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INTRODUCTION 
 

Based on the most recent global cancer report released  

by the International Agency for Research on Cancer, it 

has been revealed that lung cancer (LC) is the second 

most frequently detected form of cancer and is the 

primary cause of cancer-related fatalities. The incidence 

and mortality rates of this disease are recorded at  

11.4% and 18.0% respectively [1]. Immunotherapy, a 

groundbreaking treatment method, has brought about  

a significant transformation in the management of  

lung adenocarcinoma (LUAD), which constitutes 

approximately 40% of all histological types of LC. It has 

proven to be an effective therapeutic approach for various 

types of cancer [2]. However, only a minority of LC 

patients exhibit durable responses to immunotherapy. 

Therefore, the identification of reliable biomarkers is 

crucial for the implementation of immunotherapy and 

predicting the prognosis of LC patients [3–7]. 

 
Extracellular vesicles, ranging in size from 30 to 150 

nm, are cell-derived vesicles that can transmit signaling 
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ABSTRACT 
 

Background: Exosomes play a crucial role in tumor initiation and progression, yet the precise involvement of 
exosome-related genes (ERGs) in lung adenocarcinoma (LUAD) remains unclear. 
Methods: We conducted a comprehensive investigation of ERGs within the tumor microenvironment (TME) of 
LUAD using single-cell RNA sequencing (scRNA-seq) analysis. Multiple scoring methods were employed to 
assess exosome activity (EA). Differences in cell communication were examined between high and low EA 
groups, utilizing the “CellChat” R package. Subsequently, we leveraged multiple bulk RNA-seq datasets to 
develop and validate exosome-associated signatures (EAS), enabling a multifaceted exploration of prognosis 
and immunotherapy outcomes between high- and low-risk groups. 
Results: In the LUAD TME, epithelial cells demonstrated the highest EA, with even more elevated levels observed 
in advanced LUAD epithelial cells. The high-EA group exhibited enhanced intercellular interactions. EAS were 
established through the analysis of multiple bulk RNA-seq datasets. Patients in the high-risk group exhibited 
poorer overall survival (OS), reduced immune infiltration, and decreased expression of immune checkpoint 
genes. Finally, we experimentally validated the high expression of SEC61G in LUAD cell lines and demonstrated 
that knockdown of SEC61G reduced the proliferative capacity of LUAD cells using colony formation assays. 
Conclusion: The integration of single-cell and bulk RNA-seq analyses culminated in the development of the 
profound and significant EAS, which imparts invaluable insights for the clinical diagnosis and therapeutic 
management of LUAD patients. 
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molecules involved in cellular physiological regulation 

and participate in tumor invasion and metastasis  

[8]. Studies have revealed that extracellular vesicles 

promote tumor cells to evade immune surveillance and 

can serve as immunotherapeutic agents by altering the 

secretion of tumor-derived extracellular vesicles [9, 10]. 

 

Several studies have preliminarily elucidated the 

biological significance of extracellular vesicles in LC 

[11, 12]. Wang et al. discovered that extracellular 

vesicle miR-17-5p promotes osteoclastogenesis in LC 

by targeting PTEN and activating the PI3K/Akt pathway, 

thereby contributing to LC bone metastasis [13]. Li et 

al. found that hypoxia-induced extracellular vesicle 

miR-101, which is dependent on HIF1α, activates 

macrophages and induces inflammation in the tumor 

microenvironment (TME) [14]. Xue et al. identified 

extracellular vesicle miR-151a-5p, miR-10b-5p, miR-

192-5p, miR-106b-3p, and miR-484 as potential 

prognostic markers in LUAD [15]. However, the roles 

and mechanisms of extracellular vesicle-associated 

genes in LC are still under investigation. 

 

Single-cell sequencing technology, a novel sequencing 

technique, enables the measurement of the entire 

transcriptome at the single-cell resolution, allowing for 

the differentiation of different cell types. It can rapidly 

identify genetic differences between cancer and non-

cancer cells, elucidate molecular mechanisms driving 

tumor development, and reveal somatic mutations 

during tumor evolution. By unraveling the heterogeneity 

of the TME, this method has been utilized to identify 

unique immune cell subpopulations potentially associated 

with tumor immune surveillance, thereby suggesting 

potential drug targets [16, 17]. Some studies have 

indicated that intra-tumoral heterogeneity contributes to 

cancer progression and enhances treatment resistance. 

Single-cell RNA sequencing (scRNA-seq) has been 

employed to assess the prognosis and drug resistance of 

LC, breast cancer, ovarian cancer, and gastric cancer 

[18, 19]. 

 

Therefore, establishing a signature based on extracellular 

vesicle-associated genes may serve as an effective 

approach for predicting the immunotherapeutic response 

and prognosis of tumor patients, which is also the 

objective of this study. 

