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INTRODUCTION 
 

Non-small cell lung cancer (NSCLC) is the leading  

life-threatening cancer worldwide and accounts for 

approximately 85% of lung cancers [1, 2]. NSCLC 

tumors generally harbor extensive genomic variations, 

with broad alternation load associating with better 

response to checkpoint blockade therapies, albeit with 

some exceptions [3, 4]. With the rapid development  

of surgical and chemotherapeutical therapies, overall 

survival has improved considerably; however, clinical 

outcomes in advanced NSCLC patients remain un-

favorable [5]. The past several decades have witnessed a 

revolution in cancer treatment by moving away  

from target tumors typically (e.g., radiotherapy, and 

chemotherapy), although with great advancement in 

improving the prognosis of NSCLC, toward antibody-

based immunotherapy that nudges immune responses 

against tumors [6, 7]. 

 

Recent advances in single-cell sequencing technology 

have provided a powerful tool for basic research and 

hold significant potential for deciphering biological 

systems with unprecedented resolution [8]. Compared 

with traditional bulk sequencing, the most unique 

feature of single-cell sequencing lies in the analysis of 
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ABSTRACT 
 

Non-small lung cancer (NSCLC) has been defined as a highly life-threatening heterogeneous disease, with 
high mortality and occurrence. Recent research has indicated that tumor-infiltrating lymphocytes play a 
key determinant role in cancer progression. Emerging single-cell RNA sequencing (also termed scRNA-seq) 
has been extensively applied to depict the baseline landscape of the cell composition and function 
phenotype in the tumor environment (TME). Herein, we dissected the cell types in NSCLC samples 
(including tissue and blood) and identified three types of cell marker genes including cancer cells, T cells, 
and macrophages by integrating two NSCLC-associated scRNA-seq datasets in GEO. Survival analysis 
indicated that 17 marker genes were related to tumor prognosis. Function annotation was used to 
scrutinize the molecular mechanism of these marker genes in different cells. Besides, we investigated the 
developmental trajectory and T cell receptor repertoire diversity of tumor-infiltrating T cells. Our analysis 
will help further understand the complexity of cell components and the heterogeneity of TME in NSCLC. 
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intercellular heterogeneity and the requirement of 

obtaining single cells in good status [9, 10]. Sequencing 

the genome of individual cells, encompassing 

transcriptomic and epigenomic assays, is promising  

to reveal somatic mutations and comprehensively 

characterize the diversity of tumor cell types [11]. The 

lung tumor microenvironment, comprised of tumor 

bulk plus supporting cells, plays a critical role in  

the onset, progression, and malignant transformation 

of NSCLC and is tightly correlated to therapeutic 

outcomes [12]. Single-cell DNA sequencing can 

delineate the genomic variations within a single cell, 

but it fails to identify salient expression differences in 

heterogeneous cells [13, 14]. However, the generation 

of transcriptional profiles of single cells by single-cell 

RNA sequencing (scRNA-seq) enables the investigation 

of intercellular heterogeneity on a transcriptome- 

wide and single nucleotide and level [15]. scRNA- 

seq of NSCLC samples can disclose the intrinsic  

gene regulatory mechanisms that determine cellular 

properties and reveal the developmental and evo-

lutionary relationships of NSCLC cell populations.  

In addition, it contributes to dissect the correlation 

between NSCLC heterogeneity, signaling pathways, 

drug resistance and microenvironment shaping, which 

is of great importance for NSCLC treatment. 

 
In the current study, we investigated the cell types and 

cell features genes in TME of NSCLC by integrating 

the two scRNA datasets of NSCLC from GEO. Also, 

we studied the association between cell marker genes 

and tumor survival. Of note, we analyzed the single- 

cell trajectory features and characteristic differences  

of T cell receptors (TCR) in NSCLC. Our research 

highlighted the decisive function of the cell component 

of TME and emphasized the presence of TME hetero-

geneity in tumor progression. 

 
MATERIALS AND METHODS 

 
Data collection and processing 

 
The original scRNA-seq gene expression matrix 

information related to NSCLC was downloaded from 

the GEO database. We selected GSE162498 with 17 

samples (13 tumor samples and 4 blood samples)  

and GSE117570 with 8 samples (4 tumor samples and 

4 paracancerous samples) as our metadata. The single 

cell TCR-seq (T cell receptor) annotation file was 

acquired from GSE162498 with 10 samples (6 tumor 

samples, 2 para-tumor normal samples, and 4 blood 

samples). The workflow of data processing was 

performed according to previous research [16]. 

