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INTRODUCTION 
 

Cancer, which is currently the leading cause of death in 

most of the world’s population, has been considered an 

important factor hindering the increase of human life 

expectancy [1]. With an ageing and rapidly growing 

population, as well as accelerating socioeconomic 

development, the burden of cancer continues to increase 

in both developed and developing countries [2]. The 

most recent data estimates that approximately 160 

cancer cases will be diagnosed for every 1,889,000 

Americans [3]. By 2021, 608,570 Americans will die 

from cancer, which is equivalent to more than 1,600 

deaths per day [3]. Data for China, the world’s most 
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ABSTRACT 
 

Background: The G protein-coupled oestrogen receptor (GPER) 1 mediates non-genomic oestrogen-related 
signalling and plays an important role in the regulation of cell growth and programmed cell death through 
multiple downstream pathways. Despite the increasing interest in the role of GPER1 in cancer development, no 
pan-cancer analysis has been available for GPER1. 
Methods: In this study we performed a comprehensive analysis of the role of GPER1 in pan-cancer via Human 
Protein Atlas (HPA), The Cancer Genome Atlas (TCGA), University of California, Santa Cruz Xena (UCSC XENA), 
Genotype-Tissue Expression (GTEx), MethSurv, The University of Alabama at Birmingham CANcer data analysis 
Portal (UALCAN), cBioPortal, STRING and TISIDB detabases, followed by enrichment analysis using R software. 
Results: GPER1 was widely expressed in tissues and organs and differed in expression from normal tissue in a 
variety of cancers. In diagnostic assessment, it’s Area Under the Curve (AUC) surpassed 0.9 in nine cancer types. 
Survival analysis showed that GPER1 was correlated with the prognosis of 11 cancer types. Moreover, GPER1 
expression was associated with immune infiltration in multiple cancers. 
Conclusions: In summary, GPER1 has good diagnostic or prognostic value across various malignancies. Together 
with its extensive correlation with immune components, the aforementioned results suggests that GPER1 
shows promise in tumour diagnosis and prognosis, providing new ideas for precise and personalised anti-
tumour strategies. 
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populous country with an estimated 1.42 billion people, 

suggested that approximately 4.51 million cancer cases 

and 3.04 million cancer-related deaths had occurred in 

2020 [4]. Despite the differing levels of social or 

economic development, an increase in cancer incidence 

or mortality represents a great threat to individual health 

and a significant economic burden for any country and 

society. 

 

Therefore, a better approach to cancer prevention and 

detection is clearly needed. Tumour biomarkers have a 

wide range of promising clinical applications. They can 

be used for cancer risk assessment, screening, 

surveillance, diagnosis, predicting treatment response 

and monitoring disease progression and recurrence [5, 

6], while having the potential to become an important 

component of precision cancer management [7]. 

 

Apart from its critical role in female sexual development 

and reproductive processes, estrogen is also extensively 

involved in physiological and pathophysiological 

processes across different tissues in both sexes [8].  

It exerts significant influence in carcinogenesis by 

regulating cell apoptosis, proliferation, and the cell  

cycle [9–11]. Additionally, it interacts with various cell 

types within the tumor microenvironment, including 

fibroblasts, immune cells, and adipocytes [11]. Among 

the recognized estrogen receptors (ERs), namely  

ERα, ERβ, and G-protein-coupled estrogen receptor 1 

(GPER1), the first two are classical estrogen receptors. 