 

METHODS 
 

Dataset source 

 

Bulk RNA-seq data, mutation data, and clinical 

characteristics of patients diagnosed with LUAD were 

obtained from The Cancer Genome Atlas (TCGA) 

database (https://portal.gdc.cancer.gov/). The scRNA-

seq dataset GSE131907 [20], which encompassed tissues 

from 20 LUAD patients, including 11 surgically resected 

tumor tissue samples, 4 biopsy samples obtained 

through puncture, and 5 pleural effusions, was sourced 

from the Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo/). Additionally, external 

validation cohorts (GSE30219, n = 86; GSE31210, 

n = 227; and GSE42127, n = 133) were retrieved from 

the GEO database. To ensure data comparability, the 

expression data were transformed into the transcripts 

per million (TPM) format. Addressing potential batch 

effects was accomplished using the “combat” function 

of the “sva” R package [21, 22]. Furthermore, the TCGA 

database standardized the data format by applying  

a log2 transformation to the bulk sequencing data, 

mutation data, and clinical details of LUAD patients 

before analysis. 

 

Single-cell dataset analysis 

 

The R package “Seurat” [23–25] was employed  

for the processes of cell clustering and dimension 

reduction. In order to exclude specific cells, criteria 

were implemented, considering those that exhibited an 

expression of more than 6,000 or fewer than 300 genes, 

or a proportion of unique molecular identifiers (UMIs) 

derived from the mitochondrial genome that surpassed 

10%. Through the application of principal component 

analysis (PCA) on the genes expressed with variability, 

the dataset’s dimensionality was effectively reduced. 

Subsequently, clustering analysis was conducted utilizing 

the “FindClusters” function, incorporating 20 PCA 

components and a resolution parameter of 1.2. Canonical 

marker genes were employed to annotate the resulting 

two-dimensional representation of cell clusters, thereby 

facilitating the identification of known biological cell 

types. The Seurat “FindAllMarkers” function was 

utilized to determine marker genes associated with cell 

clusters, making comparisons between cells within  

a specific cluster and those in all other clusters. The 

“cellchat” R package [26] was employed to infer 

communication networks between cell subpopulations. 

Scoring of exosome gene sets was carried out uti- 

lizing various methods such as “AUCell,” “UCell,” 

“Singscore,” “ssgsea,” and “AddModuleScore”. 

 
Building a high-performance EAS 

 
Prognostic key genes were identified through the 

implementation of univariate Cox regression and  

lasso regression analyses [27, 28]. Subsequently,  

a refinement process was undertaken to select the  

genes and determine their corresponding coefficients, 

utilizing multivariate Cox regression [29, 30]. The 

calculation of the risk score for LUAD patients was 

performed using the following formula: The risk score 

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
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was calculated as follows: Risk score = Σ [Coef (k) × 

Expr (k)], where Coef (k) represents the abbreviation 

for regression coefficients, and Expr (k) denotes the 

expression level of prognostic model genes. The 

application of the risk score calculation was applied  

to the dataset’s LUAD patients, leading to their 

stratification into high- and low-risk groups based  

on the median risk score. The model’s predictive 

performance was assessed through the utilization of 

receiver operating characteristic (ROC) curves, with 

exceptional performance indicated by area under the 

curve (AUC) values surpassing 0.65. PCA analysis 

was employed to visually depict the distribution of 

patients among different risk groups. 

 

Nomogram construction and evaluation 

 

An enhanced and more precise nomogram was 

developed by merging the risk score with clinical 

characteristics, utilizing the “rms” R package [31].  

This process significantly augmented the prognostic 

predictive ability. The efficacy of the nomogram was 

assessed through the utilization of the c-index and ROC 

curves. Stratified analyses based on age, pathological  

T, N, and clinical stage were performed to evaluate  

the predictive significance of both the risk score and 

clinical features. 

 

Enrichment analysis 

 

In order to evaluate the biological characteristics, the 

utilization of Gene Set Variation Analysis (GSVA) and 

Gene Set Enrichment Analysis (GSEA) was implemented. 

For this analysis, downloadable files from the GSEA 

website were employed, specifically the files titled 

“h.all.v7.5.1.symbols.gmt,” “c5.go.v2023.1.Hs.symbols.gmt,” 

and “c5.go.v2023.1.Hs.symbols.gmt.” The quantification 

of enrichment scores for 29 immune signatures was 

performed using the ssGSEA approach. 

