mL penicillin 

(Invitrogen, USA) at 37° C under 5% CO2 and 1% O2. 

All the following experiments were independently 

repeated three times.  

 

RNA extraction and qRT-PCR of the hub genes 

 

Trizol reagent (Invitrogen, Carlsbad, CA, U.S.A.) was 

used to extract total RNA from the cells according to the 

manufacturer’s protocol. Superscript II reverse 

transcriptase and random primers were used to synthesize 

cDNA. Quantitative real-time PCR (qRT-PCR) was 

conducted on the ABI 7900HT Sequence Detection 

System with SYBR-Green dye (Applied Biosystems, 

Foster City, CA, U.S.A.). All primers were as following: 

GAPDH Forward: 5′-GGACCTGACCTGCCGTCTAG-

3′, Reverse: 5′-GTAGCCCAGGATGCCCTTGA-3′, 

ABCB1: Forward: 5′-CCCATCATTGCAATAGCAGG-

3′and Reverse: 5′-GTTCAAACTTCTGCTCCTGA-3′, 

CAP1: Forward: 5′-GAAGGTGAAGGT CGGAGTC-

3′and Reverse: 5′-CCCGAATCACATTCTCCAAGA A-

3′, EGFR: Forward: 5′-GGACGACGTGGTGGATGC-

3′and Reverse: 5′-GGCGCCTGTGGGGTCTGAGC-3′, 

PPARG: Forward: 5′- ACCAAAGTGCAATCAAAGT 

GGA-3′and Reverse: 5′- ATGAGGGAGTTGGAAGGC 

TCT-3′, SNCA: Forward: 5′- AAGAGGGTGTTCTCTA 

TGTAGGC-3′ and Reverse: 5′- GCTCCTCCAACATT 

TGTCACTT-3′. The reaction parameters included a 

denaturation program (10 min at 95° C), followed by an 

amplification and quantification program over 45 cycles 

(15 s at 95° C and 34 s at 60° C). Each sample was tested 

in triplicates, and each sample underwent a melting curve 

analysis to check for the specificity of amplification. The 

expression level was determined as a ratio between the 

hub genes and the internal control GAPDH in the same 

mRNA sample and calculated by the comparative CT 

method. Expression levels of hub genes were calculated 

by the 2−δδCt method. 

 

Statistical analysis 

 

All data analyses in this study were performed and 

visualized in R software (Version 4.1.2) or GraphPad 

Prism (Version 8). The Wilcoxon rank sum test was 

used to compare the two groups of continuous 

variables, and the statistical significance of normal 

distribution variables was estimated through an 

independent Student t-test. LASSO regression analysis 

was based on the R package glmnet and ROC [31] 

using the R package pROC. If not particularly 

specified, the results were calculated using Spearman 

correlation analysis to calculate the correlation 
coefficients between different molecules. All P-

statistics were bilateral, with a P-value<0.05 as a 

statistically significant criterion. 
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RESULTS 
 

Merge and correction of dataset in GEO 

 

The gene expression matrix of GSE62452 and 

GSE57495 datasets from GEO was firstly background 

corrected and data normalized. We obtained Dataset-

PAAD using the sva R package to remove batch effects 

of the combined two datasets. We also compared the 

datasets before and after the removal of batch effects 

through distribution Boxplot (Figure 1A, 1B) and 

Principal Component Analysis (PCA) (Figure 1C, 1D). 

The results indicated that the batch effect of Dataset-

PAAD samples was eliminated after processing. 

 

Construction of EALMRGs prognostic models  

 

We obtained 52 EALMRGs by intersecting 628 ERGs 

and 747 LMRGs (Figure 2A). A total of 10 prognosis-

related EALMRGs were obtained using univariate Cox 

regression analysis with P < 0.1 in EALMRGs from 

TCGA-PAAD, including ABCB1, CAP1, EGFR, 

ITGB1, MAPK1, MTREX, PPARG, RAB7A, SNCA, 

VDAC1 (Table 2), and forest plot was drawn to show 

 

 
 

Figure 1. Merge and correction of dataset. (A) Boxplot to show merged dataset before batch processing. (B) Boxplot to show merged 

dataset after batch processing. (C) PCA to show merged dataset before batch processing. (D) PCA to show merged dataset after batch 
processing. PCA, Principal Component Analysis. 



www.aging-us.com 11336 AGING 

 
 

Figure 2. Model establishment for prognosis. (A) Venn diagram: the blue circle on the left includes the 576 ERGs, the red circle on the 

right includes the 695 LMRGs, and the intersection of the two circles includes the 52 EALMRGs. (B) Forest plot to show the result of univariate 
Cox regression analysis. (C) The confidence interval under each lambda. (D) The changing trajectory of each independent variable. (E) Risk 
score nomogram consists of 3 parts, including risk group, survival outcomes, and heatmap. (F–H) The calibration curves of the nomogram are 
at 1-year (F), 3-year (G), and 5-year (H), respectively. The X-axis in curves represented nomogram predicted survival probability and Y-axis 
represented observed fraction survival probability. (I–K) DCA diagrams of the models for 1-year (I), 3-year (J), and 5-year (K), respectively. The 
X-axis in DCA diagrams represents Threshold Probability and the Y-axis represents Net Benefit. LASSO, Least absolute shrinkage and selection 
operator; TCGA, The cancer genome atlas; OS, Overall survival; DCA, decision curve analysis; LASSO, least absolute shrinkage and selection 
operator. 
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Table 2. Univariate and multivariate Cox regression. 

Characteristics Total (N) 

Univariate analysis Multivariate analysis 

HR (95% CI) P-value HR (95% CI) P-value 

ABCB1 179 0.829 (0.712 - 0.966) 0.016 0.783 (0.632 - 0.970) 0.025 

CAP1 179 1.610 (1.192 - 2.177) 0.002 0.932 (0.543 - 1.602) 0.800 

EGFR 179 1.420 (1.155 - 1.746) < 0.001 1.161 (0.859 - 1.568) 0.331 

ITGB1 179 1.376 (1.093 - 1.731) 0.006 1.054 (0.655 - 1.697) 0.829 

MAPK1 179 1.512 (1.040 - 2.197) 0.030 1.925 (0.924 - 4.008) 0.080 

MTREX 179 1.358 (0.951 - 1.939) 0.092 0.998 (0.581 - 1.716) 0.995 

PPARG 179 1.282 (1.102 - 1.492) 0.001 1.052 (0.864 - 1.281) 0.614 

RAB7A 179 2.149 (1.258 - 3.672) 0.005 0.984 (0.428 - 2.260) 0.969 

SNCA 179 0.657 (0.491 - 0.880) 0.005 0.695 (0.489 - 0.990) 0.044 

 

the results (Figure 2B). We used LASSO regression 

analysis to construct a LASSO prognostic model based 

on the expression of these 10 genes. The optimal 

lambda value for the evaluation index corresponds to 7 

genes with non-zero coefficients (Figure 2C), and a 

LASSO prognostic variable trajectory map was drawn 

(Figure 2D). These 7 genes were identified as key 

genes, including ABCB1, CAP1, EGFR, ITGB1, 

MAPK1, PPARG, and SNCA. We also visualized the 

high and low expression in the LASSO prognostic 

model with risk score, consisting of 3 parts, including 

risk group, survival outcomes, and heatmap (Figure 2E). 