GPER1 serves as a receptor for mediating rapid estrogen 

effects. Encoded by the GPER1 gene, GPER1 is  

widely expressed in the human body across multiple 

systems such as reproductive, digestive, cardiovascular, 

respiratory, nervous, and hematopoietic systems  

[12, 13]. This receptor binds to estrogen and activates 

multiple downstream signaling pathways, mediating 

rapid non-genomic estrogen signaling events. It exerts 

diverse biological effects in tumor cell proliferation, 

apoptosis, migration, tumor initiation, and metastasis 

across various cancers [14]. Recent reports highlight a 

significant correlation between GPER1 and the 

progression of diverse cancers. Furthermore, GPER1 is 

considered a potential therapeutic target for cancer 

treatment [13, 15]. Despite comprehensive pan-cancer 

analyses exploring ERs as prognostic markers and 

therapeutic targets across different cancers [16], a 

comprehensive pan-cancer analysis of GPER1 is lacking 

to date. Consequently, this study aims to investigate the 

diagnostic and prognostic significance of GPER1 
expression in the context of pan-cancer. 

 

The expression of GPER1 mRNA and protein in various 
tissues and organs throughout the body was explored 

using the Human Protein Atlas (HPA) database. 

Subsequently, GPER1 expression in tumour tissues was 

assessed and compared to than in normal and 

paracancerous tissues using three databases, The Cancer 

Genome Atlas (TCGA), University of California, Santa 

Cruz Xena (UCSC XENA) and Genotype-Tissue 

Expression (GTEx) (https://gtexportal.org/). Promoter 

methylation of GPER1 was explored using the MethSurv 

and The University of Alabama at Birmingham CANcer 

data analysis Portal (UALCAN) databases. Genetic 

alterations and their associated survival analysis were 

evaluated via the cBioPortal. Differentially expressed 

genes (DEGs) related to GPER1 expression, Protein–

Protein Interaction (PPI), functional enrichment and 

Gene Set Enrichment Analysis (GSEA) of DEGs were 

also explored. We further investigated the relationship 

between GPER1 and tumour-infiltrating lymphocytes 

(TILs), immunoinhibitors, immunostimulators, major 

histocompatibility complex (MHC) molecules, chemo-

kines and chemokine receptors via the TISDB. 

 

RESULTS 
 

Expression landscape and pan-cancer expression of 

GPER1 

 

According to the results obtained from the HPA 

database, GPER1 mRNA and protein are widely 

expressed in various organs and tissues throughout the 

body (Figure 1A). GPER1 mRNA is expressed 

primarily in the lungs, stomach, liver, thyroid, adipose 

tissue, placenta, basal ganglia, amygdala, seminal 

vesicles, breast, cerebral cortex and adrenal glands 

(Figure 1B, 1C). 

 

GPER1 mRNA expression was evaluated in pan- 

cancer including Adrenocortical carcinoma (ACC),  

Bladder Urothelial Carcinoma (BLCA), Breast 

invasive carcinoma (BRCA), Cervical squamous cell 

carcinoma and endocervical adenocarcinoma (CESC), 

Cholangiocarcinoma (CHOL), Colon adenocarcinoma 

(COAD), Lymphoid Neoplasm Diffuse Large B-cell 

Lymphoma (DLBC), Esophageal carcinoma (ESCA), 

Glioblastoma multiforme (GBM), Head and Neck 

squamous cell carcinoma (HNSC), Kidney 

Chromophobe (KICH), Kidney renal clear cell carcinoma 

(KIRC), Kidney renal papillary cell carcinoma  

(KIRP), Acute Myeloid Leukemia (LAML), Brain Lower 

Grade Glioma (LGG), Liver hepatocellular carcinoma 

(LIHC), Lung adenocarcinoma (LUAD), Lung squamous 

cell carcinoma (LUSC), Mesothelioma (MESO),  

Ovarian serous cystadenocarcinoma (OV), Pancreatic 

adenocarcinoma (PAAD), Pheochromocytoma and 

Paraganglioma (PCPG), Prostate adenocarcinoma 

(PRAD), Rectum adenocarcinoma (READ), Sarcoma 

(SARC), Skin Cutaneous Melanoma (SKCM), Stomach 

adenocarcinoma (STAD), Testicular Germ Cell Tumors 

(TGCT), Thyroid carcinoma (THCA), Thymoma 

https://gtexportal.org/
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(THYM), Uterine Corpus Endometrial Carcinoma 