 

Mutations between different risk groups 

 

The “maftools” R package [32] was utilized to conduct 

a comprehensive examination of somatic mutations in 

the high- and low-risk group of LUAD. The mutation 

annotation format (MAF) was generated from data 

extracted from the TCGA database. The assessment of 

tumor mutation burden (TMB) was performed for each 

patient with LUAD. The visualization of the mutation 

landscape and immune infiltration scores was achieved 

through the utilization of the “ComplexHeatmap” R 

package [33]. Based on the median risk score and 

median TMB, TCGA-LUAD patients were classified 
into four distinct groups, and a comparison was made 

between their survival disparities in relation to the 

median risk score and TMB. 

The TME and immunotherapy 

 
The evaluation of immune cell content involved the 

utilization of seven immune infiltration algorithms, 

accessed through the TIMER 2.0 database (http:// 

timer.comp-genomics.org/). Heatmaps were employed 

to visually depict the variations in immune cell 

infiltration across different risk groups. Furthermore, 

the “estimate” R package [34] was employed to 

calculate the immuno-logical scores, stromal scores, 

and ESTIMATE scores of LUAD patients. In order  

to predict the responsiveness to immunotherapy,  

The Cancer Immunome Atlas (TCIA) database was 

explored for Immunophenoscores (IPS) associated 

with TCGA-LUAD. A comparison of IPS was per-

formed between the high-risk and low-risk groups  

in this study [35]. Additionally, the “oncoPredict” R 

package was utilized to predict potentially effective 

chemotherapeutic agents between the risk groups [36]. 

 
Cell lines culture and qRT-PCR 

 
BEAS-2B cells, which are normal human lung 

epithelial cells, along with A549 and H1299 cells, 

representing human LUAD cell lines, were obtained 

from the Cell Resource Center of Shanghai Life 

Sciences Institute. These cells were cultured in F12K 

or RPMI-1640 supplemented with 10% fetal bovine 

serum (FBS), 1% streptomycin, and penicillin. The 

cell cultures were maintained at a temperature of  

37°C, under conditions of 5% CO2 and 95% humidity. 

The extraction of total RNA from the cell lines was 

carried out following the manufacturer’s instructions 

using TRIzol. Subsequently, cDNA synthesis was 

performed utilizing the PrimeScriptTM RT kit. Real-

time polymerase chain reaction (RT-PCR) was 

conducted using SYBR Green Master Mix, and the 

expression levels of each mRNA were normalized  

to the GAPDH mRNA level. Quantification of the 

expression levels was performed using the 2−ΔΔCt 

method. The primers used for the experiment were 

provided by Tsingke Biotech (Beijing, China). 

 
Colony formation 

 
A transfection of 1000 cells was performed, and  

they were subsequently placed in 6-well plates for 

approximately 14 days. After a two-week period, cell 

clones were visually observed without the aid of 

magnification. Following this, the cells were washed 

and fixed in 4% paraformaldehyde (PFA) for 15 

minutes. Staining with crystal violet (Solarbio, China) 
was conducted for 20 minutes, followed by air drying at 

room temperature. The cell count per well was then 

determined. 
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Statistical methods 

 

The statistical analyses and data processing procedures 

were carried out using R, specifically version 4.2.0.  

To establish statistical significance, survival analysis 

was conducted using Kaplan-Meier curves, and the 

log-rank test was employed. All survival curves were 

generated using the “survminer” R package. Heatmaps, 

on the other hand, were generated using the “pheatmap” 

R package [37]. For variables demonstrating a normal 

distribution, quantitative differences were assessed 

through either a two-tailed t-test or a one-way analysis 

of variance (ANOVA). In cases where the data did not 

follow a normal distribution, the Wilcoxon test or 

Kruskal-Wallis test was utilized. All statistical analyses 

were conducted within the R environment, with a P < 

0.05 considered as indicating statistical significance. 

 

Availability of supporting data 

 

The datasets analyzed in the current study are available 

in the TCGA repository (http://cancergenome.nih.gov/), 

and GEO (https://www.ncbi.nlm.nih.gov/geo/). 

 

RESULTS 
 

The scRNA profiling of LUAD 

 

The study’s flow chart is presented in Figure 1.  

The scRNA-seq dataset underwent quality control 

measures. The expression characteristics displayed by 

each individual sample are illustrated in Supplementary 

Figure 1A, 1B. No significant fluctuations in cell cycles 

were observed in the principal component analysis (PCA) 

reduction plot, as depicted in Supplementary Figure 1C. 

A total of 20 samples were included in this study, and the 

cellular distribution remained relatively constant across 

each sample, suggesting minimal batch effects. Therefore, 

the samples were deemed suitable for subsequent 

analysis (Figure 2A). The expression of representative 

genes used for cell type identification is demonstrated  

in Figure 2B. By utilizing the tSNE dimensionality 

reduction algorithm, all cells were classified into 37 more 

detailed clusters (Figure 2C). The expression of charac-

teristic marker genes corresponding to each cell cluster is 

visualized in the bubble plot shown in Figure 2D. The 

presence of 11 distinct cell types, such as fibroblasts, B 

cells, and NK cells, is revealed in Figure 2E. Furthermore, 

Figure 2F presents the proportional distribution of the 11 

cell types in different samples. 