 

Evaluation of prognostic EALMRGs genes 

 

In our study, we conducted a 1-, 3- and 5-year 

prognostic calibration analysis based on the LASSO 

model and plotted a calibration curve. The results 

revealed that the 1- and 3-year prediction effect was 

better than that of the 5-year (Figure 2F–2H). 

Meanwhile, we used DCA diagrams to evaluate the 

clinical utility of the LASSO prognostic model at 1-, 3- 

and 5-year, and the results presented that the predictive 

value of the model at 5-year was better than that at 1- 

and 3-year (Figure 2I–2K). 

 

Furthermore, according to these 7 key genes (ABCB1, 

CAP1, EGFR, ITGB1, MAPK1, PPARG, SNCA), we 

plotted the KM curves to show the survival state of high 

and low expression groups in tumor samples from the 

TCGA-PAAD dataset. The result of KM curves 

suggested that the survival rate of PAAD patients in the 

high-expression group of genes ABCB1 and SNCA was 

higher than that in the low-expression group over time, 

while the survival rate of PAAD patients in the high-

expression group of CAP1, EGFR, ITGB1, MAPK1, 
PPARG was lower than that in the low-expression 

group over time (Figure 3A–3G). We also plotted time 

ROC curves of high and low gene expression groups 

(Figure 3H–3N) and the trend of AUC of 7 key genes 

and prognostic models over time (Figure 4A–4G). All 7 

genes performed well in predicting the prognosis of 

PAAD patients at 5-year, with EGFR and ITGB1 

having better overall predictive effects than other genes 

with certain accuracy in LASSO models. 

 

Validation of risk models using external data sets 

 

We used these 5 key genes to construct a risk model on 

the TCGA-PAAD dataset, calculated the risk score for 

each patient, and divided into high and low-risk groups 

by the median. According to the KM curve, it could be 

seen that the survival of patients in the high-risk group 

was poor, and the risk model had good value in 

predicting the prognosis survival time (Figure 5A). To 

verify the generalization of the model, we evaluated the 

model on three external independent datasets. Through 

the prediction of the model, there were significant 

differences in survival between high and low-risk 

groups, and it has good predictive performance for 

patient prognosis and survival time (Figure 5B–5D). 

Moreover, the mRNA level of ABCB1 and SNCA were 

identified with significant downregulation in pancreatic 

cancer cell lines compared to normal pancreatic cells. 

Additionally, the mRNA level of CAP1, EGFR and 

PPARG were identified with significant downregulation 

in pancreatic cancer cell lines compared to normal 

pancreatic cells (Supplementary Figure 1A). 

 

Immune microenvironment analysis in high and low-

risk groups 

 

To further analyze the differences in the immune 

microenvironment in patients with high and low-risk, 

we compared the immune scores predicted by 
ESTIMATE. We found lower levels of immune 

infiltration in high-risk patients (Figure 6A). We then 

used the MCP-counter algorithm to examine the 
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Figure 3. KM curve and time ROC of key genes in TCGA-PAAD. (A–G) The KM curve of the high and low expression groups of Key 

genes in TCGA-PAAD. Patients with high expression of ABCB1 (A) and SNCA (G) had significantly longer overall survival; patients with high 
expression of CAP1 (B), EGFR (C), ITGB1 (D), MAPK1 (E) and PPARG (F) had significantly shorter overall survival. (H–N) The time ROC curve of 
the high and low expression groups of Key genes in TCGA-PAAD. ROC curve showed the efficiency of 7 key gene expression levels to predict 
the prognosis over time. The X-axis represents a false positive rate, and the Y-axis represents a true positive rate. OS, Overall survival; KM, 
Kaplan–Meier; ROC, receiver operating characteristic curve. 
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approximate infiltration of cell types, and the results 

showed that multiple immune cell types had less 

infiltration in high-risk patients (Figure 6B). The ssgsea 

algorithm was then used to analyze the relationship 

between the high-low risk group and 28 kinds of immune 

cell scores, and we found that the low-risk group had 

higher immune cell scores (Figure 6C). The infiltration of 

immune cells is directly related to patient survival, and 

some studies have shown a certain correlation between 

chemokines and immune cell infiltration. Therefore, we 

analyzed the correlation between risk scores and 

chemokines and their receptors (Figure 6D). 

 

The function of immune cells is affected by immune 

checkpoints. We then analyzed the correlation between 

risk score and immune checkpoints (Figure 6E) and 

found a positive correlation with most immune 

checkpoints. 

 

 
 

Figure 4. The time AUC curve of the high and low expression groups of Key genes in TCGA-PAAD. The AUC of ABCB1 (A) is less 

than 0.5 over time, which indicates they were protective factors, and the closer the AUC value is to 0, the better the prediction performance. 
The AUC of CAP1 (B), EGFR (C), ITGB1 (D), MAPK1 (E), and PPARG (F) are all over than 0.5 over time, which indicates they were risk factors, 
and the closer the AUC value is to 1, the better the prediction performance. The AUC of SNCA (G) is also less than 0.5 over time. The X-axis 
represents time, and Y-axis represents the AUC value. TCGA, The cancer genome atlas; AUC, Area Under Curve. 
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Subsequently, we analyzed the potential clinical  

effects of immunotherapy evaluated by using TIDE 

(http://tide.dfci.harvard.edu/) software in our defined 

high-risk groups. The higher the TIDE prediction score, 

the higher the likelihood of immune escape, indicating a 

lower likelihood of patients benefiting from immuno-

therapy. It was found that the higher the risk score, the 

higher the TIDE score (Figure 6F). 

 

More profoundly, to examine the differences in immune 

stages, we used the TIP analysis tumor immune 

phenotype (TIP) database (http://biocc.hrbmu.edu. 

cn/TIP), a web-based tool that can evaluate the immune 

microenvironment based on the cancer immune cycle. 

We calculated the scores for each of the seven steps of 

the immune cycle in each sample (one step for each 

color from left to right) and found a higher immune step 

score (Figure 6G) in the low-risk group.  

 

Analysis of prognostic value of risk model in pan-

cancer 

 

We evaluated the model on 33 pan-cancer data, and 

through univariate cox analysis, we found that it  

was significant in 5 datasets other than PAAD, and as  

a risk prognostic factor in 4 datasets (Figure 7A). 

Simultaneously, a favorable C-index (Figure 7B) was 

shown in multiple datasets. Subsequently, K-M plot was 

plotted for these four datasets, and patients in the high-

risk group also have poorer prognoses in multiple 

cancers (Figure 7C). Moreover, we used the GSVA 

package to perform a pathway enrichment score on the 

pan-cancer dataset for the pathways in KEGG. 

Subsequently, correlation analysis was conducted based 

on their respective risk scores to screen for pathways 

(P-value < 0.05), and then pathways that were retained 

for more than 10 cancer species were screened and 

shown in Supplementary Figure 1B. 

 

Discovery of DEGs based on EALMRGs prognostic 

models 

 

We calculated the risk scores of the dataset samples 

from TCGA-PAAD based on the LASSO regression 

results. According to the risk scores, samples from 

TCGA-PAAD and Dataset-PAAD were divided into 

low and high-risk groups. Subsequently, we performed 

differential analysis on the processed TCGA-PAAD 

dataset. A total of 13270 DEGs were identified with 

|logFC|>0 and P.adj < 0.05 and included 8016 

upregulated and 5254 downregulated genes. The DEGs 

were visualized by the volcano plot (Figure 8A). 

