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ABSTRACT 
 

Background: Immunotherapy, as a form of immunobiological therapy, represents a promising approach for 
enhancing patients’ immune responses. This work aims to present innovative ideas and insights for prognostic 
assessment and clinical treatment of stomach adenocarcinoma (STAD) by leveraging immunobiological signatures. 
Methods: We employed weighted gene co-expression network analysis (WGCNA) and unsupervised clustering 
analysis to identify hub genes. These hub genes were utilized to construct a prognostic risk model, and their 
impact on the tumor microenvironment (TME) and DNA variations was assessed using large-scale STAD patient 
cohorts. Additionally, we conducted transfection experiments with plasmids to investigate the influence of 
SPP1 on the malignancy of HGC27 and NCI-N87 cells. 
Results: Unsupervised clustering of 12 immune-related genes (IRGs) revealed three distinct alteration patterns 
with unique molecular phenotypes, clinicopathological characteristics, prognosis, and TME features. Using 
LASSO and multivariate Cox regression analyses, we identified three hub genes (MMP12, SPP1, PLAU) from the 
IRGs to establish a risk signature. This IRG-related risk model significantly stratified the prognosis risk among 
STAD patients in the training (n = 522), testing (n = 521), and validation (n = 300) cohorts. Notably, there were 
discernible differences in therapy responses and TME characteristics, such as tumor purity and lymphocyte 
infiltration, between the risk model groups. Subsequently, a nomogram that incorporates the IRG signature and 
clinicopathological factors demonstrated superior sensitivity and specificity in predicting outcomes for STAD 
patients. Furthermore, down-regulation of SPP1, as observed after siRNA transfection, significantly inhibited 
the proliferation and migration abilities of HGC27 and NCI-N87 cells. 
Conclusions: In summary, this study highlights the critical role of immune-related signatures in STAD and offers 
novel insights into prognosis indicators and immunotherapeutic targets for this condition. SPP1 emerges as an 
independent prognostic factor for STAD and appears to regulate STAD progression by influencing the immune 
microenvironment. 
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INTRODUCTION 
 

Stomach adenocarcinoma (STAD) is the most  

common pathological subtype of gastric cancer (GC), 

characterized by exceptionally high recurrence and 

metastasis rates [1]. Research indicates that STAD 

originates from the gastric mucosal epithelium and 

ranks fifth among all malignant tumors in terms of 

incidence [2]. Therefore, it is imperative to employ 

rigorous scientific standards and methodologies for 

timely diagnosis, rational treatment, and accurate 

prognosis prediction. 

 

The tumor microenvironment (TME), comprising  

tumor cells, immune cells, and stromal cells (e.g., 

fibroblasts and endothelial cells), plays a pivotal role in 

cancer development [3, 4]. Activated fibroblasts are key 

players in the intricate process of tumor-stromal 

interactions, influencing tumor growth, angiogenesis, 

and other crucial processes [5]. Mesenchymal stem cells 

(MSCs), along with their differentiated counterparts, 

constitute the predominant and critical components of 

the tumor mesenchyme, significantly impacting the 

phenotype of immune cells and thereby influencing 

tumor progression [6]. Mounting evidence suggests  

that the TME is closely intertwined with predicting 

immunotherapy responses in STAD [7]. 

 

As the most prevalent malignancy within the digestive 

system, GC has shown resistance to conventional 

chemoradiotherapy, necessitating the exploration of 

novel treatment modalities [8]. The elevated incidence 

of somatic mutations in GC patients makes immuno-

therapy an appealing therapeutic avenue for gastric 

cancer [9]. Immunotherapy targets immune cells with 

higher infiltration levels, aiming to maximize the 

clinical survival rates of patients [10]. Aberrations in 

immune checkpoints profoundly affect the development, 

invasion, and metastasis of advanced STAD. In  

recent years, immune checkpoint inhibitors (ICIs), 

notably anti-PD-1/PD-L1 antibodies, have revolutionized 

traditional treatment paradigms, exhibiting enhanced 

efficacy in STAD treatment [11]. Furthermore, the 

immune status within the tumor may significantly impact 

patient prognosis. However, the precise alterations in 

gene expression profiles and molecular mechanisms 

related to tumor immunity remain unclear. In this study, 

our objective is to offer fresh insights into the prognosis 

evaluation and clinical management of STAD by 

exploring risk characteristics and constructing an 

effective signature centered on immune-related genes 

(IRGs). 

 

In this investigation, we have modularized IRGs  

based on their expression levels and subsequently 

identified 12 genes through correlation and univariate 

Cox analysis. Our unsupervised clustering analysis  

has unveiled three distinct clusters, with an overlapping 

set of four genes. Utilizing the least absolute shrinkage 

and selection operator (LASSO) and multivariate Cox 

analysis, we have identified three hub genes, which 

form the foundation of our prognostic risk signature. 

Subsequently, we delve into further studies on the TME, 

immunotherapy, and patient prognosis. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing 

 

The experimental data and clinical annotation with  

public access come from the Gene Expression Omnibus 

(GEO; https://www.ncbi.nlm.nih.gov/geo/) and the Cancer 

Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) 

databases. Patients lacking survival information are 

excluded from further analysis. For subsequent analysis, 

clinical and transcriptomic data for four GEO cohorts 

(GSE15459, GSE34942, GSE38749, and GSE84437),  

as well as a TCGA-STAD cohort, are obtained. To 

characterize the transcriptomic profiles of the tumor 

immune microenvironment landscape, we included a 

total of 2660 immune-related genes (IRGs) sourced  

from https://www.immport.org/home. Subsequently, we 

converted Fragments Per Kilobase Million (FPKM) 

values into Transcripts Per Kilobase Million (TPM) and 

merged the four datasets while addressing batch effects 

across multiple samples. 