 

Exploring exosome activity within the single cell 

microenvironment 

 

There are differences in the percentage of cells between 

early-stage and advanced LUAD tissues (Figure 3A).  

In Figure 3B, a combination of five scoring methods 

(including AUCell, Ucell, singscore, ssgsea, and 

Addmodulescore) was employed to assess exosome 

activity (EA), revealing that epithelial cells exhibited 

the highest exosome activity. The tSNE diagram dis-

played the exosome activity across various cell types, 

highlighting stronger EA in epithelial and myeloid  

cells (Figure 3C). Figure 3D demonstrated significant 

disparities in exosomal activity levels between early-

stage and advanced LUAD tissues. To unravel the 

underlying biological mechanisms associated with the 

different scoring scores, the hallmark gene set was 

utilized to explore the pathways that exhibited significant 

differences between the high- and low-EA groups. The 

principal enrichment pathways observed in the high-EA 

groups included oxidative phosphorylation, adipogenesis, 

and the p53 pathway (Figure 3E). 

 
Cellular interactions analysis 

 

Differences in the number of cellular communications 

between groups with high- and low-EA groups were 

presented in Figure 4A and Supplementary Figure 2A, 

2B. Figure 4B showed the number and percentage of 

various signaling pathways in the high- and low-EA. 

Significant differences in signals emitted between the 

high- and low-EA groups, with more signals active only 

in the high-EA group (Figure 4C). Significant alterations 

were also observed in the roles fulfilled by various cell 

types within different subgroups. In the low-EA group, 

both myeloid and epithelial cells exhibited weak efferent 

and afferent signals. However, in the high- EA group, 

their signaling capabilities were significantly enhanced 

(Figure 4D). Supplementary Figure 2C and Figure 4E 

unveiled significant discrepancies in the profiles of 

ligand-receptor pairs between the high- and low-EA 

groups. Notably, the SPP1-CD44 receptor-ligand pair 

emerged as a more crucial player in the low-EA group. 

 
Construction of a risk model 

 

In Figure 5A, the TCGA and GEO independent  

cohorts were observed to exhibit significant batch 

effects. However, after removing the batch effect, more 

accurate results were obtained. The training set from 

TCGA was utilized for model construction, leading  

to the identification of 41 prognostic genes through 

univariate COX analysis (P < 0.01). The forest plot 

depicted the results of the univariate COX analysis, 

revealing 14 hazardous factors and 27 protective factors 

(Figure 5B). Subsequently, LASSO and Cox regression 

analysis were employed to establish the prognostic 

model (Figure 5C). The hazard ratio (HR) values 

associated with each variable included in the model 

were presented in Figure 5D, while Figure 5E displayed 

the corresponding coefficients of specific variables. 

http://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Figure 1. Flowchart for this study. 
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Evaluation of the model 

 

In Figure 6A–6C, it was observed that a worse 

prognosis was exhibited by the high-risk group in the 

TCGA training set, test set, and the entire cohort (P < 

0.001). Additionally, a significantly poorer prognosis  

of patients in the high-risk group compared to the low-

risk group was noted in the GEO30219 test cohort, 

 

 
 

Figure 2. Notes on cellular subpopulations. (A) There was no significant batch effect on the cell distribution of the samples. (B) Show 

expression of typical cell type marker genes. (C) tSNE diagram of descending clustering binning. (D) A bubble chart showing the typical 
marker gene expression corresponding to each subgroup. (E) Cells are annotated into 11 different cell types. (F) The proportion of 11 cell 
types in different samples. 
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GEO30210 test cohort, and GEO42127 test cohort 

(P < 0.001, Figure 6D–6F). These findings indicate that 

the prognostic model incorporating ERGs is highly 

accurate in predicting patient prognosis in both TCGA 

and GEO datasets. The effectiveness of the model  

in classifying LUAD patients into training and testing 

 

 
 

Figure 3. Illustrating the identification of differentially expressed genes through AUCell method. (A) Variations in the 

proportion of cells within the tissues of early-stage and advanced lung cancer were examined. (B) The average expression levels of ERGs 
were assessed in 11 cell types using five different scoring methods. (C) All cells were categorized into high- and low-groups based on their 
scores according to ERGs. (D) The levels of exosome-related genes between early-stage and advanced lung cancer tissues were compared. 
(E) The pathway of significant differences between the high- and low-groups of exosome levels was explored using hallmark gene sets. 
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groups was demonstrated through PCA evaluation of  

the model for each of the seven genes in the TCGA 

training set, test set, and the entire cohort (Figure 6G–6I). 