Generally, the cells that meet the requirements are 

screened out according to the following standard: min. 

features = 100, min. cells = 10, nFeature RNA > 100 

and nFeature RNA < 5000, percent.mito < 20,  

nCount RNA > 10. There was a batch effect  

between GSE117570 and GSE162498. Therefore,  

we removed the batch effect by using FindAnchor  

and IntegrateData functions in the Seurat package  

(V4) in R software [17]. By integrating GSE117570 

and GSE162498 data, a total of 23886 genes in 

153,595 cells were identified. 

 

Cell cluster analysis 

 

Principal component analysis (PCA) is a linear method 

used to reduce data complex dimensionality. PCA 

analysis is to condense the information of a large 

number of genes in the data into a few variables 

(representing the main effects in the sample). Then, just 

2–3 variables (named PC1, PC2, and PC3) can represent 

most of the information contained in tens of thousands 

of genes. Then the difference in expression between 

cells is reflected in the differences in the values of  

PC1 and PC2 [18]. t-distributed Stochastic Neighbor 

Embedding (t-SNE) algorithm is a machine learning 

algorithm for dimensionality reduction, which is used 

for exploring high-dimensional data [19]. Uniform 

Manifold Approximation and Projection (UMAP), is an 

emerging dimensionality reduction algorithm, which 

can retain the features of the original data to the 

maximum extent and reduce the feature dimension [20]. 

We normalize the scRNA-seq data by using the Seurat 

package. After the dimension of PCA, a total of 15w 

cells were clustered into 29 clusters by tSNE/UMAP 

analysis. Among that, the number of cells in the tumor 

sample was the highest (113448 cells) and normal was 

the lowest (6432 cells). 

 

Identification of cell marker genes 

 

The specific gene list expressed in each cluster was 

collected by using the FindAllMarkers function in the 

Seurat package. Herein, the cell type in each cluster was 

annotated by the combination of the singleR (3.17) 

method and manual annotation (Supplementary Table 1). 

The marker gene annotated manually comes from this 

article [21] and the immune cell marker website (http:// 

www.cellsignal.com/pathways/immune-cell-markers-

human). Also, these cluster-specific genes identified by 

FindAllMarkers were regarded as cell type-specific 

genes of annotated cells in the matching cluster. In  

each cell type, the differentially expressed genes 

(DEGs) among different groups (tumor, normal, and 

blood samples) were acquired by using the limma and 

DESeq method with the threshold of p-value < 0.05. 

The overlapping genes between cell-specific genes  

and DEGs were defined as the matching cell marker 

genes. 

http://www.cellsignal.com/pathways/immune-cell-markers-human
http://www.cellsignal.com/pathways/immune-cell-markers-human
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Survival analysis and gene expression pattern of 

marker genes 

 

The influence of cell marker genes on NSCLC 

prognosis was assessed based on a Cox model, which 

was created to estimate the survival risk of patients 

under different conditions. Kaplan-Meier curve analysis 

was performed to compare the survival differences in 

patients with different marker gene expression contexts 

by using the survival (3.5.5) package in R. 

 

Function enrichment and ssGSEA analysis 

 

GO and KEGG enrichment analysis of cell marker 

genes was used to identify the major biological function 

and involved signaling pathways of each type of cell.  

In addition, we also conducted the gene set enrichment 

analysis to further explore the predominant signaling 

axis implanted by each type of cell according to pre-

vious research. ssGSEA was termed as a non-parametric 

and unsupervised approach, which was used to calculate 

the normalized enrichment score of T cell subsets in  

our metadata with reference to the marker genes of 17 T 

cell subsets. 

 

Hallmark of cancer and immune signature analysis 

 

We downloaded the hallmark gene set and immuno-

logic signature gene set from the MSigDB database 

(http://www.gsea-msigdb.org/gsea/msigdb/). The GSEA 

method was used to analyze the predominant molecular 

signals of cell marker genes in tumor-associated 

pathways and immune-related pathways. 

 
Trajectory analysis 

 

We arranged T cells according to pseudotime along  

a trajectory with the orderCells function by using  

the monocle3 method. Then we conducted a data 

dimensionality analysis of cell clustering by using the 

DDRTree approach. After that, the trajectory image of 

T cells was visualized by UMAP. Here we defined the 

naïve T cell as the root node. Likewise, the trajectories 

of myeloid cells are analyzed with monocle3, and the 

node at the bifurcation is selected as the root node. 