(UCEC), Uterine Carcinosarcoma (UCS), and Uveal 

Melanoma (UVM). As shown in Figure 2A, unpaired 

sample analysis found that compared to normal samples, 

GPER1 mRNA expression was higher in GBM  

(P = 0.009), LGG (P = 0.002), HNSC, KIRC, LAML and 

PAAD (all P < 0.001) and lower in ACC, BLCA, BRCA, 

CESC, CHOL, COAD, ESCA, KICH, LUAD, LUSC, 

OV, PRAD, READ, PAN-CNACER, STAD, TGCT, 

THCA, UCEC, UCS (all P < 0.001) and PCPG  

(P = 0.015). MESO and UVM could not be analysed due 

to insufficient normal samples. Compared to 

paracancerous tissue, GPER1 mRNA expressed was 

significant higher in HNSC and KIRC (both P < 0.001) 

and significant lower in BLCA, BRCA, CHOL, COAD, 

ESCA, KICH, LUAD, LUSC, PRAD, READ, STAD, 

THCA, UCEC (all P < 0.001), CESC (P = 0.023) and 

PCPG (P = 0.015) (Figure 2B). ACC, DLBC, LAML, 

LGG, OV, TGCT, UCS, MESO and UVM could not be 

analysed due to insufficient paracancerous samples. 

Among the paired sample analyses that can be performed, 

GPER1 mRNA expression was increased in HNSC and 

KIRC (both P < 0.001) but was decreased in BLCA, 

BRCA, COAD, KICH, LUAD, LUSC, PRAD, STAD, 

THCA, UCEC (all P < 0.001), CHOL (P = 0.004), ESCA 

(P = 0.023) and READ (P = 0.004) (Figure 2C). 

 

 
 

Figure 1. RNA and protein expression profile for GPER1 in different human organs and tissues present by HPA. (A) GPER1 RNA 

and protein expression summary in different human organs and tissues; Summary of RNA and protein expression information produced 
within the Human Protein Atlas initiative. Examined tissues are categorized into groups with color-coded distinctions based on shared 
functional attributes. (B) GPER1 RNA expression summary in different human organs and tissues based on consensus dataset; The unified 
dataset comprises normalized expression (nTPM) levels for 55 distinct tissue types, achieved through the integration of HPA and GTEx 
transcriptomics datasets via an internal normalization process. The utilization of color codes corresponds to tissue groupings, with each group 
comprising tissues sharing common functional attributes. (C) GPER1 protein expression summary in different human organs and tissues. For 
every one of the 44 tissues, protein expression information is displayed. Color classification is rooted in tissue groups, where each group is 
composed of tissues that share common functional characteristics. 
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The diagnostic value of GPER1 in pan-cancer 

 

As shown in Figure 3, GPER1 had good diagnostic 

value in various cancers. Its Area under Curve (AUC) 

was greater than 0.7 in 21 cancers and even exceeded 

0.9 in 9 cancers, including CHOL, COAD, KICH, 

LAML, LUAD, LUSC, READ, STAD and THYM 

(Supplementary Table 1), which had high diagnostic 

value. 

 

Survival analysis of GPER1 in pan-cancer 

 

For the purpose of evaluating the prognostic value of 

GPER1 in pan-cancer, Kaplan–Meier (K-M) analysis 

 

 
 