Similar results were observed in the PCA assessment  

of the GEO30219 test cohort, GEO30210 test cohort, 

and GEO42127 test cohort (Figure 6J–6L). To further 

 

 
 

Figure 4. Cellular interactions analysis. (A) Differences in the number of cellular communications between groups with high and low 

expression of EA. (B) The number and percentage of various signaling pathways in the high-risk and low-risk groups. (C) Heatmaps 
demonstrating the strength of outgoing signaling pathways in different cell subpopulations. (D) A scatter plot showing the distribution of 
different cell populations in the intensity of outgoing and incoming signaling interactions. (E) Expression of ligand-receptor pair genes in cell 
populations. 
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evaluate the accuracy of exosomes in assessing the 

prognosis of LUAD patients, ROC curve analysis was 

performed for the entire TCGA cohort, GEO30219 trial 

cohort, GEO30210 trial cohort, and GEO42127 trial 

 

 
 

Figure 5. Construction of a risk model. (A) In both the TCGA cohort and GEO cohort, no significant batch effect was observed, and 

batch effect removal was performed. (B) Significant variables affecting prognosis were screened using LASSO regression. (C) The results of 
univariate COX analysis were presented in a forest plot. (D) Genes included in the risk model after multivariate regression analysis were 
illustrated in a circle plot. (E) The distribution of coefficient values of model genes was displayed. 
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cohort. The results demonstrated that good predictive 

performance was exhibited by the majority of the ROC 

curves (Figure 6M–6P). 

 

Clinical correlation and nomogram construction 

 

A heatmap was generated by combining clinical 

information and the high- and low-risk groups to 

visualize the distribution of clinical characteristics 

among different risk groups. Statistical analysis in 

Figure 7A revealed significant differences between the 

two groups concerning T and N stages, clinical stage, 

and fustat (P < 0.05). Notably, the high-risk group 

displayed a higher proportion of older patients and more 

advanced N and T stages (Figure 7B). Furthermore, a 

nomogram was constructed using clinical characteristics 

and risk scores (Figure 7C) to enhance the accuracy of 

prognosis prediction in LUAD patients. The nomogram 

plots can assist clinicians in assessing patient risk more 

accurately and guiding future treatment decisions.  

The calibration curve and decision curve analyses 

demonstrated the superior efficacy of this nomogram 

 

 
 

Figure 6. Survival curves, sample distribution and ROC curves of high- and low-risk groups. (A–F) The survival differences of 

different risk groups in TCGA-TRAIN, TCGA-TEST, TCGA-ALL, GEO30219, GEO30210 and GEO42127, respectively, were presented. (G–L) The 
PCA sample distribution of different risk groups in TCGA-TRAIN, TCGA-TEST, TCGA-ALL, GEO30219, GEO30210 and GEO42127, respectively, 
were presented. (M–P) The ROC curves of different risk groups in TCGA-TRAIN, GEO30219, GEO30210 and GEO42127 at 1-, 3-, 5-, 7-, and 
10-years, respectively, were presented. 



www.aging-us.com 11518 AGING 

compared to other clinical indicators in predicting 

patient prognosis, thus serving as a valuable clinical 

decision-making tool (Figure 7D, 7E). Additionally, a 

comprehensive prognosis ROC analysis (Figure 7F) was 

conducted to evaluate the accuracy of the nomogram. 

The results exhibited area under the curve (AUC) values 

of 0.705, 0.709, 0.696, and 0.701 at 1, 3, 5, and 7 years, 

respectively. 

 

 
 

Figure 7. Clinical correlation analysis and construction of nomogram. (A) Heat map was constructed by combining clinical features 

and model gene expression to demonstrate the distribution of clinical features and model genes in high- and low-risk groups. (B) Bar graphs 
showing the proportion of T-stage, N-stage, fustat, and clinical stage in the high- and low-risk groups. (C) A nomogram was constructed by 
combining age, risk score and clinical stage. (D) Concordance index curves. (E) Decision curve. (F) ROC curves showing AUC values for 
clinical characteristics, risk scores and nomogram scores at 1-, 3-, 5-, and 7-years, respectively. 
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Enrichment analysis 

 

The evaluation of pathways exhibiting significant 

differences between the high- and low-risk groups  

was carried out using the hallmark gene set. In Figure 

8A, it was demonstrated that enrichment in cell cycle-

related pathways, including mTORC1 signaling, MYC 

targets V1, E2F targets, G2M checkpoint, and MYC 

targets V2, among others, was predominantly observed 

in the high-risk group. For GO and KEGG enrichment 

 

 
 