 
TCR analysis 

 

The T-cell receptor sequencing (TCR-seq) technique 

was applied to comprehensively and rapidly detect the 

TCR diversity of antigen recognition decisive surface 

molecules. When the immune response occurs, the gene 

rearrangement in the VDJ region of TCR formed many 

different immune receptors, that is, the immune library. 

The main purpose of TCR-seq data analysis was to 

count the occurrence frequency of genes in different 

regions, namely geneUsage. Here we analyzed the 

distribution pattern of TCR by using the immunarch 

package in R based on GSE16249. The results were 

visualized by the vis function in ggplot2 (3.4.3).  

 

Availability of data and materials 

 

The datasets used and/or analyzed in the present  

study are available from the corresponding author  

on reasonable request. R code script was shown in 

Supplementary File 1. 

 

RESULTS   
 

The cell distribution pattern in NSCLC 

 

We identified a total of 23886 genes in 153,595 cells by 

integrating the GSE117570 and GSE162498 data with 

Seurat algorism. According to tSNE/UMAP analysis, 

these cells were mainly enriched into 29 distinct clusters 

(Figure 1A). Also, the cell distribution pattern in three 

sample types (tumor tissues, corresponding para-tumor 

normal tissues, and blood samples) was visualized. 

Most cells were mainly augmented in tumor tissue 

samples while the corresponding para-tumor normal 

tissue samples gained the lowest cell abundance (Figure 

1B, 1C). The overall cell could be annotated into 12 cell 

types (Figure 1D). The cellular compositions, including 

cancer cells, T cells, B cells, endothelial cells, and so on 

(a total of 12 types of cells) in each sample type differed 

from other types. We found that blood samples had  

the highest abundance of T cells with the highest 

percentage of CD4+ T cells. Tumor tissue carried most 

cellular components such as cancer cells, T cells, B 

cells, and endothelial cells, among which macrophage 

had the highest percentages, following CD4+ and CD8+ 

T cells (Figure 1E). Furthermore, we found that CD4+ 

and CD8+ T cells were evenly distributed in tumor 

samples compared with the normal group (Figure 1F). 

Consistently, the macrophage was the most abundant of 

three myeloid cells (macrophage, monocyte, and M2-

macrophage) in tumor tissues compared to the normal 

tissue (Figure 1G). These results suggested the active 

anti-cancer response in tumor tissues. 

 

Gene expression features in cell clusters 

 

The heat map of the top 10 DEGs in each cluster was 

shown in Figure 2A. Interestingly, the top 10 DEGs 

identified by cluster 0 were distributed at cluster 0 other 

than resident clusters (Figure 2B), validating the efficacy 

of our cell cluster analysis. Observing the abundance 

composition of cluster 0, we obtained DEGs in cluster 0. 

GO and KEGG analysis of DEGs in cluster 0 was 

displayed in Figure 2C, 2D. They were associated with T 

cell activation and autoimmune disease pathways. 

http://www.gsea-msigdb.org/gsea/msigdb/
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Identification of prognostic associated marker genes 

(PAMGs) of cells 

 

We obtained the DEGs between three samples of  

each cell type. The top 10 DEGs in were shown in 

Figure 3A. The overlapping genes between DEGs and 

cell-specific gene lists were used as marker genes for 

matching cells. 285 marker genes were identified in the 

cancer cell, which was consistent with the tumor tissue 

feature. 142 marker genes were identified in T cells and 

225 marker genes in macrophages. Here, we acquired 

cancer cells, T cells, and macrophage marker genes. 

Furthermore, we investigated the influence of these cell 

marker genes on NSCLC survival based on TCGA-LC 

clinical data. Results indicated that 17 marker genes 

were found to have significant effects on tumor survival 

(3 representative genes, KRT6A, NASPA, and ADM 

Figure 3B–3D). 

 

Expression pattern of PAMGs in different types of 

cells  

 

Considering these PAMGs in tumor prognosis and 

development, we also explored their expression pattern 

in our training set (GSE117570 and GSE162498). Gene 

expression patterns of 17 PAMGs in three sample types 

were shown in Figure 4A. The heatmap of 17 PAMGs 

in different types of cells was displayed in Figure  

4B. Furthermore, the box plots of gene expression  

of 3 representative genes, KRT6A, NASPA, and ADM 

were also displayed in Figure 4C. KRT6A was mainly 

expressed in the cancer cell. We could conclude that 

most PAMGs were up-regulated in cancer cells and 

epithelial cells. These results demonstrated that cancer 

cells play a crucial role in cancer progression while 

other cells such as T cells were not directly engaged in 

tumor development. 