 

Construction of weighted gene co-expression 

network analysis (WGCNA) 

 

We employed the standard WGCNA procedure  

to analyze the co-expression network of the 2660 

immune-related genes (IRGs) to identify STAD genes 

with strong correlations to immune cells. Utilizing  

the WGCNA package (http://www.r-project.org/), we 

imported and processed the transcriptome data, filte-

ring out genes with no significant differences between 

groups. The gene expression data of TCGA-STAD 

patients were closely examined to identify potential 

markers associated with IRG characteristics in patients. 

 

Within the context of a scale-free co-expression 

network, we removed overly divergent samples by 

pruning samples with a Height > 75 and adhering to the 

Scale Free Topology signatureFit criterion, ensuring an 

R2 > 0.9. Subsequently, we transformed the expression 

matrix into an adjacency matrix and further into a 

topology matrix. Genes were clustered based on the 

Topological Overlap Matrix (TOM) using mean linkage 

hierarchical clustering, with each resulting module 

containing a minimum of 30 genes. We identified gene 

modules using dynamic shearing methods and isolated 

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://www.immport.org/home
http://www.r-project.org/
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characteristic genes within each module for cluster 

analysis. After merging modules with a similarity >0.25, 

we conducted an in-depth analysis of the newly formed 

module and assessed the association of eigenvectors 

with STAD prognostic outcomes.  

 

Unsupervised clustering analysis of prognostic 

immune-related genes 

 

Correlation and univariate Cox analysis were conducted 

on the 60 genes identified within the black module. Out 

of these, 12 genes exhibited p-values less than 0.05, and 

these were selected for further analysis (Supplementary 

Table 1). We then utilized the STRING website (https:// 

string-db.org/) to identify proteins associated with these 

12 genes and visualized the interactions using Cytoscape 

software. Subsequently, employing unsupervised clus-

tering analysis, we delineated distinct clusters based on 

the enrichment of STAD-related genes. 

 
Exploring the clinical relevance and enrichment 

analysis of molecular subtypes 

 

Our study delves into the relationship between the three 

clusters resulting from the unsupervised clustering of 

the 12 genes, clinicopathological characteristics, and 

prognosis. Various patient characteristics were analyzed, 

including age, gender, race, tumor status, tumor node 

metastasis (TNM) stage, tumor stage, tumor grade, 

primary treatment outcome, and future prognosis.  

We generated Kaplan-Meier curves to assess overall 

survival (OS) among the three clusters, employing the 

“survival” and “survminer” R packages. 

 

To gain insight into the distinct characteristics of STAD-

related genes in biological processes, we performed 

Gene Set Variation Analysis (GSVA) on these 12 

genes. We used a marker gene set (c2.cp.kegg.v7.4) 

sourced from the MSigDB database, identifying four 

genes common to all three clusters. Subsequently, the 

clusterProfiler package was employed to conduct Disease 

Ontology (DO) analyses, Kyoto Encyclopedia of Genes 

and Genomes (KEGG), and Gene Ontology (GO) 

enrichment analyses on these four genes. Our aim was 

to elucidate their enrichment patterns, associated path-

ways, and implications in various disease types within 

different biological processes, cellular components, and 

molecular functions. 

 
Construction and validation of the three hub gene 

risk signature 

 

For the reason that a single tumor’s genetic charac-

teristics were quantified by the construction of a new 

risk signature score, we performed LASSO analysis 

based on the 4 genes obtained above. Subsequently, 

multivariate Cox regression analysis is performed to 

construct risk signature in the training set. The “caret” 

package and samples from the TCGA, GSE15459, 

GSE34942, GSE38749 and GSE84437 cohorts are 

randomly split with a ratio of 1:1 into training (n = 522) 

and testing sets (n = 521) to construct risk signatures. 

The risk characteristics are defined as follows: 

 

Risk Score = Σ(Expi × Coef) 

 

where the expression of each gene and risk coefficient 

are represented by Expi and Coefi, respectively. Patients 

in the training, testing, and all sets are categorized into 

low-risk and high-risk score groups based on median 

score. Each group conducts a corresponding Kaplan-

Meier survival analysis, and further creates receiver 

operating characteristic (ROC) curves. 

 
Correlation between risk signatures and immune 

cells, pathways, and immune scoring 

 

To ensure the accuracy of our findings, we utilized 

CIBERSORT with Monte Carlo sampling to calculate 

empirical p-values for deconvolution. Employing 

CIBERSORT, we explored the relationship between 

high- and low-risk groups and their respective immune 

cell compositions. Additionally, we determined the ratio 

of stromal cells to immune cells using the “estimate” 

package, leading to the computation of stromal scores, 

immune scores, estimate scores, and ultimately tumor 

purity. We also investigated the association of the tumor 

microenvironment (TME) score with the aforementioned 

risk groups using the “vioplot” package. Furthermore, 

data gathered from the TCIA website allowed us to 

evaluate the therapeutic efficacy of Immune Checkpoint 

Inhibitors (ICIs) based on Immunophenotype Scores 

(IPS). 

 
Correlation of mutations, signatures in STAD, 

GSVA, and drug sensitivity analysis  

 

We calculated the Tumor Mutational Burden (TMB) by 

integrating mutation information and phenotype data 

from each sample. This enabled us to generate box  

plots depicting TMB distribution across different groups 

and waterfall plots showcasing the top 20 genes with 

the highest mutation frequencies, all in conjunction  

with sample grouping. Furthermore, we conducted 

microsatellite instability (MSI) analysis using the 

MANTIS algorithm. This facilitated the calculation  

of MSI scores for each sample. We then performed 

Spearman correlation tests to assess associations and 

obtain p-values. 