 

 
 

Figure 5. Validation of risk models using external data sets. (A) KM curve (top) of TCGA-PAAD dataset, Time-dependent area under 
the receiver operating characteristic curve (AUC) at 1-, 3-, and 5-year in the A TCGA-PAAD (bottom); (B–D) KM curve (top), Time-dependent 
area under the receiver operating characteristic curve (AUC) at 1-, 3-, and 4-year in the B PACA_AU, C PACA_CA, D PAEN_AU (bottom). 

http://tide.dfci.harvard.edu/
http://biocc.hrbmu.edu.cn/TIP
http://biocc.hrbmu.edu.cn/TIP


www.aging-us.com 11341 AGING 

 
 

Figure 6. Immune microenvironment analysis in high and low risk groups.  (A) Comparison of the Estimate score in high and low-

risk groups; (B) MCP-counter immune cell infiltration score was compared between high and low-risk groups; (C) The ssgsea calculated 28 
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kinds of immune cell infiltration scores in high and low-risk groups. (D) Correlation analysis between risk score and chemokines and 
receptors; (E) Correlation analysis between risk score and 20 kinds of immune checkpoints; (F) Correlation analysis between risk score 
and TIDE score (immune escape); (G) TIP calculated comparison of tumor immune cycle step scores in high-low risk groups. *<0.05 
**<0.01 ***<0.001.  

 

 
 

Figure 7. Analysis of prognostic value of risk model in pan-cancer. (A) Analysis of the relationship between survival model and OS in 

pan-cancer; (B) Cindex of survival model on pan-cancer; (C) KM curves of TCGA-LUAD, TCGA-MESO, TCGA-SARC, TCGA-ACC. 
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Figure 8. Differential expression and functional similarity analysis. (A) Volcano plot of DEGs between high and low-risk groups in 

TCGA-PAAD, mapping 8016 upregulated genes (red dots) and 5254 downregulated genes (blue dots). No significantly changed genes are 
marked as gray dots. (B) The heatmap to show high and low-risk groups and 7 key gene expressions. (C, D) Boxplots to show the expression 
difference of ABCB1, CAP1, EGFR, ITGB1, MAPK1, PPARG, and SNCA between high and low-risk groups in TCGA-PAAD dataset (C) and Dataset 
PAAD (D). (E) Raincloud plots to show the functional similarity analysis of 5 hub genes; X-axis represents a similarity score, and the larger the 
value, the higher the functional similarity with other genes. (F) Chromosomal mapping of 5 Hub genes. Ns represents P-value ≥ 0.05, with no 
statistically significant difference; * represents P-value < 0.05, with a statistically significant difference; ** represents P-value < 0.01; *** 
represents P-value < 0.001. 
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We also analyzed the differential expression of 7 key 

genes (ABCB1, CAP1, EGFR, ITGB1, MAPK1, 

PPARG, SNCA) between low and high-risk groups in 

the TCGA-PAAD dataset and drew a heatmap using R 

packet (Figure 8B). The differential expression of key 

genes can be seen in Table 3. Boxplots were drawn for 

key genes in the TCGA-PAAD dataset and Dataset-

PAAD (Figure 8C, 8D). The expression trends of all 

key genes in both datasets were consistent between high 

and low-risk groups.  

 

According to Figure 8D, 5 genes (ABCB1, CAP1, 

EGFR, PPARG, SNCA) showed statistical significance 

in Dataset-PAAD, selected as hub genes for subsequent 

analysis. 

 

We calculated semantic similarity among GO terms, 

sets of GO terms, gene products, and gene clusters 

using the GOSemSim.R package to analyze the 

functional similarity of these 5 hub genes. We then 

visualized the functional similarity analysis results 

through Raincloud plots (Figure 8E). The results 

revealed that EGFR had better functional similarity than 

other hub genes. We also used the RCircos package to 

annotate the location of 5 hub genes on human 

chromosomes (Figure 8F). As shown in the graph, these 

hub genes were mainly distributed on chromosomes 1, 

3, 4, and 7, among which chromosome 7 was distributed 

with 2 hub genes. This indicated that these hub genes 

had close positions on human chromosomes and were 

also closely related at the genomic level.  

 
Pancreatic cancer single cell dimension reduction 

annotation 

 

Firstly, by setting each gene to be expressed in at least 3 

cells and at least 200 genes per cell, the single-cell data 

was filtered to obtain 55339 cells. Moreover, 

PercentageFeatureSet function was used to calculate the 

proportion of mitochondria and rRNA to ensure that the 

expressed genes of each cell are greater than 200 and 

less than 10,000, and Supplementary Table 1 shows the 

count of cells before and after filtration. The 

Supplementary Figure 2A indicates that UMI is 

significantly correlated with the amount of mRNA, 

while UMI/mRNA is not significantly correlated with 

the content of mitochondrial genes. Supplementary 

Figure 2B indicates the violin diagram before (TOP) 

and after (Bottom) quality control. 

 

Further, we standardized the data for each of the three 

samples by log-normalization, searched for highly 

variable genes (based on variance stabilization 
transformation (“vst”) to identify variable features) by 

FindVariableFeatures function, scaled all genes by 

ScaleData function and found anchor points by PCA 

dimensionality reduction with RunPCA (Supplementary 

Figure 2C). Dim=35 was selected, and finally, the Find 

Neighbors and FindClusters functions were used to 

cluster cells (Resolution=0.3), and a total of 20 

subgroups (Supplementary Figure 3) were obtained. At 

the same time, the RunTSNE function was used to 

conduct TSNE dimension reduction analysis on 51492 

cells. the classical immune cell marker (The markers 

used were shown in Supplementary Figure 4) reported 

in the literature was combined with the SigleR 

algorithm to annotate 20 subgroups of cells, and finally 

17 cell types were obtained and visualized according to 

sample source and cell type (Figure 9A–9D). 

 

Subsequently, we used the FindAllMarkers function to 

screen marker genes for 17 cell types using logfc=0.35 

(multiple of differences) and Minpct=0.35 (smallest 

expression ratio of differential genes) and performed the 

screening with a corrected p<0.05. Here, we only show 

the expression of the top 5 marker genes with the most 

outstanding contributions in each subpopulation (Figure 

9E), and the results of marker genes are shown in the 

table scRNA_marker_gene.txt. Further, we analyzed the 

proportion of these 17 types of cells in each sample 

(Figure 9F). 

 

To further identify malignant cells, we used copykat 

algorithm to predict malignant cells (Figure 9G, 9H). 

 

Hub gene was analyzed at the single-cell level 

 

We first examined the expression of hub gene in 

different cell types (Figure 10A), and then based on the 

5 BP results enriched by hub gene on Bulk data, we 

used the ssgsea algorithm to score these 5 BP in each 

cell type (Figure 10B–10F). 

 

Functional enrichment analysis of Hub genes and 

DEGs 

 

The function of these 5 hub genes was predicted by 

analyzing GO and KEGG. The GO annotations 

consisted of three parts, including BP, CC, and MF with 

criterion P.adj < 0.1, which were used to analyze the 

functional enrichment of genes. These 5 hub genes were 

mainly related to BP of regulation of JNK cascade 

(GO:0046328), JNK cascade (GO:0007254), regulation 

of transporter activity (GO:0032409), organic acid 

transport (GO:0015849), regulation of protein 

serine/threonine kinase activity (GO:0071900) in GO 

annotation analysis. These genes were also mainly 

associated with cell cortex (GO:0005938), vesicle 

lumen (GO:0031983), platelet alpha granule membrane 
(GO:0031092), focal adhesion (GO:0005925), cell-

substrate junction (GO:0030055) in CC and actin 

binding (GO:0003779), ubiquitin protein ligase binding 
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Table 3. Key genes DEA in TCGA-PAAD. 