 

Enrichment analysis of marker genes 

 

The GO and KEGG enrichment analysis of cell  

marker genes in different cell types were performed to 

examine the functional difference. The most significant 

pathway in T cells was “response to interferon-gamma”, 

which was found to be related to antigen recognition 

(Figure 5A). Recent studies have revealed that lung 

cancer–specific tumor-infiltrating CD8+ T cells had a 

distinctive differentiation trajectory, which acquired 

effector and exhausted phenotypes. This unconventional 

T cell dysfunction explained the ICB resistance for 

some NSCLC patients [22]. Of course, IFN-γ has a 

pivotal influence on ICB efficacy, evidenced by that 

IFN-γ-related mRNA profile exerted a predictive 

influence on PD-1 blockade response in a clinical trial 

 

 
 

Figure 1. The cell distribution pattern in NSCLC. (A) The cell cluster analysis of scRNA data. (B, C) The cell distribution in three sample 

types (tumor tissues, para-tumor normal tissues, and blood samples). (D) Cell annotation results of UMAP cluster analysis. (E) Percentages 
of clustered total cells in three types of samples including blood, normal tissue and tumor tissue group. (F) The cell percentages of clustered 
T cells in three types of samples. (G) The cell percentages of clustered macrophage subpopulations in three types of samples.  
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setting [23]. On the contrary, the most significant 

pathway enriched in macrophage was neutrophil 

activation (Figure 5B), which is related to innate immune 

activation. Increasing data has demonstrated that there 

were two lineages of macrophages: local tissue-resident 

macrophages and those derived from monocytes in 

NSCLC [24]. Early-stage tumors were influenced by 

tissue-resident macrophages which enhance tumor cell 

invasiveness and create a protective shield by triggering 

a powerful regulatory T cell response [24]. Interestingly, 

as the tumor expands, monocyte-derived macrophages 

rise in number, pushing tissue-resident macrophages  

to periphery of the TME [24]. These data highlighted 

the potential in focusing on tissue-resident macro-

phages for early NSCLC interventions. These results 

indicated that the gene expression pattern of maker 

genes was strictly governed by the cell functional 

phenotypes. 

 

Hallmark and immune signature analysis of marker 

genes 

 

We downloaded the hallmark and immunologic 

signature and gene set from the MSigDB database to 

scrutinize the function of our marker genes in tumor-

associated and immune-related pathways. By KEGG 

analysis in tumor signal pathways, we found that B cell 

maker genes were mainly enriched in estrogen response, 

interferon-gamma response, androgen response, TNF- 

α signaling via NK-κB, and complement response

 

 
 

Figure 2. Gene expression features in cell clusters. (A) Heatmap of the top 10 DEGs in 29 clusters. (B) Expression of top 10 DEGs of 

cluster 0 in 29 clusters. (C, D) GO and KEGG analysis of DEGs in cluster 0. 
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(Figure 6A). The immune signature pathway of B  

cell maker genes was shown in Figure 6B. GSEA 

results illustrated that the cancer cell marker gene was 

significantly enriched in xenobiotic metabolism (Figure 

6C), suggesting the hyperactive metabolism response  

of cancer cells. Also, GSEA of immune signature 

enrichment showed that the macrophage marker gene 

was mainly engaged in influenza induced by PBMC 

inactivation (Figure 6D), suggesting macrophages play 

a key role in innate immunity. This was consistent with 

our previous results (Figure 4B). 

Identification of T cell subpopulations 

 

Considering the great impact of T cells on tumor 

progression, we focused on the T cells subpopulation  

with distinct phenotypes. Here we collected the maker  

of 17 T cell subpopulations with different phenotype 

functions (https://www.cellsignal.com/pathways/immune-

cell-markers-human). The abundance of various T cell 

subpopulations in three NSCLC samples was shown in 

Figure 7A. Most T cells were up-regulated in tumor 

samples (including tissue and blood) compared with 

 

 
 

Figure 3. Survival analysis of cell marker genes. (A) DEGs between different groups. (B–D) Survival analysis of 3 representative marker 

genes (KRT6A, NASPA, and ADM). 

https://www.cellsignal.com/pathways/immune-cell-markers-human
https://www.cellsignal.com/pathways/immune-cell-markers-human
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the normal group. Furthermore, we found that the 

distribution pattern of the 17 T cell subpopulation in 

CD8+ T cells was similar to CD4+ T cell, with the 

CD8+ T cell and naïve T cell highest infiltration (Figure 

7B–7E). 