 

Differential analysis of tumor mutation gene expression 

data was carried out using the “limma” package in R. 
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Differences with a False Discovery Rate (FDR) < 0.05 

and an absolute log2 Fold Change greater than 2 were 

considered statistically significant. To identify cancer 

stem cell-related subtypes based on the distinctions in 

cancer stem cell-related genes, we utilized Principal 

Component Analysis (PCA) for consistent cluster 

analysis of STAD samples. Subsequently, we analyzed 

the proportion of each cancer stem cell-related sub- 

type within the high- and low-risk groups. To verify  

the stability of our signature, we conducted external 

validation using the GSE62254 dataset to confirm the 

survival rates of MMP12, SPP1, and PLAU. 

 
Establishment and validation of a nomogram scoring 

system 

 

For each variable, we displayed P-values, Hazard 

Ratios (HRs), and 95% Confidence Intervals (CIs) using 

the “survival” package. We performed both univariate 

and multivariate Cox regression analyses to identify 

relevant terms for constructing nomograms. To determine 

the nomogram with the highest sensitivity, we generated 

Receiver Operating Characteristic (ROC) curves for 

different clinical features, showcasing sensitivity and 

specificity, along with risk scores for 1-, 3-, and 5-year 

survival events. Subsequently, we plotted calibration 

curves for 1-, 3-, and 5-year survival using the “rms” 

package. 

 
Cell culture and lentiviral transfection of gastric 

cancer cell lines 

 

We obtained human gastric cancer cell lines  

(HGC27 and NCI-N87) from the Cell Bank of Shanghai 

Institutes of Biological Sciences, Chinese Academy of 

Sciences (Shanghai, China). These STAD cells were 

cultured in RPMI 1640 medium (Gibco, CA, USA) 

supplemented with 10% fetal bovine serum (FBS; 

Gibco, NY, USA) and 1% penicillin-streptomycin 

solution (Gibco, NY, USA). The cells were maintained 

in a humidified incubator with 5% CO2 at 37°C.  

Cells were seeded in 6-well plates and allowed to reach 

70% confluency at the time of transfection. Transfections 

were performed using SPP1-siRNA (General Biol, 

Taiwan) and overexpression plasmids (GeneChem, 

Shanghai, China) with Lipofectamine 2000 Transfection 

Reagent (Invitrogen, ThermoFisher, MA, USA) following 

the manufacturer’s instructions. 

 
Real-time quantitative polymerization chain reaction 

(RT-qPCR) 

 

Total RNA was extracted from HGC27 and NCI-N87 

cells using a commercial RNA extraction kit (Beyotime 

Institute of Biotechnology, Shanghai, China) following 

the manufacturer’s protocol. Reverse transcription was 

performed using a cDNA synthesis kit (Takara Bio, 

Inc., Kusatsu, Japan) with random primers, and qPCR 

was conducted on a real-time PCR machine with 

specific primers for the target gene, SPP1. Data analysis 

involved the 2−ΔΔCt method for relative gene expression, 

normalizing to GAPDH, and statistical significance was 

determined using appropriate tests with a significance 

threshold of p < 0.05. The primer sequences (5′-3′) were 

as follows: SPP1 forward, CTC CAT TGA CTC GAA 

CGA CTC and reverse, CAG GTC TGC GAA ACT 

TCT TAG AT; GAPDH forward TGT GGG CAT CAA 

TGG ATT TGG and reverse, ACA CCA TGT ATT 

CCG GGT CAA T. 

 
Western blot analysis 

 

HGC27 and NCI-N87 cells (1 × 105) were plated in 

6-well plates. After 24 hours of incubation, cells were 

treated with DMSO (vehicle), FHP01, or XAV939 

(Merck, Darmstadt, Germany) for specified durations. 

Following transfection, cells were washed with cold 

PBS, and total protein extracts were obtained by  

adding 80 µL of RIPA Lysis buffer. Protein samples  

(10 μg) were loaded onto 8% polyacrylamide gels with 

1× Laemmli buffer and resolved by SDS-PAGE. 

Subsequently, samples were transferred to Immobilon-P 

PVDF membranes (Millipore, MA, USA, IPVH00010) 

and probed with Osteopontin Antibody (PA5-32527, 

Invitrogen, ThermoFisher, MA, USA) and anti-β-actin 

(15G5A11/E2, Invitrogen, ThermoFisher), as previously 

described [12]. 

 
Cell counting kit-8 (CCK8) assay 

 

For the CCK8 analysis, 3 × 103 transfected HGC27 and 

NCI-N87 cells were plated in a 96-well plate with  

100 μL of medium. After cell adhesion, supernatants 

were removed, and serum-free medium containing  

10% CCK8 (CCK-8 Kit; Dojindo, Kumamoto, Japan) 

was added to each well for a 2-hour incubation 

according to the manufacturer’s protocols [13]. The 

optical density (OD) values at 450 nm were measured 

using a microplate reader (BioTek, VT, USA) on days 

1, 2, 3, 4, and 5. Each sample was analyzed in triplicate. 

 
Transwell assay 

 

Transwell assays were performed using Transwell 

chambers (8-μm pores; Corning Costar, Corning, NY, 

USA) in 24-well plates. For the cell migration assay, the 

chambers were coated without matrigel. Cells (1 × 105) 

in 100 μL of serum-free DMEM medium were seeded 

in the upper chamber, and 600 μL of DMEM medium 

containing 20% FBS was added to the lower chamber. 

The cells were cultured in the incubator for 24 hours. 

Subsequently, chambers were washed twice with PBS, 
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fixed with paraformaldehyde for 15 minutes, and 

stained for 10 minutes with a 0.5% crystal violet 

solution. 