GENE logFC AveExpr t P-value P.adj B 

SNCA -0.76663 1.396627692 -7.459 3.71E-12 6.79E-10 17.23201 

PPARG 1.272794 4.420288301 7.424397 4.53E-12 7.81E-10 17.03936 

ABCB1 -1.09405 3.098367518 -6.05659 8.08E-09 2.91E-07 9.838242 

EGFR 0.741565 4.344547598 5.763118 3.58E-08 9.45E-07 8.413015 

CAP1 0.595678 8.441607674 5.713291 4.59E-08 1.15E-06 8.175759 

ITGB1 0.738944 6.717817488 4.87041 2.45E-06 2.90E-05 4.386726 

MAPK1 0.334392 5.940672572 3.822517 0.000183 0.001014 0.336601 

DEA, Differential Expression Analysis; TCGA, The cancer genome atlas. 

 

(GO:0031625), prostaglandin receptor activity 

(GO:0004955), ubiquitin-like protein ligase binding 

(GO:0044389), and prostanoid receptor activity 

(GO:0004954) in MF. The results of GO annotations 

can be seen in Table 4. KEGG analysis was conducted 

to explore the relationship between hub genes and 

signaling pathways. The results indicated that hub genes 

were not enriched in the KEGG pathway. 

 

We presented the results of GO annotations using bar 

charts (Figure 11A) and network charts (Figure 11B–

11D). Subsequently, the GO annotations of a joint 

logFC in these 5 hub genes were conducted. Based on 

the enrichment analysis, we calculated the z-score 

corresponding to each molecule by providing the logFC 

values of the key genes from the difference analysis 

results of the TCGA-PAAD high and low-risk groups. 

We showed the GO enrichment analysis results of a 

joint logFC using a bubble plot (Figure 11E).  

 

We further performed GSEA between the high and low-

risk groups based on the prognostic model to uncover 

enrichment signaling pathways in PAAD with P.adj < 

0.05 and FDR value (qvalue) < 0.25 (Supplementary 

Table 2). The results showed that genes in the high and 

low-risk groups were significantly associated with 

NO2IL12 pathway (Supplementary Figure 5B), peptide 

hormone metabolism (Figure 8C), ADORA2B mediated 

anti-inflammatory cytokines production (Supplementary 

Figure 5D), metabolic reprogramming in pancreatic 

cancer (Supplementary Figure 5E), MET promotes cell 

motility (Supplementary Figure 5F), assembly of 

collagen fibrils, and other multimeric structures 

(Supplementary Figure 5G). We drew a ridge plot 

(Supplementary Figure 5A) to display the above results. 

 

We also conducted a GSVA to explore the differences 

of Hallmark genes in the prognosis model between the 

high and low-risk groups. The results showed 

significant differences in the high and low-risk groups 

of the TCGA-PAAD prognostic model among 36 

hallmark genes sets, including adipogenesis, androgen 

response, apical junction, apical surface, and apoptosis 

(Supplementary Table 3). We also analyzed the 

differential expression of these 36 HALLMARK 

pathways between high and low-risk groups in the 

TCGA-PAAD dataset and drew a heatmap to display 

the results using pheatmap R packet (Supplementary 

Figure 6A). According to the results of GSVA, we 

investigated the differences of 36 HALLMARK 

pathways between different groups in the TCGA-PAAD 

dataset using the Mann Whitney U test and displayed 

the results through grouped bar chart (Supplementary 

Figure 6B), which revealed that the expression of these 

36 HALLMARK pathways were significantly different 

between high and low-risk groups. 

 

Construction of PPI network and identification of 

prognostic-related gene 

 

To better understand the potential interactions between 

the 5 hub genes (ABCB1, CAP1, EGFR, PPARG, 

SNCA) in the PAAD group, a PPI network was 

constructed using the STRING database, and the 

interaction threshold was set at 0.400. The PPI analysis 

is visualized in Figure 12A. The results showed that 

other hub genes interacted with at least one hub gene 

except for CAP1 under the least required interaction 

score of 0.400. Among them, EGFR had interactions 

with three hub genes, a gene with many interactions 

with other genes. In addition, we also predicted and 

constructed an interaction network of functionally 

similar genes among these five hub genes using 

GeneMANIA to observe their interactions, co-

expression, co-localization, and other information 

(Figure 12B).  

 

Besides, we used mRNA-miRNA data from the miRDB 

database to predict miRNAs that interact with five hub 

genes. We then screened with the criteria of target 

score>90, and the interaction pairs were visualized by 

Cytoscape to show mRNA-miRNA interaction network 

(Figure 12C). A total of 65 pairs mRNA-miRNA 

interactions were constituted by 5 hub genes (ABCB1, 
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Figure 9. Pancreatic cancer single cell dimension reduction annotation. (A, B) tSNE on Tumor(yellow)/Adjacent(blue) and all patient 

tissues. (C, D) tSNE on 3 adjacent/normal pancreas (left) and 16 PDA patient (right) tissues. (E) Top 5 marker basis for each cell type; (F) Cell 
count statistics for each sample; (G) Copykat prediction results; (H) The proportion of various cell types adjacent to the tumor. 
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CAP1, EGFR, PPARG, SNCA) and 62 miRNAs 

(Supplementary Table 4). 
 

TF control gene expression through interactions with 

target genes (mRNA) during the post transcriptional 

stage. We searched for TFs combined with hub genes 

through CHIPBase and hTFtarget database, downloaded 

the interaction relationships found in the two databases, 

and performed the intersection. Finally, a total of 67 

pairs of mRNA-TFs interaction relationships were 

constituted by 5 hub genes (ABCB1, CAP1, EGFR, 

PPARG, SNCA) and 51 TFs, which were visualized 

using Cytoscape (Figure 12C). The specific mRNA-TFs 

interaction relationships are shown in the 

Supplementary Table 5. 

 

DISCUSSION 
 

Due to the presence of atypical symptoms, insidious 

location, rapid disease progression, and poor prognosis, 

PAAD has emerged as one of the most malignant and 

aggressive solid tumors [32]. Although surgical and 

adjuvant treatment for pancreatic cancer has been 

extensively developed, it is still insufficient to improve 

the prognosis of PAAD patients. However, exploration 

and mining of effective biomarkers in pancreatic cancer 

have become increasingly vital and beneficial for 

diagnosing, treating, and supervising PAAD patients, 

which are still relatively scarce. Serum CA19-9 is the 

only serum biomarker for treatment approved by the 

Food and Drug Administration [33], and it also has a 

certain suggestive effect on the evaluation of prognosis 

and overall survival rate in PAAD patients [34]. 

Nevertheless, CA19-9 is significantly elevated in a 

variety of benign diseases of the digestive system, such 

as cirrhosis, pancreatitis, and cholangitis. Furthermore, 

there are non-specific expressions of false negative 

results caused by the Lewis negative genotype and false 

positive results caused by obstructive jaundice, which 

severely limits the application of serum CA19-9 in the 

PAAD prognosis prediction [35]. Thus, it is crucial to 

identify novel biomarkers to predict prognosis and 

enhance individualized therapies in PAAD patients. 

Exosomes, as novel biomarkers for tumors, have been 

developed for constructing prognostic models in 

esophageal carcinoma [36], hepatocellular carcinoma 

[37], and pancreatic ductal adenocarcinoma [38]. 