Figure 8. Enrichment pathways between different risk groups. (A) GSVA enrichment analysis demonstrates the enrichment of 

hallmark gene sets between different risk groups. (B) GSEA enrichment analysis demonstrating the enrichment of differential genes to GO 
pathways between high- and low-risk groups. (C, D) ssGSEA enrichment analysis demonstrating the enrichment of immune cell infiltration 
and immune-related pathways between high- and low-risk groups. 
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analysis, GSEA was employed. The GO enrichment 

results, as depicted in Figure 8B, indicated that the 

high-risk group exhibited significant enrichment in 

pathways such as ribosome biogenesis, rRNA processing, 

uronic acid metabolic process, and more. Conversely, 

the low-risk group primarily showed enrichment in 

pathways related to immunoglobulin complex and 

translation repressor activity. In terms of KEGG enrich-

ment, the main pathways enriched in the high-risk 

group were cell cycle and pentose and glucuronate 

interconversion. To assess the differences in immune 

cell infiltration and immune-related pathways between 

the high- and low-risk groups, the ssGSEA method was 

utilized. The analysis revealed that the low-risk group 

exhibited higher levels of immune cell infiltration, 

including T helper cells, pDCs, macrophages, and others. 

Moreover, greater activity in certain immune-related 

pathways, such as Type II IFN response, checkpoint, 

HLA, among others, was demonstrated by the low-risk 

group (Figure 8C, 8D). 

 
Immune infiltration assessment and mutation 

landscape  

 

The degree of immune infiltration was evaluated using 

seven algorithms within the TIMER 2.0 database, and 

the comparison revealed greater immune cell infiltration 

within the low-risk group (Supplementary Figure 3). 

Immune infiltration levels were assessed using the 

“ESTIMATE” R package, wherein correlation analysis 

unveiled a noteworthy negative correlation between  

the risk score and immune score, alongside a positive 

correlation with tumor purity (Figure 9A). Figure  

9B exhibited higher immune scores and ESTIMATE 

scores within the low-risk group (P < 0.05), indicating  

a heightened overall state of immunity and immuno-

genicity within low-risk group. Representative gene 

variants were compared between the high-risk and low-

risk groups (Figure 9C). The top five genes in terms  

of mutation frequencies were TP53, TTN, MUC16, 

CSMD3, and RYR2. The low-risk group exhibited a 

higher TMB relative to the high-risk group (Figure 9D), 

albeit lacking statistical significance. Patients were 

stratified based on risk scores and TMB, revealing that 

the low-TMB and high-risk groups exhibited the most 

unfavorable prognosis (Figure 9E). 

 
Immunotherapy and chemotherapy drugs 

 

Considering the significance of immune checkpoints in 

the success of tumor immunotherapy, we investigated 

the differential expression of immune checkpoints 

between the two risk groups. Low-risk patients exhibited 

significant upregulation of thirteen immune check- 

point genes, including CD40LG, CD48, and CD27. In 

the high-risk group, seven immune checkpoint genes, 

including CD276, CD274, and CD70, were significantly 

elevated (Figure 10A). Correlation analysis, depicted in 

Figure 10B, illustrated the relationship between risk 

scores, model genes, and immune checkpoint gene 

expression. Red color indicated a positive correlation, 

while blue color indicated a negative correlation. It  

was evident that the risk score exhibited a significant 

negative correlation with the majority of immune 

checkpoint genes, such as BTLA, CD27, and CD48. 

Immunophenoscore (IPS) was employed to select 

patients likely to respond to immune therapy. In our 

study, we observed that low-risk patients had a higher 

IPS when receiving CTLA-4 immunotherapy (Figure 

10C). This finding suggested that low-risk patients  

may demonstrate enhanced responsiveness to immune 

checkpoint inhibitors (ICIs) and derive greater benefits. 

By utilizing the “oncopredict” R package, we explored 

potentially effective chemotherapy drugs for both  

high- and low-risk groups. Our findings indicated  

that ABT737 and Acetalax may be more efficacious  

in low-risk patients, while ERK_6604 and Dasatinib 

may exhibit higher sensitivity in high-risk patients 

(Figure 10D). 

 

Experimental validation 

 

The expression differences of seven model genes were 

compared between tumor tissues and normal tissues, as 

depicted in Figure 11A–11G. Notably, high expression 

of SEC61G was observed in tumor tissues. Furthermore, 

Figure 11H illustrated that LUAD patients with high 

expression of SEC61G exhibited poorer survival out-

comes. Additionally, the experiments demonstrated  

that A549 and H1299 LUAD cells exhibited higher 

expression of SEC61G compared to normal lung cells 

(Figure 11I). Downregulation of SEC61G resulted in a 

significant reduction in the number of cell clones within 

the LUAD cell lines (Figure 11J, 11K). These findings 

strongly suggest that high expression of SEC61G can 

promote the proliferation of LUAD cells. 