 

Statistical analysis 

 

Statistical and graphical analyses were carried out  

using SPSS software (version 25.0) or R software 

(version 3.4.1). One-way ANOVA tests were used for 

comparisons among multiple groups (≥3), while 

unpaired Student’s t-tests assessed statistical differences 

between two groups. All hypothesis testing was two-

sided, and a P-value of 0.05 or less was considered 

statistically significant. 

 

Availability of data and materials 

 

All of software applications and data employed  

are available from the corresponding authors on 

reasonable request. GSE15459: (https://www.ncbi.nlm. 

nih.gov/geo/query/acc.cgi?acc=GSE15459); GSE34942: 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE34942); GSE38749: (https://www.ncbi.nlm.nih.gov/ 

geo/query/acc.cgi?acc=GSE38749); GSE84437: (https:// 

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE844

37); TCGA: (https://portal.gdc.cancer.gov/). 

 

RESULTS 
 

Analysis of WGCNA based on TCGA-STAD cohort 

 

The heatmap clearly demonstrates a strong association 

between tumor occurrence and immune cells within the 

TCGA-STAD cohort (Figure 1A, 1B). In constructing 

the scale-free co-expression network, we removed 

samples with Height >75, adhering to the Scale Free 

Topology signatureFit standard with signed R2 >0.9. 

After analysis, a power value of 5 emerged as the 

optimal choice (Figure 1C). A gene dendrogram yielded 

a total of seven modules (Figure 1D). Further 

examination involved assessing the correlation between 

eigenvectors and STAD prognostic outcomes within 

these seven modules. Notably, the black module, 

containing 60 genes, exhibited the highest correlation 

with immune cells. Specifically, the genes in this 

module had the strongest associations with neutrophils 

(R = 0.71, P = 3e-55), activated mast cells (R = 0.63, p 

= 8e-42), and resting NK cells (R = 0.44, P = 2e-18) 

(Figure 1E). 

 

Correlation, unicox analysis, and functional 

annotations of immune-related genes (IRGs) 

 

A triangular heatmap revealed significant correlations at 

the mRNA level among the 60 screened IRGs (Figure 

2A). Additionally, these IRGs exhibited generally high 

expression levels in tumor samples (Figure 2B). 

Subsequently, the 60 IRGs underwent unicox analysis, 

which identified 12 genes with a p-value < 0.05 (Figure 

2C). A visual analysis of their co-expression relationships 

and functions indicated that these 12 IRGs were closely 

associated with molecules of bacterial origin and 

lipopolysaccharides, played roles in regulating inflam-

matory responses, and were involved in angiogenesis 

(Figure 2D). 

 
Unsupervised clustering based on 12 IRGs 

 

Using the expression patterns of the 12 IRGs, we 

conducted unsupervised clustering across the TCGA, 

GSE15459, GSE34942, GSE38749, and GSE84437 

cohorts to classify STAD samples into distinct molecular 

subtypes. This analysis revealed three clusters, 

consisting of 452 samples in the first subtype, 376 

samples in the second subtype, and 251 samples in the 

third subtype (Figure 3A, 3B). The unsupervised 

clustering across the combined cohort uncovered three 

distinct alteration patterns with unique molecular and 

clinical characteristics (Figure 3C). These three clusters 

were labeled as gene Clusters A, B, and C, respectively. 

Notably, gene Cluster B exhibited a significant survival 

advantage compared to the other two gene Clusters,  

as observed in the prognostic analysis (Figure 3D). 

Further GSVA enrichment analysis highlighted distinct 

KEGG pathway enrichment features, with Cluster B 

showing stronger associations with metabolic pathways 

and Cluster C with synthetic pathways (Figure 3E). 

Furthermore, these three gene Clusters displayed distinct 

immune cell-infiltrating characteristics (Figure 3F). 

Cluster B exhibited widespread infiltration of immune 

cells, including activated CD4 T cells and activated 

CD8 T cells, indicating inflammation-promoting charac-

teristics and high HLA. Conversely, Cluster C displayed 

an abundance of macrophages, neutrophils, and natural 

killer cells, signifying parainflammation characteristics. 

 
GO, KEGG, and DO enrichment analyses of gene 

clusters 

 

In the Venn diagram, it is evident that four genes 

intersect across Clusters A, B, and C. A detailed 

analysis of these four genes (MMP12, SPP1, PLAU, 

and TREM1) is then carried out (Figure 4A). To  

gain a better understanding of the biological behavior 

and characteristics of each cluster, we perform GO 

enrichment analysis on the biological processes, 

molecular functions, and cellular components of these 

four genes. The analysis reveals their involvement in 

the negative regulation of responses to external stimuli 

and activity related to serine-related enzymes (Figure 

4B). Furthermore, we explore the relationship between 

these genes and malignant diseases, revealing strong 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34942
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE34942
https://www.ncbi.nlm.nih.gov/%20geo/query/acc.cgi?acc=GSE38749
https://www.ncbi.nlm.nih.gov/%20geo/query/acc.cgi?acc=GSE38749
https://portal.gdc.cancer.gov/
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associations with rheumatic diseases and lung-related 

diseases (Figure 4C). The subsequent KEGG analysis 

unveils associations with various pathway disorders and 

prostate cancer (Figure 4D). 