Nowadays, increasing studies have found that abnormal 

lipid metabolism is associated with tumors, and 

researchers also constructed a prognostic model based 

 

 
 

Figure 10. Hub gene was analyzed at the single-cell level. (A) Hub gene expression in individual cell types; (B–F) 5 BP enrichment 
scores in each cell type.  
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Table 4. GO enrichment analysis results of hub genes. 

ONTOLOGY ID Description GeneRatio BgRatio P.adj q-value 

BP 

GO:0046328 regulation of JNK cascade 2023/1/5 141/18800 0.06017 0.01692 

GO:0007254 JNK cascade 2023/1/5 175/18800 0.06518 0.01833 

GO:0032409 regulation of transporter activity 2023/3/5 305/18800 0.00793 0.00223 

GO:0015849 organic acid transport 2023/3/5 318/18800 0.00793 0.00223 

GO:0071900 regulation of protein serine/threonine kinase activity 2023/3/5 372/18800 0.0087 0.00245 

GO:0032768 regulation of monooxygenase activity 2023/2/5 57/18800 0.00916 0.00258 

GO:0010517 regulation of phospholipase activity 2023/2/5 66/18800 0.01093 0.00307 

CC 

GO:0005938 cell cortex 2023/2/5 310/19594 0.05377 0.0259 

GO:0031983 vesicle lumen 2023/2/5 327/19594 0.05377 0.0259 

GO:0031092 platelet alpha granule membrane 2023/1/5 17/19594 0.05377 0.0259 

GO:0005925 focal adhesion 2023/2/5 419/19594 0.05377 0.0259 

GO:0030055 cell-substrate junction 2023/2/5 428/19594 0.05377 0.0259 

GO:0015629 actin cytoskeleton 2023/2/5 499/19594 0.06048 0.02914 

GO:0005771 multivesicular body 2023/1/5 63/19594 0.08852 0.04264 

MF 

GO:0003779 actin binding 2023/3/5 439/18410 0.01196 0.00287 

GO:0031625 ubiquitin protein ligase binding 2023/2/5 298/18410 0.02641 0.00635 

GO:0004955 prostaglandin receptor activity 2023/1/5 10/18410 0.02641 0.00635 

GO:0044389 ubiquitin-like protein ligase binding 2023/2/5 317/18410 0.02641 0.00635 

GO:0004954 prostanoid receptor activity 2023/1/5 11/18410 0.02641 0.00635 

GO:0008179 adenylate cyclase binding 2023/1/5 12/18410 0.02641 0.00635 

GO:0097677 STAT family protein binding 2023/1/5 12/18410 0.02641 0.00635 

GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function. 

 

on lipid metabolism-related genes to predict patients 

with gastric [39] and hepatocellular carcinoma [40]. 

Even though exosomes or lipid metabolism genes have 

been shown to be accurate predictors of tumor 

prognosis in previous studies, there is still lack of 

research on EALMRGs as a predictive biomarker for 

PAAD. 

 

In this study, we constructed a 7-gene (ABCB1, CAP1, 

EGFR, ITGB1, MAPK1, PPARG, SNCA) prognostic 

model based on EALMRGs using LASSO logistic 

regression analysis. Calibration analysis results 

suggested that the prediction performance in 1- and 3-

year were better than that in 5-year; however, the DCA 

analysis results were the opposite. Several previous 

studies also reported some specific prognostic models in 

PAAD. For example, Yang et al. constructed a 3-gene 

(ALOX5, ALOX12, CISD1) prognostic model based on 

ferroptosis-related genes, and they found that the model 

had a high AUC (=0.976) at 5-year in TCGA-training 

set, as well as in the GSE62452 (AUC=0.743) [41]. 

Moreover, a novel 9-gene prognostic model based on 

multi-omics in PAAD was developed and proven to 

have a good performance (average AUC>0.8) in 

predicting the prognosis [42]. Furthermore, Su et al. 

reported the high prognostic performance of pyroptosis-

related genes (GSDMC, IRF1, and PLCG1). They found 

that this model performed well in predicting the 1-, 3- 

and 5-year survival of TCGA-PAAD patients [43]. 

Despite this, our model demonstrates good predictive 

value in general, and we are the first to examine 

EALMRG signatures in PAAD prognosis prediction.  

 

We also obtained 13270 DEGs between high and low-

risk groups based on the EALMRGs related prognostic 

model from TCGA-PAAD, with 8016 up-regulated 

genes and 5254 down-regulated genes. The GSEA 

results showed that these DEGs were closely related to 

metabolic reprogramming in pancreatic cancer. 

Metabolic reprogramming in pancreatic cancer, 

including glucose metabolism, lipid metabolism, 

tricarboxylic acid cycle, and amino acid metabolism, 

not only provides nutrition for tumor occurrence and 

development, but also affects the function of anti-tumor 

immune cells and immunosuppressive cells in the 

microenvironment [44]. Besides, mesenchymal-

epithelial transition (MET) promoting cell motility 

plays an important role in various tumors [45]. 

However, the GSVA results suggested that these DEGs 

differed in 36 Hallmarks, such as androgen response 

and apical junction. A previous study reported that 

androgen receptors and related responses were 
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associated with human carcinogenesis in hepatocellular 

and pancreatic cancer [46]. The androgen response has 

also been proven to play a vital role in the occurrence 

and development of tumors [47]. The results of our 

study were consistent with this literature, but the 

specific mechanism in PAAD still needs further 

exploration. 

 

We identified 5 significant EALMRGs, including 

ABCB1, CAP1, EGFR, PPARG, and SNCA. The results 

suggested that all of them have good predictive 

performance in the fifth year, with ABCB1 and SNCA  

as protective factors having better overall predictive 

ability at 1-, 3- and 5-year. These 5 genes are closely 

distributed on chromosomes, indicating a close 

functional connection at the genomic level. Thus, we 

further explored the biological role of these 5 genes and 

PAAD. Consistent with the published data, these 5 

genes were enriched in several GO terms, such as 

protein serine/threonine kinase activity [48], focal 

adhesion [49], and actin binding [50], which have 

suggested the possible relationship with their regulation 

and mediation in PAAD patients. The enrichment 

analysis result also indicated that cell-substrate junction 

is involved in the progress of several cancers, including 

gastric [51], nasopharyngeal [52], and lung cancers 

[53], but pancreatic cancer has not yet been reported. 

However, disease and disorder research on cancers has 

not been conducted in relation to the organic acid 

transport and regulation of transporter activity, which  

is likely a direction for our research on tumor 

mechanisms.  

 

Through PPI construction, we identified several genes, 

including mRNA (CAP2, SLC22A3), miRNA (miR-

9985, miR-27, miR-548), and TFs (CEBPA), involved in 

 

 
 

Figure 11. GO enrichment analysis. (A)The GO enrichment analyses of DEGs in Hub genes. (B–D) Chordal graph of GO enrichment for 5 

Hub genes: BP pathway (B), CC pathway (C), and MF pathway (D). In the network diagram, blue dots represent specific genes, and red blocks 
represent specific pathways. (E) A bubble plot shows GO enrichment of a joint logFC. GO, Gene Ontology. 
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Figure 12. PPI network analysis. (A) PPI network of hub genes. (B) PPI network of functionally similar genes analysis in Hub genes. Black 
circles with white slashes represent the input hub genes, and other black circles without white slashes represent predicted functionally 
similar genes; red lines represent physical interactions among genes, purple lines represent co-expression relationships among genes, yellow 
lines represent shared protein domains among genes, blue lines represent co-localization relationships among genes, and green lines 
represent genetic interactions among genes. (C) An interaction network of mRNA-miRNA in hub genes. The yellow circle represents mRNA; 
the blue square represents miRNA. (D) An interaction network of mRNA-TFs in hub genes. The yellow circle represents mRNA; the blue 
diamond shape represents TFs. PPI, protein-protein interaction; TF, Transcription Factor. 
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the prognosis mechanism of pancreatic cancer. The 

SLC22A3 and CAP2 might become specific predictive 

signatures for diagnosing pancreatic cancer [54–56]. 