Figure 2. The expression of GPER1 mRNA in pan-cancer. (A) Pan-cancer expression of GPER1 between tumor and normal tissues in 

unpaired sample analysis; (B) Pan-cancer expression of GPER1 between tumor and paracancerous tissue in unpaired sample analysis; Based 
on publicly available data, molecular distinctions across diverse pan-cancer datasets are directly analyzed to perform comparative analysis 
between the tumor group and the normal (adjacent) group. (C) Paired sample analysis of GPER1 between tumor and normal tissues in 
BLCA, BRCA, CHOL, COAD, ESCA, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, LUSC, PAAD, PRAD, READ, STAD, THCA and UCEC. Each line represents 
a paired sample, namely the normal (adjacent) versus tumor samples selected from the available public data. The more consistent and 
inclined the trend direction of the lines, the more pronounced the differences between the two groups. Wilcoxon rank sum test * p < 0:05, 
** p < 0:01, *** p < 0:001. 
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was conducted. Cox regression analysis of 35 cancers 

showed that GPER1 expression in 11 cancers was 

significantly associated with OS (Supplementary  

Table 2). Our results found that the high GPER1 group 

had significantly better overall survival (OS) than the 

low GPER1 group in BRCA (Hazard ratio (HR) 0.69, 

95% Confidence Interval (CI): 0.50–0.97; p = 0.03), 

DLBC (HR 0.09, 95% CI: 0.01–0.79; p = 0.029), 

ESCA (HR 0.46, 95% CI: 0.28–0.77; p = 0.003), 

HNSC (HR 0.75, 95% CI: 0.57–0.99; p = 0.042), 

KIRC (HR 0.59, 95% CI: 0.44–0.80; p = 0.001), KIRP 

(HR 0.45, 95% CI: 0.25–0.81; p = 0.008), LUAD  

(HR 0.71, 95% CI: 0.52–0.98; p = 0.036), PAAD  

(HR 0.59, 95% CI: 0.38–0.93; p = 0.022), SARC  

(HR 0.38, 95% CI: 0.20–0.70; p = 0.002) and UCEC 

(HR 0.53, 95% CI: 0.34–0.80; p = 0.003) (Figures 4, 

5A–5J). However, the low GPER1 group showed 

significantly better OS than the high GPER1 group in 

STAD (HR 1.50, 95% CI: 1.06–2.12; p = 0.023) 

(Figures 4, 5K). 

 

 
 

Figure 3. Receiver operator characteristic (ROC) curve of GPER1 in cancers. Cancers with AUC > 0.9 for GPER1: (A) CHOL; (B) COAD; 

(C) KICH; (D) LAML; (E) LUAD; (F) LUSC; (G) READ; (H) STAD; (I) THYM. 
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Figure 4. Forest plot of GPER1 OS in 35 cancer types. The marked yellow cancer species indicated that the p-value of prognostic K-M 

analysis for high- and low- GPER1 gene expression in the cancer species (BRCA, DLBC, ESCA, HNSC, KIRC, KIRP, LUAD, PAAD, SARC, STAD, 
UCEC) were less than 0.05. 
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Figure 5. Correlations between GPER1 and prognosis in 11 cancer types. OS K-M curve for GPER1 11 cancer types. The unit of X-axis 

is month. (A) BRCA, (B) ESCA, (C) DLBC, (D) HNSC, (E) KIRC, (F) KIRP, (G) LUAD, (H) PAAD, (I) SARC, (J) UCEC, (K) STAD. 
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Genetic alteration of GPER1 in pan-cancer 

 

This study analysed genetic mutations of GPER1 in 

pan-cancer using the cBioPortal online tool. Based on 

TCGA, GPER1 mutations were most commonly seen in 

ESCA, STAD, LUAD, SKCM, DLBC, BLCA and 

UCEC (Figure 6A). The mutation rate of GPER1 genes 

was 2.2%, with the most predominant mutation types 

being Amplification, Deep Deletion and Missense 

mutation (Figure 6B). The correlation between genetic 

mutations and prognosis of pan-cancer patients  

was further explored. Accordingly, GPER1 genetic 

mutations promoted a significant decrease in OS 

(Figure 6C), disease-free survival (DFS) (Figure 6D), 

disease-specific survival (DSS) (Figure 6E) and 

progression-free survival (PFS) (Figure 6F) (all  

p < 0.001) in pan-cancer. 