Construction and inspection of the risk signature 

 

Utilizing LASSO and multivariate Cox regression 

analysis, we identified three hub genes (MMP12, SPP1, 

 

 

 
Figure 1. Immune cell correlation analysis and weighted gene co-expression network analysis (WGCNA). (A) Correlation 

analysis of immune cell populations in normal and tumor samples, with negative correlations in blue and positive correlations in red. (B) 
Detailed immune cell correlation analysis. (C) Sample clustering to detect groups with more than 75 samples. (D) WGCNA co-expression 
analysis showing which module each gene belongs to. (E) Clinical correlation analysis of each module to observe the correlation between 
modules and immune cells, with blue representing negative correlation and red representing positive correlation. 
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PLAU) from the aforementioned four IRGs to 

establish a risk signature (Figure 5A, 5B). Employing 

the Caret R package, we divided the total number of 

STAD patients (n = 1043) into two groups: a training 

group (n = 522) and a testing group (n = 521), with  

the former being used for signature development. The 

risk score was formulated based on the results of  

the multivariate Cox regression analysis as follows: 

Risk score = (−0.1217 MMP12 expression) + (0.0959 

SPP1 expression) + (0.1746 PLAU expression). 

Notably, significant differences in risk scores were 

observed among different gene clusters, categorizing 

patients with risk scores below the average as low-risk  

(n = 261) and those with scores above the average as 

high-risk (n = 260). 

 

Association between the risk signature and 

clinicopathological parameters of STAD 

 

In-depth analysis of the correlations between risk 

scores, molecular and genetic classifications, prog-

nosis, and clinical aspects was conducted. A heatmap 

illustrates that gene cluster B is associated with a more 

favorable prognosis compared to gene clusters A and C 

(Figure 5C). Applying the scoring system to all STAD 

samples confirms previous findings, highlighting that 

 

 
 

Figure 2. A study of 60 immune-related genes (IRGs) in stomach adenocarcinoma (STAD). (A) Triangle heat map showing 

correlation analysis of 60 IRGs. (B) Box plot comparing gene expression in normal and tumor groups. ***p < 0.001; **p < 0.01; *p < 0.05. 
(C) Network graph, in which nodes represented IRGs, and node size represented the relationship between genes and survival. The left 
semicircle of the node represented module_black. The green right semicircle showed low-risk genes, and the purple right semicircle 
showed high-risk genes. (D) Visualization of the co-expression network, in which the nodes represent genes, and the size of the nodes 
represented the number of connected genes. 
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patients in gene cluster B exhibit significantly lower risk 

scores compared to those in gene clusters A and C 

(Figure 5D). An alluvial graph is generated to depict the 

distribution of patients across gene clusters A, B, C, risk 

scores, and future status. This visualization demonstrates 

that the low-risk group has a higher likelihood of  

survival (Figure 5E). Furthermore, a comparison of IRG 

expression between low and high-risk groups is presented 

to better elucidate the relationship between the risk score 

and genetic behaviors (Figure 5F). 

 

 
 

Figure 3. Unsupervised clustering analysis based on 12 survival genes. (A) Consensus matrix heat map defining three clusters 

(K = 3). (B) Unsupervised clustering analysis. For each k, calculate the relative change in the area under the CDF curve compared to k-1. 
(C) Heatmap based on 12 genes. (D) Survival analysis of clusters showing differences in patients’ prognosis between clusters. (E) GSVA 
analysis showing differences in different pathways of different clusters. (F) Box plot revealing immune infiltration of different clusters.  
***p < 0.001; **p < 0.01; *p < 0.05. 
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The prognostic implications of the IRG-based risk 

signature 

 

To validate the prognostic capacity of the IRG-based 

risk signature, we conducted survival analyses in both 

the training and testing groups, as well as in the original 

merged group. The results consistently demonstrate 

higher survival probabilities for low-risk patients in  

all three datasets (Figure 6A–6C). Further analysis 

indicates that favorable IRG expression is more 

 

 
 

Figure 4. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO) enrichment 
analyses. (A) Venn diagram for obtaining hub genes by taking the intersection. (B) GO enrichment analysis circle showing gene’s biological 

process, molecular function, and cellular component. (C) DO analysis of the relationship between cancers and gene ratio. (D) KEGG pathway 
map. Different colors represented different pathways, and the value of logFC represented the degree of expression. 
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prevalent in the low-risk group, while the opposite 

holds true for the high-risk group. This highlights the 

concept that a lower risk score corresponds to a higher 

likelihood of survival, as confirmed by the risk score 

distribution plot. By comparing the distributions of the 

three genes between the low- and high-risk groups, we 

gain better insight into how these three hub genes 

influence oncogenesis (Figure 6D–6F). Additionally, 

ROC curves are generated in the training, testing,  

and combined groups to further validate the accuracy 

and reliability of the risk signature (Figure 6G–6I). 

Furthermore, we assess the risk signature’s ability to 

 

 
 

Figure 5. Construction of the risk signature. (A) Multivariate Cox regression analysis. (B) LASSO regression analysis. (C) Heatmap of 

clinical correlations, with asterisks representing differences in this clinical trait between high- and low-risk groups. ***p < 0.001; **p < 0.01; 
*p < 0.05. (D) Clinical correlation analysis of differences in risk scores between different clusters. (E) Sankey diagram linking cluster, risk, and 
prognosis. (F) Box plot for differential analysis of IRGs in high- and low-risk groups. 
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predict STAD patients’ future status by analyzing 1-,  

3-, and 5-year prognostic classification and prediction 

efficiency. This analysis reveals significantly higher 

AUC values. 

 

External validation of the performance of the IRG-

based signature 

 

We also analyzed gene amplification and deletion 

frequencies for selected genes (Figure 7A). The results 

indicate a higher frequency of copy number deletions 

in the SPP1 and MMP12 genes, while the PLAU gene 

shows more copy number gains. Moreover, we 

mapped the locations of CNV alterations in genes 

across the 23 pairs of chromosomes, revealing SPP1 

on chromosome 4, PLAU on chromosome 10, and 

MMP12 on chromosome 11 (Figure 7B). Univariate 

and multivariate Cox regression analyses conducted on 

the pooled cohort further confirm the prognostic 

accuracy of the risk signature (Figure 7C, 7D).  