 

DISCUSSION 
 

With an estimated 1.8 million deaths, accounting for 

approximately 18.0% of total cancer-related deaths, LC 

remains the primary contributor to cancer-related 

mortality. In terms of incidence, LC ranks second at 

11.4%, following breast cancer. In 2020, LC stood  

as the second most frequently diagnosed cancer and  

a significant cause of cancer-related fatalities. It 

constituted around 11.4% of all diagnosed cancers and 

approximately 18.0% of all cancer-related deaths [1]. It 

is estimated that from 2020 to 2050, the macroeconomic 

cost of global cancer will reach 25.2 trillion US dollars, 

with the highest economic burden caused by tracheal, 

bronchus, and LC (15.4%, 3.9 trillion US dollars) [38]. 
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LC patients are typically diagnosed at an advanced 

stage and can undergo surgical resection or 

chemotherapy; however, the treatment outcomes are 

often suboptimal. Immunotherapy is an innovative 

approach in cancer treatment, offering advantages that 

traditional anti-cancer therapies cannot match [3]. It can 

 

 
 

Figure 9. Immune infiltration assessment. (A) Scatter plot of correlation between risk score and stromal score, immune score, 

ESTIMATE score, and tumor purity. (B) Boxplots of differences between risk groups in stromal score, immune score, ESTIMATE score and 
tumor purity. (C) Heat map demonstrating the differences in immune cell infiltration between high- and low-risk groups assessed using four 
algorithms. (D) Boxplots of differences between risk groups in TMB. (E) Survival curves showing the difference between survival among four 
subgroups (high-risk and high-mutation, high-risk and low-mutation, low-risk and high-mutation, low-risk and low-mutation). 
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prolong progression-free survival (PFS) and OS by 

dynamically modulating the immune system to target 

cancer cells from multiple angles and directions, 

thereby helping the immune system to impede or slow 

down the growth of cancer cells, destroy cancer cells, or 

prevent cancer from spreading to other parts of the body 

[5, 39, 40]. However, immunotherapy also comes with 

complexities and uncertainties. Excessive activation of 

 

 
 

Figure 10. Immune checkpoint and immunotherapy analysis. (A) Boxplots showing the difference in immune checkpoint expression 

between high- and low-risk groups. (B) Correlation scatter plots showing the correlation between model genes and risk scores and immune 
checkpoint expression. (C) TCIA analysis showing the difference in IPS scores between different risk groups to infer the possible benefit of 
receiving PD-1 and CTLA-4 treatment in different risk groups. (D) Boxplots demonstrating the possible sensitivity of chemotherapeutic 
agents between different risk groups. 
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the immune system may lead to severe adverse reactions 

during treatment [17]. To enhance the effectiveness of 

immunotherapy and minimize the occurrence of adverse 

reactions, there is an urgent need to identify more 

accurate predictive indicators. 

Exosomes, small vesicles released by cells carrying  

a diverse range of biologically active molecules  

derived from living cells, are known as extracellular 

vesicles. They can be taken up by adjacent cells through 

direct fusion, endocytosis, or specific receptor binding, 

 

 
 

Figure 11. Experimental validation of model gene and in vitro experiment with SEC61G knockdown. (A–G) Boxplots showing the 

differential expression of CCL20, MAP3K8, SEC61G, SLC34A2, CD79A, BIRC3, and RBM39 between tumor and normal tissues. (H) Survival 
curves showing the difference between SEC61G high and low expression groups. (I) Histogram shows the relative SEC61G expression 
between BEAS-2B, A549 and H1299. (J, K) After SEC61G knockdown, the cloning ability of A549 and H1299 cell lines decreased significantly. 
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thereby transferring the encapsulated information  

to target cells. In the context of the TME, exosomes 

serve as crucial regulatory factors in intercellular 

communication. They participate in cell-cell contacts 

and control cellular signal transduction, thus playing 

important roles in tumor development and progression. 

The significant association between exosomes and LC 

has been highlighted in numerous studies. Furthermore, 

exosomes can be detected in various body fluids, 

making them promising candidates as diagnostic and 

prognostic biomarkers for LC. In a study conducted by 

Grimolizzi et al., the levels of miR-126 were compared 

in serum, exosomes, and exosome-depleted serum of 

healthy individuals, as well as early and advanced non-

small cell lung cancer (NSCLC) patients. It was found 

that miR-126 was uniformly distributed in healthy 

individuals, whereas in early and advanced NSCLC 

patients, miR-126 was primarily present in exosomes. 