Analysis of T cell development trajectory 

 

Trajectory analysis can reshape the dynamic evaluation 

process of cell development and maturity by focusing 

on the different stage cells with distinct gene signatures. 

 

 
 

Figure 4. Expression pattern of PAMGs in different types of cells. (A) Expression of 17 PAMGs in three sample types. (B) Heatmap 

of 17 PAMGs in different types of cells. (C) Box plot of 3 representative genes expression (KRT6A, NASPA, and ADM) among tumor, blood, 
and normal tissues. 
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Figure 5. Enrichment analysis of marker genes. (A, B) GO and KEGG enrichment analysis of cell marker genes. 

 

 
 

Figure 6. Hallmark and immune signature analysis of marker genes. (A, B) KEGG analysis of B cell marker genes in tumor-

associated signal pathways and immune signature pathway. (C, D) GSEA results of cancer cell marker and macrophage marker genes. 
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Here we dissected the trajectory development  

process of T cells and myeloid cells, respectively by 

performing correlation analysis between marker genes 

and develop-mental trajectories of T cell and myeloid 

cell via Monocle3. These significant genes were 

selected for the following trajectory analysis via 

Monocle3. The developmental trajectory of T cells was 

shown in Figure 8A, 8B. There was heterogeneity in 

the differentiation pathway of T cells with distinct 

phenotypes. Conversely, both M2-macrophage and 

monocyte evaluation toward macrophage (Figure 8C, 

8D). In addition, we identified 57 marker genes that 

were found to exert vital function in the developmental 

trajectories of T cells (Figure 8E). We also investigated 

the expression pattern of their expression in T cells 

(Figure 8F). Most marker genes were down-regulated 

in naïve T cells and they were expressed in CD8+  

and CD4+ T cells. 

 

TCR repertoire analysis 

 

TCR belongs to the immunoglobulin superfamily and is 

a characteristic mark on the surface of T cells. TCR is a 

heterodimer composed of two different peptide chains, 

which consisted of TCR1 (γ and δ chains) and TCR2  

(α and β chains). The random rearrangement of genes 

produces TCR polymorphism, forming a huge TCR 

library. The polymorphism of the TCR indicates the 

richness of T cell types or subpopulations. Here we 

downloaded TCR data of 8 NSCLC samples (blood and 

tissue sample) from GSE162499, including 162,839 

TCRs of 42,163 cells. Results suggested that TCR 

distribution in the NSCLC blood sample was similar to 

the disposal pattern in NSCLC tumor tissue (Figure 9A, 

9B). Most TCRs were identified as T cells rather than 

cancer cells or B cells, among which CD4+ and CD8+ 

T cells had the highest percentages while the CD4- and 

CD8- (double negative, DN T cell) carried the lowest 

TCRs, suggesting the maturity and function complexity 

of T cells (Figure 9C, 9D). In addition, we observed that 

the CD4+ T cell in tissues was higher than that in blood, 

demonstrating the great potential of tumor infiltration of 

CD4+ T cells. Notably, there was an additional TCR 

repertoire of Treg cell subpopulation in tissue, implying 

that Treg cells engaged in tumor microenvironment 

reshaping. 
 

DISCUSSION 
 

The tumor ecosystem consists of multiple cell 

components including cancer cells, tumor-infiltrating 

lymphocytes, stromal cells, endothelial cells, and other 

supporting ingredients. The cross-talk between cell 

partners and their inter-communications of themselves 

created a dynamic and complex local microenvironment 

manipulating the overall tumor progression. The tumor 

ecosystem was also termed a tumor microenvironment 

(TME). More importantly, a plethora of research has 

 

 
 