Has-miR-9985-584p could regulate most identified 

ferroptosis-related genes to participate in the developing 

type 2 diabetic islets [57], which is still an important 

pathogenic factor for pancreatic cancer. MicroRNAs 

such as hsa-miR-27a-3p and hsa-miR-27b-3p were 

found to correlate with EGFR and PPAG in PAAD, and 

these 2 microRNAs were also correlated with gastric 

and esophageal cancers [58, 59]. However, hsa-miR-
548-family seems to embrace a very close relationship 

with PPARG from our study, and it belongs to the top 

down-regulated colorectal cancer from Josef Horak’s 

research [60]. Dysregulation of CEBPA expression is 

widely reported in human cancer, for which various 

mechanisms have been described [61]. A study reported 

that CEBPA could promote the proliferation, invasion 

and migration of pancreatic cancer cells, and 

upregulation of CEBPA can be induced by KDM6B 

knockdown [62]. The above results not only indicate 

that these 5 EALMRGs have great potential to predict 

the prognosis of PAAD forebode the possible 

interaction of genes and molecules, and further provide 

a theoretical basis for the EALMRGs prognosis 

mechanism. 

 

Currently, an increasing body of evidence suggests that 

these 5 hub genes are associated with the malignancy of 

tumors, especially PAAD. ATP-binding cassette 

transporter B1 (ABCB1) is called MDR1 P-glycoprotein 

and has been reported to play an important role in the 

chemotherapy resistance of pancreatic cells through 

upregulation of drug efflux [63]. ABCB1 is a pivotal 

transcriptional factor of WNT/β-catenin signaling, and 

the upregulation of ABCB1 expression was modulated 

by the specific gain-of-function CTNNB1 mutations 

[64]. Notably, transcriptional level of ABCB1 is also 

increased through leptin activation from tumor-related 

microenvironment [65]. Another research reported that 

patients with high protein levels of ABCB1 are 

correlated with worse prognosis [66]. However, our 

study found that an up-regulated level of ABCB1 could 

improve the survival rate of pancreatic cancer. The 

opposite result might relate to the association of ABCB1 

with molecular status, tumor characteristics, 

demographics, and genetic variants [67], which still 

needs more laboratory and clinical data to be explored 

and validated. 

 

Initially, SNCA was firstly identified as a pivotal 

promoter in the development of Parkinson’s disease 

[68] and is important in maintaining mitochondrial 
homeostasis, proteasome function, and molecular 

chaperone activity [69]. Several studies reported that 

SNCA is related to carcinogenesis. In a meta-analysis of 

genetic parkinsonism and cancer, SNCA was 

predominantly associated with gastrointestinal cancers 

[70], such as colorectal cancer [71]. Matteo Bianchini 

and co-workers discovered that α-syn was significantly 

upregulated in PDAC [72]. Nevertheless, our study 

found that SNCA was positively associated with the 

survival rate of PAAD patients, suggesting that an 

intricate molecular mechanism exists between SNCA 

and PAAD that needs to be further explored. 

 

CAP1 has been reported with upregulation in multiple 

gastrointestinal, breast, and lung cancers [73–84]. 

Peroxisome proliferator-activated receptor gamma 

(PPARG) is a member of the nuclear receptor 

superfamily of ligand-activated transcription factors 

[85], which is involved in lipid and glucose homeostasis 

and adipocyte inflammation and differentiation, among 

other activities [86–88]. Furthermore, many studies 

have shown that PPARG plays a vital role in regulating 

the growth of several different cancers, including 

prostate [89], bladder [90], breast [91], and colorectal 

cancer [92]. The PPARG and DNMTs appear 

interrelated in pancreatic cancer, and this interaction 

might influence cell phenotype and disease behavior 

[93]. Together with our study, these results suggest that 

PPARG embraces potential value in predicting the 

prognosis of PAAD patients, remaining to be further 

explored. 

 
EGFR belongs to a family of receptor tyrosine kinases 

that comprises three other members [94–96]. Several 

studies have revealed that the increased expression of 

EGFR is widely identified in multiple cancers [97–102]. 

EGFR was reported with overexpression in most 

proportions of PDAC and correlation with multiple 

clinical characteristics [103, 104]. These studies 

indicated that EGFR might be a potential prognostic 

gene in PAAD. 

 

These 5 EALMRGs have a role in the biological 

behavior of pancreatic tumors; in addition, they have 

exhibited good performance in prognosis efficacy for 

PAAD patients. To our knowledge, the clinical value of 

exosome and lipid metabolism-related genes has not 

been fully elucidated in multiple cancers. Before this 

study, Ye et al. developed the 4-genes risk formula 

based on lipid metabolism-related genes [105]. Zhu et 

al. identified 11-genes risk signature formula related to 

lipid metabolism [106]. However, these formulas did 

not extend the potential clinical impact of exosome-

related genes. Our current study identified the change of 

exosome and lipid metabolism-related genes with 

clinical value, and the 7-gene (ABCB1, CAP1, EGFR, 
ITGB1, MAPK1, PPARG, SNCA) prognostic formula 

is a novel and reliable predictive index in pancreatic 

cancer and other multiple cancers. 
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Nonetheless, there are inevitable limitations to our 

research, which will be rectified and improved in our 

following study. Firstly, our data originated from 

previously published datasets, and we performed second 

data mining and analysis through our own procedure. 

More thorough and comprehensive investigations are 

needed prior to clinical application. Secondly, we 

validated our model with some other datasets in GEO 

datasets, this method cannot substitute for validation 

using in-house clinical data. Consequently, further 

rigorous prospective studies are needed to evaluate the 

feasibility and authenticity of the model in clinical 

applications. Thirdly, despite the 5 genes showing good 

performance in predicting the prognosis of PAAD 

patients, further verification of these genes in vivo and 

in vitro is still needed. 

 

CONCLUSIONS 

 

In conclusion, the EALMRGs prognostic model of 

PAAD was constructed using LASSO regression. The 

model was evaluated by internal and external validation 

and showed good prognostic performance. For the first 

time, we further identified 5 EALMRGs (ABCB1, 

CAP1, EGFR, PPARG, and SNCA) that might become 

prognostic biomarkers of PAAD, of which EGFR 

exhibited better prognostic efficiency than other genes. 