In addition, we performed subgroup analyses based  

on gender, stage, and primary therapy outcomes, 

 

 
 

Figure 6. Prognostic validation of risk signature. (A–C) Kaplan–Meier survival analysis with p-value < 0.05 indicating that the 
established risk signature can identify high- and low-risk groups. (D–F) Scatter plots showing the relationship between risk score and 
survival time. (G–I) ROC curve to predict the accuracy of the patient's one-year, three-year, and five-year survival rate. 
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suggesting potential correlations between higher  

risk groups and poorer survival settings (Figure 7E–

7G). Survival analysis using the GSE62254 dataset 

further corroborates our risk signature’s ability  

to independently predict STAD patients’ prognosis 

(Figure 7H). 

 

 

 
Figure 7. Prognostic implications of risk signature. (A) Copy number variation frequency analysis with red dots representing copy 
number gains and green dots representing copy number deletions. (B) Copy number circle diagram. The outer circle was the chromosome, 
and the inner circle was marked with three IRGs. The red dots indicated that the copy number of this gene was increased, and the blue 
point indicated that the copy number of this gene was more deleted. (C, D) Univariate and multivariate Cox regression analyses in the 
combined cohort. (E–G) The proportion of patients with different gender, stage, and primary therapy outcome in high- and low-risk groups. 
(H) Survival analysis of patients in high- and low-risk groups based on GSE62254 gene. 
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TME characteristics and potential response to 

immunotherapy 

 

Our analysis of immune cell infiltration in the  

high- and low-risk groups reveals notable differences  

(Figure 8A, 8B). Further examination of the TME 

shows higher stromal cells, immune cells, and compre-

hensive contents in the high-risk group (Figure 8C). 

Subsequently, we analyze the relationship between 

these three IRGs and immune cells using CIBERSORT, 

 

 
 

Figure 8. Tumor microenvironment characteristics (TME) analysis. (A) The clinical correlation analysis showing the number and 

percentage of patients with each clinical trait in the high- and low-risk groups. (B) Immune cell infiltration analysis. (C) Analysis of tumor 
microenvironment differences. *** indicating that tumor microenvironment scores are different between high- and low-risk groups. (D) Analysis 
of immune cell abundance and gene correlation degree. ***p < 0.001; **p < 0.01; *p < 0.05. Blue showed a negative correlation, red showed a 
positive correlation. (E, F) Risk score and DNA, RNA stemness analysis. Analysis of differences in scores of CAF and other TME populations in 
high- and low-risk groups. (G) Risk score divided differential immune exclusion cells and cancer-associated fibroblasts (CAFs) abundance. 
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finding strong correlations with six immune cell types 

(macrophages M0, activated mast cells, neutrophils,  

etc.) (Figure 8D). DNAss and RNAss show negative 

correlations with the risk score, suggesting that lower  

risk scores correspond to higher stemness and lower  

cell differentiation levels (Figure 8E, 8F). In various cell 

populations, including cancer-associated fibroblasts 

(CAFs), the high-risk group scores higher than the low-

risk group. This could explain the lower survival rate  

in the high-risk group, resulting from the dynamic 

interaction of CAFs, tumor-associated fibroblast cells, 

etc., within the TME, facilitating continuous exchange of 

nutrients, molecular signals, excretions, etc., (Figure 8G). 

 
We further investigate the correlation between risk 

signatures and immune cells, pathways, and immune 

scoring, revealing significant differences in gene 

expression of immune checkpoint molecules and 

pyroptosis-related genes (PGs) between high- and low-

risk groups (Figure 9A, 9B). Additionally, the three hub 

IRGs show strong associations with immune pathways 

(Figure 9C). Furthermore, we evaluate the therapeutic 

efficacy of immune checkpoint inhibitors (ICIs) using 

the immunophenotype score (IPS) (Figure 9D–9G).  

The IPS of the high-risk group is slightly lower than 

that of the low-risk group under CTLA-4 and PD-1 

blockade treatment, indicating that the high-risk group 

may benefit more from ICB treatment. To enhance 

STAD patients’ survival rates, we investigate sensitivity 

differences between high- and low-risk groups, finding 

that the high-risk group exhibits higher sensitivity to 

Paclitaxel, Mitomycin C, Metformin, and Methotrexate 

(Figure 9H–9K). 

 
Effect of the IRG-based signature on DNA 

variations landscape 

 

Additionally, we utilized the maftools software to 

examine differences in somatic mutation distribution 

between the low- and high-risk score groups (Figure 

10A, 10B). The waterfall plot illustrates the mutations 

in the top 20 genes across samples and groups with 

varying TMB and risk scores, allowing for further 

insights into the relationship between TMB, risk scores, 

and the prognosis of STAD patients (Figure 10C, 10D). 

Moreover, we explored the relationship between TMB 

and risk score using three gene clusters, confirming  

that a low-risk score corresponds to a high TMB  

(Figure 10E). TMB quantification analyses validated 

that the low-risk score group had a higher tumor 

mutation burden than the high-risk group, aligning  

with the earlier findings (Figure 10F). Furthermore, we 

evaluated MSI in the low and high-risk score groups  

to assess the risk signature’s ability to predict STAD 

patients’ responsiveness to ICB therapy (Figure 10G). 

The results indicate a higher proportion of high MSI in 

the low-risk score group compared to the high-risk 

score group, suggesting that the former is more 

sensitive to immunotherapy and has greater therapeutic 

benefits, further confirming the correlation between the 

risk signature and MSI (Figure 10H). 