Figure 7. T cell subpopulation analysis. (A–C) The abundance of 17 T cell subpopulations in three NSCLC samples. Comparisons 

between two groups were calculated based on Student’s t test. (D, E) The abundance of CD4+ and CD8+ T cell subpopulations in 17 T cell 
subpopulations. 
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manifested that plastic TME with heterogeneity  

is recognized as a predominant hallmark in cancer 

immunotherapy. For example, according to a recent 

study, a platelet protein, TLT-1 was found to recognize 

the specific CD3ε region of CD8+ T cells, impeding the 

anti-tumor function of CD8+ T cells by regulating the 

NF-κB pathway [25]. Enhancing the CD137 expression 

of T cells boosted the cytotoxic effector function of  

T cells by activating CD8+ T cells, improving the  

tumor OS [26]. In addition, anti- PD-1 immunotherapy 

manipulated CD4+ T cell chemotaxis response by 

reshaping CD11b+ neutrophil degranulation activity,

 

 
 

Figure 8. T cell trajectory analysis. (A) The evolution pathway of T cells. (B) The pseudo-time sequence of evolution of T cells. (C) The 

evolution pathway of macrophage. (D) The pseudo-time sequence of evolution of macrophages. (E) Significant marker gene lists involved 
T cell development. (F) Gene expression pattern of the significant marker gene in T cell. 



www.aging-us.com 11581 AGING 

which was considered a clinical indicator of  

successful pancreatic ductal adenocarcinoma (PDAC) 

immunotherapy [26]. Anti-cancer immunotherapy has 

made a great breakthrough in recent years. Of note is 

the need to consider the heterogeneity of tumor-

infiltrating immune cells. Here, we investigated the 

overall cell components in the TME of NSCLC. By 

integrating two NSCLC-associated scRNA-seq datasets 

(including tumor tissue, para-tumor normal tissue, and 

blood samples), we identified 29 distinct cell clusters 

and most cell clusters were mainly enriched in the 

tumor tissue group. These results indicated that tumor 

tissue was a complex cell ecosystem, implying the 

existence of heterogeneity. Because of the high 

proportion of cluster 0, we obtained significant cluster-

specific genes in cluster 0. They were chiefly involved 

in T cell activation and autoimmune disease-associated 

pathways. 

 

Furthermore, 285 cancer cell marker genes, 142 T cell 

marker genes, and 225 macrophage marker genes were 

identified by taking the intersection between DEGs 

(tumor vs. normal) and immune cell marker genesets. 

17 marker genes were associated with NSCLC survival. 

KRT6A has been reported to be a negative regulator in 

NSCLC survival [27], which was in agreement with our 

analysis. An isolated study based on transcriptome data 

also validated the efficacy of ADM as an independent 

prognosis factor [28]. Here we exemplified that ADM 

was a key clinical factor in evaluating NSCLC survival 

at the single-cell level. Enrichment analysis indicated 

that T and B cell marker genes principally engaged  

in response to interferon-gamma (IFN-γ), which was 

indispensable to the cancer-killing of CAR-T cell 

therapy. A recent study suggested that the knockout of 

genes in the IFN γ receptor signal pathway (IFNGR1, 

JAK1, or JAK2) endowed solid tumor cells with 

resistance to CAR-T cells by reducing the overall 

binding time and affinity of CAR-T cells with the 

cancer cells [29]. Macrophage marker genes were 

associated with neutrophil activation. Within the tumor 

background, neutrophils derive bone marrow-derived 

suppressor cell (MDSCs) subsets, which suppressed the 

anti-tumor response of T cells by regulating PD-L1 

expression to promote angiogenesis [30, 31]. The 

cancer cell marker gene was significantly enriched in 

xenobiotic metabolism. The metabolic preferences 

acquired by cancer cells were a favorable factor in the 

 

 
 

Figure 9. TCR repertoire analysis. (A) The distribution of TCR in different cell types. (B) The cell percentages of TCR in tumor samples. 

(C, D) TCR colony numbers and length in different types cell of tumor samples. 
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nutritional requirements of cancer cell growth and 

proliferation, validating the profound influence of cell 

metabolism reprogramming on tumorigenesis [32]. The 

unique metabolic characteristic of cancer cells endowed 

them with the ability to obtain necessary nutrients from 

a nutrient-deficient environment, which was vital to 

maintain viability and generating new biomass [33]. 

 

As previously described, T cells subpopulations with 

distinct phenotypes varied in anti-tumor activity. 