Additionally, the risk formula not only showed potential 

prognostic value in multiple cancers, but also 

manifested pivotal alterations in immune infiltration and 

biological pathway in pancreatic cancer. These findings 

could provide an effective and reliable method of 

predicting the prognosis of PAAD patients, which might 

be a potential and specific direction for further research. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. (A) The expression of the 5 hub genes in pancreatic cancer cell lines comparing to pancreatic normal cell lines. ** 

means P-value <0.01, *** means P-value <0.001. (B) Correlation analysis of GSVA enrichment score and identified risk score in pan-cancer. 
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Supplementary Figure 2. (A–C) The quality of the enrolled single-cell sequencing data. 
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Supplementary Figure 3. Left: The tSNE plot between tumor and adjacent tumor. Right: The tSNE plot of 19 group after clustered. 
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Supplementary Figure 4. The t-SNE plot of multiple markers in single-cell sequencing data. 
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Supplementary Figure 5. (A) The identified GSEA pathways between the high and low-risk group. (B–G) The enrichment score of identified 
GSEA pathway. 
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Supplementary Figure 6. (A) The identified GSVA pathways in the high and low-risk groups. (B) The identified GSEA pathways in the high 
and low-risk groups. 
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Supplementary Tables 
 

Supplementary Table 1. Exosome and lipid metabolism related genes, EALMRGs. 

EALMRGs 

HRAS AKT1 ACTB ALB CLU FASN 

RAF1 EGFR TP53 GGT1 CCL2 ABCB1 

RAB7A STAT3 IL1B SOD1 PPARG ITGB3 

BAG6 ICAM1 TGFB1 PRNP TNF ACE 

PTEN APP GRB2 CTNNB1 SIRT1 IDH1 

TLR4 ASAH2 SNCA HSPA5 HSPA1B APOA1 

DPP4 ITGB1 HSPG2 VDAC1 HIF1A F2 

APOE CDC42 HSPA1A CAP1 VIM NAMPT 

APOA2 MTREX MAPK1 MAPK3   

 

Supplementary Table 2. GSEA enrichment analysis results of hub genes. 

ID SetSize 
Enrichment

score 
NES P-value P.adj qvalue 

REACTOME_ASSEMBLY_OF_COLLAGE

N_FIBRILS_AND_OTHER_MULTIMERIC_

STRUCTURES 

61 0.718364 2.253987 2.31E-10 1.75E-08 9.89E-09 

REACTOME_MET_PROMOTES_CELL_M

OTILITY 
41 0.738372 2.189964 6.95E-08 2.45E-06 1.38E-06 

WP_METABOLIC_REPROGRAMMING_IN

_PANCREATIC_CANCER 
42 0.714381 2.125378 1.14E-06 2.55E-05 1.44E-05 

PID_ECADHERIN_STABILIZATION_PAT

HWAY 
41 0.711503 2.110273 7.96E-07 1.86E-05 1.05E-05 

REACTOME_SIGNALING_BY_TGF_BETA

_RECEPTOR_COMPLEX 
92 0.606184 2.026585 1.52E-07 4.70E-06 2.66E-06 

WP_AEROBIC_GLYCOLYSIS 11 0.892959 1.968318 7.83E-06 0.000105 5.94E-05 

REACTOME_CELLULAR_RESPONSE_TO

_HYPOXIA 
74 0.599001 1.937214 7.64E-06 0.000104 5.89E-05 

REACTOME_TP53_REGULATES_TRANS

CRIPTION_OF_CELL_DEATH_GENES 
44 0.643168 1.934143 4.23E-05 0.000416 0.000235 

REACTOME_REGULATION_OF_MRNA_S

TABILITY_BY_PROTEINS_THAT_BIND_

AU_RICH_ELEMENTS 

86 0.586933 1.933052 1.52E-06 3.19E-05 1.80E-05 

REACTOME_AUF1_HNRNP_D0_BINDS_A

ND_DESTABILIZES_MRNA 
54 0.622465 1.926354 1.03E-05 0.000129 7.27E-05 

REACTOME_METABOLISM_OF_POLYA

MINES 
58 0.609515 1.905315 1.49E-05 0.000172 9.73E-05 

REACTOME_CLASS_B_2_SECRETIN_FA

MILY_RECEPTORS 
89 -0.36262 -1.43144 0.006947 0.023977 0.013554 

BIOCARTA_IL12_PATHWAY 19 -0.56542 -1.59812 0.007225 0.024532 0.013867 

WP_SUDDEN_INFANT_DEATH_SYNDRO

ME_SIDS_SUSCEPTIBILITY_PATHWAYS 
154 -0.37325 -1.60073 0.000166 0.00126 0.000712 

REACTOME_CLASS_C_3_METABOTROPI

C_GLUTAMATE_PHEROMONE_RECEPT

ORS 

23 -0.55704 -1.63056 0.007794 0.026038 0.014719 

BIOCARTA_IL17_PATHWAY 13 -0.65349 -1.68422 0.013016 0.038538 0.021785 

REACTOME_ANTI_INFLAMMATORY_RE

SPONSE_FAVOURING_LEISHMANIA_PA

RASITE_INFECTION 

204 -0.38274 -1.69503 3.68E-06 5.94E-05 3.36E-05 
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REACTOME_GLUCAGON_SIGNALING_I

N_METABOLIC_REGULATION 
32 -0.56229 -1.81894 0.001201 0.006002 0.003393 

REACTOME_METABOLISM_OF_ANGIOT

ENSINOGEN_TO_ANGIOTENSINS 
18 -0.68755 -1.90406 0.001362 0.006673 0.003772 

REACTOME_INTEGRATION_OF_ENERG

Y_METABOLISM 
107 -0.47311 -1.92199 1.56E-06 3.19E-05 1.80E-05 

WP_FATTY_ACID_OMEGAOXIDATION 13 -0.7473 -1.92599 0.000916 0.004851 0.002742 

REACTOME_ADORA2B_MEDIATED_AN

TI_INFLAMMATORY_CYTOKINES_PRO

DUCTION 

114 -0.4792 -1.95779 5.92E-07 1.48E-05 8.36E-06 

REACTOME_PEPTIDE_HORMONE_META

BOLISM 
89 -0.55222 -2.17985 4.94E-08 1.84E-06 1.04E-06 

BIOCARTA_NO2IL12_PATHWAY 15 -0.84594 -2.24776 1.62E-06 3.28E-05 1.86E-05 

GSEA, Gene Set Enrichment Analysis. 

 

Supplementary Table 3. Gene set variation analysis. 