 

Construction and validation of a nomogram for 

STAD patients 

 

To predict the 1-, 3-, and 5-year survival rates of STAD 

patients, we developed a nomogram incorporating the 

risk score and clinicopathological parameters (Figure 

11A). Subsequently, a calibration plot demonstrated  

that the proposed nomogram performs similarly to the 

ideal curve (Figure 11B). To bolster the validation, the 

nomogram displayed the highest AUC values when 

compared to clinical ROC curves for STAD patients’ 

1-, 3-, and 5-year survival, underscoring its superior 

predictive capabilities (Figure 11C–11E). 

 

Down-regulation of SPP1 inhibits proliferation and 

migration abilities of HGC27 and NCI-N87 cells 

 

To gain insights into the malignant behaviors of  

the hub gene, SPP1, in vitro, we validated the down-

regulation of SPP1 protein and mRNA expression in 

siRNA-transfected cells, HGC27, and NCI-N87 using 

western bloting and RT-qPCR assays (Figure 12A). The 

CCK-8 assay demonstrated a significant limitation  

in the proliferative ability of STAD cells when SPP1 

expression was down-regulated compared to the control 

group (Figure 12B). Furthermore, the Transwell cell 

migration assay indicated that suppressing SPP1 

expression markedly restrained the metastatic ability  

of gastric cancer cells (Figure 12C, 12D). In summary, 

down-regulating SPP1 significantly suppressed the 

proliferation and migration capacities of HGC27 and 

NCI-N87 cells. 

 

DISCUSSION 
 

Gastric cancer (GC) ranks among the leading causes of 

cancer-related deaths worldwide, marked by increasing 

morbidity, poor prognosis, and high mortality rates [14]. 

While established immunotherapy-related biomarkers 

like programmed death ligand 1 (PD-L1) expression, 

tumor mutational burden (TMB), microsatellite in-

stability (MSI), and DNA mismatch repair (MMR)  

are used to predict immunotherapy efficacy in various 

malignancies, the precise impact of immune-related 

genes (IRGs) on the tumor immune microenvironment 

and the underlying molecular mechanisms in GC 

remain poorly understood. 

 

To address these knowledge gaps, we analyzed a 

comprehensive set of 2660 IRGs, ultimately identifying 
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four key genes through rigorous screening. Enrichment 

analysis shed light on their involvement in negative 

regulation of responses to external stimuli and activity 

in serine-related enzymes, which are closely associated 

with tumor invasion and metastasis. Furthermore, these 

IRGs demonstrated links to other diseases, such as 

prostate cancer. Our investigation into immune cell 

infiltration revealed that the high-risk group exhibited a 

higher stromal cell content, potentially contributing to 

disruptions in the adhesion and tissue barriers of normal 

 

 
 

Figure 9. Immunotherapy analysis. (A, B) Gene expression of immune checkpoint molecules and pyroptosis-related genes in high- and 

low-risk groups. (C) GSVA analysis telling which functions or pathways were active in high- and low-risk groups with * indicated correlation, 
green indicated negative correlation, and red indicated positive correlation. (D–G) Immunotherapy analysis to compare the effect of 
immunotherapy in high- and low-risk groups. (H–K) Drug sensitivity analysis of various drugs differences between high- and low-risk groups 
with p-value < 0.05 indicating a difference. 
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tissues, thereby promoting rapid tumor development 

[15–17]. This further validates the role of these four 

IRGs, particularly in the high-risk group, in driving 

tumor invasion and metastasis, ultimately diminishing 

patient survival rates. 

As targeted immunotherapy tailored to the tumor 

microenvironment (TME) remains an evolving field,  

we delved into the intricate connections between  

risk signatures, immune cells, pathways, and immune 

scores. The TME constitutes a complex system 

 

 

 
Figure 10. Correlation between tumor mutational burden (TMB), minicellular instability (MSI), and signature.  (A, B) Waterfall 

plots of somatic mutations in low- and high-risk groups, respectively. (C, D) Survival analysis of different tumor mutational burden (TMB) 
and risk groups. (E) Scatter plot of the association of TMB with gene cluster-based risk scores. (F) Analysis of TMB to compare whether 
there was a difference in TMB of patients in high- and low-risk groups. (G, H) Correlation analysis of MSI with risk scores. 
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comprising diverse cells and cytokines, intimately 

linked to tumorigenesis, tumor progression, and 

resistance to immunotherapy [18]. Our immune cell 

correlation analysis revealed strong associations 

between three IRGs and six immune cell types, notably 

Macrophages M0 and Macrophages M2, among others. 

Macrophages, abundant within the immune cells, exert 

a pivotal role in tumor progression. Recent research 

corroborates that both M1 and M2 macrophage 

phenotypes may foster tumor growth, aligning with 

our findings [19, 20]. Of note, our study evaluated the 

effect of immune checkpoint inhibitors (ICIs) via 

Immunophenotype Score (IPS). The high-risk group 

displayed lower IPS but greater drug sensitivity, 

suggesting that despite poorer prognoses in high-risk 

STAD patients, ICB and drug therapies can effectively 

manage the disease [21, 22]. 

 

Somatic mutations and the tumor immune 

microenvironment significantly impact GC, influencing 

tumorigenesis, progression, and drug resistance [23, 

24]. TMB serves as a crucial metric for immunotherapy 

assessment. Interestingly, the low-risk group exhibited 

higher TMB and MSI, rendering it more sensitive to 

ICIs, a trend associated with improved survival rates, 

corroborating previous findings [25]. MSI denotes the 

phenomenon of microsatellite alleles’ alteration during 

DNA replication, fostering genomic instability and 

 

 
 

Figure 11. Construction and validation of a nomogram. (A) Nomogram for getting the score of each clinical trait and calculating the 
comprehensive score, further predicting the survival of the patient. (B) Calibration curve of the nomogram to predict the one-year, three-
year, five-year survival rate. (C–E) ROC curve for validating the accuracy of predicting survival by building the signature. 



www.aging-us.com 11605 AGING 

elevating tumor susceptibility. Moreover, clinical  

trials suggest that MSI-high GC patients benefit from  

more extended survival than MSI-low counterparts, 

emphasizing the potential of MSI as a predictive and 

prognostic biomarker [26]. 