Herein, 17 T cell subpopulations were enrolled in our 

analysis. naïve T (DN T cell) cell was identified as  

the highest infiltration T cell subpopulations in tumor 

tissue and blood samples. It is widely accepted that 

CD3+CD4-CD8- DNT cells are a distinct subset of  

T cells. DNTs carried an effective cancer-killing 

potential in NSCLC models. The expanding DNTs  

in vivo acquired an anti-tumor phenotype with the  

NK cell marker NKG2D, DNAM-1, which mediated  

the cytotoxicity response targeting cancer cells by 

secreting cytotoxic cytokines such as IFNγ and soluble 

TRAIL (sTRAIL) [34]. Emerging evidence validated 

that TCRαβ+ DNTs and TCRγδ+ DNTs displayed 

equivalent anti-tumor activity in a series of preclinical 

models. There was the DNT cell subpopulation in 

tumor-infiltrating lymphocytes derived NSCLC samples, 

together with increased expression of PD-1. Interestingly, 

the DNT cells extracted from healthy donors curtailed 

late-stage lung cancer progression through which anti-

PD-1 therapy contributed to DNT cell infiltration into 

primary tumor biomass [35]. These results, combined 

with our findings, manifested that targeting DNT cells 

could be a novel platform in immunotherapy. 

 

The cell trajectory analysis based on the correlation 

between cell marker genes and trajectories-associated 

genes via Monocle3 indicated the temporal heterogeneity 

of NSCLC-infiltrating T cells. We found that 57 marker 

genes were associated with the T cells maturation 

process. Most marker genes were down-regulated in 

naïve T cells (considered as immature T cells) and 

expressed in mature T cells such as CD8+ and CD4+ T 

cells. These results demonstrated that 57 marker genes 

were important driving forces in T cell development. 

Consistent with this point, our TCR analysis indicated 

that the TCR numbers of early-stage T cells were lower 

than the mature-stage T cells, including CD4+ and 

CD8+ T cells. These data showed that the dynamic 

changes of the TCR repertoire library could be a 

sensitive indicator of the T cell development process. In 

addition, our data revealed an additional TCR repertoire 

of Treg cell subpopulation in tumor tissue. 

 
From a clinical perspective, understanding the behavior 

and molecular signatures of Treg cells in the TME is 

paramount. While some studies have demonstrated the 

immune-suppressive attributes of Treg cells in the 

TME, which aids tumor growth and immune evasion 

[36, 37]. However, another study discovered Treg cells 

restrained tumor growth and increased response to 

immunotherapy by up taking lactic acid [38]. This 

dichotomy suggests a nuanced metabolic balance within 

Treg cells. Clinically, manipulating this balance could 

offer a dual therapeutic approach: impairing tumor 

growth and promoting immune response by reshaping 

the metabolic landscape within the TME. 

 

Given this data, it becomes clear that understanding the 

intricacies of T cell trajectory and the TCR repertoire 

can provide critical insights for enhancing patient  

care. Harnessing this point can guide the development 

of personalized therapeutic strategies for NSCLC, 

thereby improving patient outcomes and response rates 

to treatments. 

 

CONCLUSION 
 

Taken together, our data revealed the heterogeneity  

of TME, the T with different phenotypes cell of TME 

provides a theoretical basis for variable immunotherapy 

response. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary File 
 

Please browse Full Text version to see the data of Supplementary File 1. 

 

Supplementary File 1. R code script of the bioinformatical analysis. 
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Supplementary Table 
 

Supplementary Table 1. Cell annotation marker gene list. 

Cell type Marker genes 

B cell MS4A1, CD79A, CD79B, IGHD, CD19, CD74, HLA-DRA, CXCR4 

Cancer cell EPCAM+, CDH1+, CAPS-, SNTN- 

Cytotoxic T cell KLRC1, KLRD1, GZMB, PRF1  

Endothelial cell CLDN5, VWF, PECAM1 

Epithelial cell CAPS, SNTN, CLDN18, AQP4, FLOR1 

Macrophage C1QA, MRC1, MARCO, CD68, CD163, APOE 

Macrophage: M2 MRC1, CD163, TGFB1, IL10, FN1 

Monocyte CD14, FCN1, FCGR3A, VCAN 

Naive T cell (CD4-CD8-) CCR7, LEF1, SELL, TCF7 

T cell (CD4+CD8+) CD2, CD3D, TRAC, TRBC2, CD4, CD8A, CD8B 

Helper T cell (CD4+) KLRB1, RORC 

Regulatory T cell (CD4+) FOXP3, IL2RA, CTLA4, IKZF2, CD4 

 