These findings suggest the involvement of miR-126 in 

regulating the microenvironmental niche of NSCLC and 

highlight its potential value for NSCLC diagnosis and 

personalized therapy [4]. Elevated expression levels of 

exosomal miR-23b-3p, miR-10b-5p, and miR-21-5p 

were found to be associated with poor overall survival 

(OS) in LC patients, as reported by Liu et al. These 

findings suggest that plasma exosomal miR-23b-3p, 

miR-10b-5p, and miR-21-5p have potential as non-

invasive prognostic biomarkers for LC [41]. In the study 

conducted by Kanaoka et al., a significant correlation 

was observed between exosomal miR-451a and lymph 

node metastasis, vascular invasion, and tumor stage in 

LC. It may serve as a reliable biomarker for predicting 

recurrence and prognosis in patients with stage I, II, and 

III non-small cell LC [42]. 

 
The objective of this study was to examine the 

association between ERGs and the prognosis of LUAD. 

Through COX regression and Lasso regression analyses, 

a prognostic model was developed utilizing seven 

ERGs. Based on the median risk value, patients were 

classified into high-risk and low-risk groups using  

the established model. Notably, the high-risk group 

demonstrated a notably inferior prognosis in comparison 

to the low-risk group. To validate the accuracy of the 

model, ROC curves were performed on the training 

cohort and testing cohorts. The AUC values of the 

TCGA cohort and the GEO30219 validation cohort 

were above 0.7 at 1 year, 3 years, and 5 years, indicating 

good discriminative ability. Although the AUC values 

of the GEO30210 and GEO42127 validation cohorts 

were slightly lower, they still demonstrated reasonable 

discriminative capacity. Furthermore, clinically relevant 

ROC curves and decision curves revealed that the risk 

score outperformed other clinical features in terms of 

clinical utility. Compared to the low-risk group, the 

high-risk group had a higher proportion of patients in 

stages II-IV, consistent with traditional clinical staging. 

These findings suggest that the model can provide more 

accurate prognostic predictions for LC patients. 

 

Previous studies have indicated that patients with  

higher TMB may exhibit increased sensitivity to 

immunotherapy [15]. In our study, although the 

difference was not statistically significant, we observed 

that the low-risk group had higher TMB levels compared 

to the high-risk group. Further survival analysis 

revealed that patients in the high-risk group with low 

TMB had the poorest prognosis, suggesting that these 

patients may demonstrate better sensitivity to immuno-

therapy. Within the signature we developed, the gene 

SEC61G was associated with adverse prognosis in 

LUAD patients. Our cell experiments demonstrated 

elevated expression of SEC61G in LUAD tissues, and 

knockdown of SEC61G significantly decreased the 

proliferative capacity of LUAD cells. These findings 

provide additional evidence for the involvement of 

SEC61G in LUAD. A critical role in various tumors  

is played by SEC61G, which is a subunit of the 

endoplasmic reticulum translocon. In their study, Ma  

et al. observed high-expression SEC61G in breast 

cancer, which correlated with unfavorable prognosis. 

Furthermore, they demonstrated that overexpression of 

SEC61G contributes to the development and metastasis 

of breast cancer by modulating glycolysis, a process 

regulated by the transcription factor E2F1. These 

findings highlight the potential of targeting SEC61G as 

a therapeutic strategy for breast cancer treatment [43]. 

In the study conducted by Meng et al., the role of 

SEC61G in kidney cancer was explored, revealing its 

upregulation in tumor tissues and its correlation with 

unfavorable prognosis. Furthermore, the knockdown of 

SEC61G was observed to hinder cell proliferation, 

migration, and invasion, while promoting apoptosis. 

These findings suggest that SEC61G holds promise as 

both a potential prognostic biomarker and therapeutic 

target for kidney cancer [44]. Similarly, in our study,  

we identified SEC61G as a potential target for LUAD, 

further emphasizing its significance in cancer research. 

 

Additional experimental validation is essential to 

confirm these findings, as the constructed EAS in this 

study enables the prediction of prognosis in patients 

with LUAD and reveals potential opportunities for the 

implementation of immunotherapy. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Quality control and dimensionality reduction analysis of single cell sequencing data. (A) Sequencing 

depth is significantly and positively correlated with total intracellular sequence (R = 0.91). (B) Removal of non-compliant cells by restricting 
the ratio of mitochondrial genes, hemoglobin genes and ribosomal genes. (C) PCA analysis did not show any significant cell cycle changes. 
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Supplementary Figure 2. Cell-to-cell communication. (A, B) Differences in the number of cellular communications between groups 

with high and low expression of EA. (C) Differential expression of ligand-receiving pairs between the high- and low-EA expression groups. 
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Supplementary Figure 3. Heat map demonstrating the differences in immune cell infiltration between high- and low-risk 
groups assessed using seven algorithms. 
 