 

In our study, we identified three pivotal hub genes: 

MMP12, SPP1, and PLAU. MMP12 expression is 

notably high in GC tissue, escalating with tumor 

development and metastasis. Patients with MMP12-

positive gastric cancer tend to exhibit worse over- 

all survival compared to MMP12-negative patients  

[27]. Matrix metalloproteinases (MMPs), including 

MMP12, dismantle various extracellular matrix (ECM) 

protein components, dissolving connective tissue 

between cells and within vascular layers, allowing 

tumor cells to escape their original location and initiate 

metastasis [28]. MMPs also influence cell surface 

bioactive molecules, regulating cells and signaling 

pathways. Multiple lines of evidence link MMPs  

to tumor invasion, neoangiogenesis, and metastasis 

[29]. SPP1, encoding osteopontin, a multifunctional 

adhesive protein expressed by various tissue cells, 

plays roles in cellular processes like fusion, migration, 

and motility [30, 31]. Notably, our study is among  

the first to identify SPP1’s significant role in GC. 

Existing research underscores that SPP1 overexpression 

promotes hepatocellular carcinoma metastasis and 

ovarian cancer drug resistance [32, 33]. Our study 

further validated that down-regulating SPP1 markedly 

curtailed the proliferation and migration capacities of 

gastric cancer cells, underscoring its potential as a 

therapeutic target. 

PLAU, implicated in blood coagulation, wound healing, 

and cell-matrix adhesion, demonstrates potential  

as an effective prognostic biomarker and therapeutic 

target for GC [34]. Research in head and neck 

squamous cell carcinoma (HNSCC) highlights PLAU’s 

involvement in cell-matrix adhesion, tissue migration, 

and extracellular matrix binding, facilitating the 

epithelial stromal transformation (EMT) process and 

affecting prognosis [35]. In summary, higher MMP12, 

SPP1, and PLAU expression in the high-risk group  

is associated with lower survival rates. 

 

The study of gastric cancer (GC) presents significant 

challenges due to its unclear molecular pathogenesis 

and persistently poor prognosis. Consequently, surgical 

intervention remains the primary treatment modality  

for GC [23]. Various efforts have been dedicated  

to constructing prognostic signatures by exploring 

multiple aspects of GC’s pathogenic mechanisms, 

aiming to enhance prognostic assessment and contribute 

to therapeutic advancements. For instance, Ren et al. 

developed an immune-related signature consisting of 

four genes (MAGED1, ACKR3, FZD2, and CTLA4), 

highlighting the promising performance of immune-

related signatures in GC treatment and prognosis 

prediction. This signature, however, was based on 

publicly available datasets and has yet to be validated  

in clinical cohorts. There is a pressing need for 

prospective clinical studies that bridge the gap between 

immunotherapy and fundamental research [36]. Another 

predictive signature relying on six immune risk genes 

(BRD8, CCL25, CMTM3, FPR1, GDF10, and LEPR), 

closely linked to survival, provided insights into the 

 

 
 

Figure 12. Down-regulation of SPP1 inhibits proliferation and migration abilities of HGC27 and NCI-N87 cells. (A) Compared 

with the negative control group in HGC27 and NCI-N87 cells, SPP1 in siRNA transfection group was down-regulated in protein and mRNA 
expression levels. (B) Compared with the control group, the down-regulation of SPP1 significantly inhibited the proliferation of STAD cells. 
(C, D) Downregulation of SPP1 expression can significantly inhibit the metastatic ability of gastric cancer cells. ***p < 0.001; **p < 0.01. 
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intersection of chemotherapy, chemoradiotherapy,  

and the immune system. Nevertheless, it lacked 

investigations into mutations specific to STAD [37]. 

Li et al. introduced a prognostic risk score signature 

comprised of nine differentially expressed IRGs 

(RBP7, DES, CCR1, PNOC, SPP1, VIP, TNFRSF12A, 

TUBB3, and PRKCG). This signature illuminated the 

biological roles of these IRGs in GC and identified 

novel gene targets for GC treatment. However, it 

didn’t delve deeply into the tumor microenvironment 

[38]. Shao et al. constructed a prognostic signature 

centered on ten ferroptosis-related genes (SP1, MYB, 

ALDH3A2, KEAP1, AIFM2, ITGB4, TGFBR1, 

MAP1LC3B, NOX4, and ZFP36) to evaluate the 

prognosis and immunotherapy in GC patients. The 

intricate mechanisms through which these ten iron 

death-related genes interact to influence tumorigenesis 

and immune processes remain unclear and warrant 

further investigation [39]. In comparison, our signature 

offers a comprehensive assessment by considering the 

variability and immune attributes of IRGs in STAD 

patients, demonstrating superior reliability compared 

to other signatures. 

 

In conclusion, our study unveils a novel risk signature 

with dual capabilities—it effectively predicts GC 

patient prognosis while illuminating the immune 

microenvironment within tumors. This finding holds 

substantial potential for guiding targeted therapy and 

personalized immunotherapy, ultimately extending the 

lifespan of patients diagnosed with gastric cancer. 

 

CONCLUSION 
 

In addition, our research elucidates the critical role  

of immune-related signatures in STAD, offering fresh 

insights into the selection of biomarkers, indicators of 

disease progression and prognosis, as well as potential 

immunotherapeutic targets. SPP1 emerges as a notable 

independent prognostic factor for STAD, potentially 

regulating its progression by exerting influence over the 

immune microenvironment. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. 12 genes exhibiting p-values less than 0.05 were selected for further analysis. 
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