logFC AveExpr t P-value P.adj B 

GLYCOLYSIS 0.36444594 -0.01523 9.863187 5.07E-19 2.53E-17 

MTORC1_SIGNALING 0.357089084 -0.01789 8.325416 1.19E-14 2.25E-13 

NOTCH_SIGNALING 0.347591157 0.004941 8.305719 1.35E-14 2.25E-13 

G2M_CHECKPOINT 0.385941475 -0.0264 8.018213 8.12E-14 1.02E-12 

MITOTIC_SPINDLE 0.328281017 -0.01179 7.940877 1.31E-13 1.31E-12 

P53_PATHWAY 0.262456174 -0.01229 7.614802 9.57E-13 7.97E-12 

MYC_TARGETS_V1 0.367066553 -0.02282 7.18631 1.22E-11 8.71E-11 

E2F_TARGETS 0.37467454 -0.0379 7.129268 1.70E-11 1.06E-10 

ESTROGEN_RESPONSE_EARLY 0.234150989 0.007557 6.531819 5.05E-10 2.80E-09 

UNFOLDED_PROTEIN_RESPONSE 0.286734015 -0.02842 6.427516 8.95E-10 4.48E-09 

TGF_BETA_SIGNALING 0.294572698 -0.00919 6.17579 3.49E-09 1.59E-08 

HYPOXIA 0.241525103 -0.00795 6.123298 4.61E-09 1.92E-08 

ESTROGEN_RESPONSE_LATE 0.21123882 0.001622 5.921306 1.33E-08 5.10E-08 

CHOLESTEROL_HOMEOSTASIS 0.256458022 -0.0232 5.907857 1.43E-08 5.10E-08 

MYC_TARGETS_V2 0.313551213 -0.03854 5.832338 2.11E-08 7.03E-08 

PROTEIN_SECRETION 0.285422891 -0.03426 5.619062 6.22E-08 1.87E-07 

DNA_REPAIR 0.237067433 -0.01739 5.614501 6.37E-08 1.87E-07 

PI3K_AKT_MTOR_SIGNALING 0.223725184 -0.01771 5.53459 9.49E-08 2.63E-07 

PEROXISOME 0.200951847 -0.0095 5.209335 4.61E-07 1.21E-06 

APOPTOSIS 0.203206043 -0.00695 5.133401 6.60E-07 1.65E-06 

UV_RESPONSE_UP 0.182326528 -0.00785 5.016017 1.14E-06 2.72E-06 

ANDROGEN_RESPONSE 0.208896672 -0.0156 4.817842 2.82E-06 6.41E-06 

APICAL_JUNCTION 0.172333537 0.005362 4.373193 1.95E-05 4.24E-05 

ADIPOGENESIS 0.16377501 -0.00324 4.248083 3.27E-05 6.82E-05 

FATTY_ACID_METABOLISM 0.167904487 -0.01793 4.233237 3.48E-05 6.96E-05 

PANCREAS_BETA_CELLS -0.254195748 0.008054 -4.19493 4.07E-05 7.82E-05 

REACTIVE_OXYGEN_SPECIES_PATHWAY 0.181776847 -0.01654 4.106457 5.81E-05 0.000108 

WNT_BETA_CATENIN_SIGNALING 0.163912122 -0.00018 3.825307 0.000173 0.00031 

XENOBIOTIC_METABOLISM 0.120265442 0.003998 3.231334 0.001436 0.002476 

INTERFERON_ALPHA_RESPONSE 0.178409452 -0.00718 3.183146 0.001684 0.002807 

OXIDATIVE_PHOSPHORYLATION 0.152020094 -0.02721 2.923599 0.00385 0.006209 

TNFA_SIGNALING_VIA_NFKB 0.13788571 0.004791 2.859715 0.00468 0.007312 
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HEME_METABOLISM 0.102568627 -0.01779 2.756254 0.006375 0.009659 

UV_RESPONSE_DN 0.120433127 -0.00831 2.615587 0.009571 0.014075 

KRAS_SIGNALING_DN -0.088942579 0.016323 -2.53184 0.012098 0.017282 

APICAL_SURFACE 0.09332276 0.029442 2.227793 0.026983 0.037476 

GSVA, Gene Set Variation Analysis. 

 

Supplementary Table 4. mRNA-miRNA interaction network nodes. 

mRNA miRNA mRNA miRNA 

ABCB1 hsa-miR-12136 PPARG hsa-miR-548h-5p 

ABCB1 hsa-miR-4282 PPARG hsa-miR-548au-5p 

CAP1 hsa-miR-1260a PPARG hsa-miR-548d-5p 

CAP1 hsa-miR-1260b PPARG hsa-miR-548y 

CAP1 hsa-miR-448 PPARG hsa-miR-548ae-5p 

CAP1 hsa-miR-205-3p PPARG hsa-miR-548ad-5p 

CAP1 hsa-miR-153-3p PPARG hsa-miR-548aq-5p 

CAP1 hsa-miR-6508-5p PPARG hsa-miR-548b-5p 

CAP1 hsa-miR-548b-3p PPARG hsa-miR-548c-5p 

CAP1 hsa-miR-2355-3p PPARG hsa-miR-548n 

CAP1 hsa-miR-3123 PPARG hsa-miR-559 

EGFR hsa-miR-141-5p PPARG hsa-miR-548ak 

EGFR hsa-miR-6878-5p PPARG hsa-miR-548bb-5p 

EGFR hsa-miR-514a-3p PPARG hsa-miR-548j-5p 

EGFR hsa-miR-4533 PPARG hsa-miR-3606-3p 

EGFR hsa-miR-514b-3p PPARG hsa-miR-9985 

EGFR hsa-miR-6867-5p PPARG hsa-miR-27a-3p 

EGFR hsa-miR-7157-3p PPARG hsa-miR-513c-3p 

EGFR hsa-miR-6737-3p PPARG hsa-miR-27b-3p 

EGFR hsa-miR-7110-3p PPARG hsa-miR-513a-3p 

EGFR hsa-miR-9985 PPARG hsa-miR-3617-3p 

EGFR hsa-miR-27a-3p PPARG hsa-miR-5694 

EGFR hsa-miR-27b-3p PPARG hsa-miR-454-3p 

PPARG hsa-miR-548am-5p PPARG hsa-miR-190a-3p 

PPARG hsa-miR-548ay-5p SNCA hsa-miR-5011-5p 

PPARG hsa-miR-548o-5p SNCA hsa-miR-6515-3p 

PPARG hsa-miR-548ab SNCA hsa-miR-106a-3p 

PPARG hsa-miR-548ap-5p SNCA hsa-miR-1178-3p 

PPARG hsa-miR-548w SNCA hsa-miR-4786-3p 

PPARG hsa-miR-548as-5p SNCA hsa-miR-7-5p 

PPARG hsa-miR-548i SNCA hsa-miR-450b-5p 

PPARG hsa-miR-548a-5p SNCA hsa-miR-7843-3p 

PPARG hsa-miR-548ar-5p SNCA  
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Supplementary Table 5. mRNA-TF interaction network nodes. 

mRNA TF mRNA TF 

ABCB1 CEBPA CAP1 RUNX3 

ABCB1 CREB1 CAP1 SMARCA4 

ABCB1 ERG CAP1 SPI1 

ABCB1 ETS1 CAP1 SPIB 

ABCB1 FLI1 CAP1 SRF 

ABCB1 GATA2 CAP1 TFAP4 

ABCB1 MECOM CAP1 CEBPA 

CAP1 E2F1 CAP1 ZNF384 

CAP1 EP300 CAP1 CREB1 

CAP1 ERG CAP1 CREBBP 

CAP1 ESRRA CAP1 CTCF 

CAP1 ETS1 EGFR EP300 

CAP1 FLI1 EGFR KLF9 

CAP1 FOXP1 EGFR MAX 

CAP1 GABPA EGFR ONECUT1 

CAP1 HDAC1 EGFR PGR 

CAP1 HDAC2 EGFR BRD4 

CAP1 IRF1 EGFR TFAP2A 

CAP1 BCL11A EGFR TFAP2C 

CAP1 KLF1 EGFR TFAP4 

CAP1 KLF4 EGFR ZBTB7A 

CAP1 KLF5 EGFR ZNF263 

CAP1 BCL6 EGFR AR 

CAP1 LMO2 EGFR E2F6 

CAP1 MAX PPARG GABPA 

CAP1 MAZ PPARG BRD2 

CAP1 MYB PPARG BRD4 

CAP1 NFIC PPARG CEBPA 

CAP1 BRD2 PPARG CTCF 

CAP1 NR2F2 PPARG ESR1 

CAP1 BRD4 SNCA CDK9 

CAP1 PBX3 SNCA FLI1 

CAP1 POLR2A SNCA HDAC2 

CAP1 RUNX1T1   

TF, Transcription Factor. 

 

 

 

 