 

DEGs, PPI, functional enrichment and gene set 

enrichment of GPER1 in cancers 

 

Earlier, we showed that GPER1 expression affected the 

OS from 11 cancers. To evaluate the biological 

function of GPER1 in specific cancers, we then 

analysed differential genes for high and low expression 

of GPER1 in these cancers and constructed PPI 

networks with the top 30 up- or downregulated DEGs, 

as well as performing functional enrichment and gene 

set enrichment analyses. By analyzing the standardized 

DEGs in each specific cancer type, the counts of DEGs 

identified were as follows: BRCA (1117), DLBC (739), 

ESCA (671), HNSC (837), KIRC (4876), KIRP (2380), 

LUAD (3960), PAAD (470), SARC (1309), STAD 

(2228), UCEC (1020). All the DEGs were list in 

Supplementary File 1. 

 

Our results were presented in a form similar to that in 

BRCA (Figures 7, 8). The top 30 up- or downregulated 

DEGs of GPER1 in BRCA are summarised in Figure 7A, 

7B, respectively (Supplementary Table 3). The DEGs of 

GPER1 in BRCA were presented as volcano plots 

(Figure 7C). Figure 7D presents the PPI networks of the 

top 30 up- or downregulated DEGs (Supplementary 

Table 4). 

 

The top 30 up- or downregulated DEGs were used to 

perform Gene Ontology (GO) / Kyoto Encyclopedia of 

Genes and Genomes (KEGG) joint logFC analyses 

(Supplementary Table 5). The results were presented as 

string (Figure 8A) and circle graphs (Figure 8B). The 

different RNA functions of DEGs can be divided into 

three categories: biological process (BP), molecular 

function (MF) and cellular component (CC). The top 
three GO terms for the BP in BRCA included regulation 

of peptide hormone secretion, regulation of protein 

secretion and peptide hormone secretion; those for  

CC included platelet alpha granule lumen, blood 

microparticle and platelet alpha granule; and those for 

MF included hormone activity and neuropeptide 

hormone activity. As shown in the bubble chart 

demonstrating the results for GO/KEGG analyses 

(Figure 8C and Supplementary Table 6), the top BP 

terms in BRCA included regulation of peptide hormone 

secretion, peptide hormone secretion, regulation of 

hormone secretion and signal release; those for CC 

included mast cell granule, axon terminus and neuron 

projection terminus; and those for MF included 

hormone activity and neuropeptide hormone activity. 

 

Figure 8D shows the GSEA results for DEGs in BRCA. 

The top five enrichments in biological pathways were 

REACTOME M PHASE, REACTOME DNA REPAIR, 

REACTOME TRANSCRIPTIONAL REGULATION 

BY TP53, REACTOME CELL CYCLE CHECKPOINTS 

and REACTOME RHO GTPASE EFFECTORS.  

The top five enrichments in GO were REGULATION 

OF LYMPHOCYTE ACTIVATION, IMMUNE 

RESPONSE REGULATING SIGNALLING 

PATHWAY, ORGANELLE FISSION, 

RIBONUCLEOPROTEIN COMPLEX BIOGENESIS 

and REGULATION OF CELL CYCLE PHASE 

TRANSITION. The top five enrichments in immuno-

logic signatures were GSE10239 MEMORY VS 

DAY4.5 EFF, CD8 TCELL DN, GSE10239 MEMORY 

VS KLRG1HIGH EFF CD8 TCELL DN, GSE10239 

MEMORY VS KLRG1INT EFF CD8 TCELL DN, 

GSE1460 DP THYMOCYTE VS NAIVE CD4 TCELL 

CORD BLOOD UP and GSE15930 NAIVE VS 48H IN 
VITRO STIM CD8 TCELL DN. 

 

The results for other cancers, including DLBC 

(Supplementary Figures 1, 2), ESCA (Supplementary 

Figures 3, 4), HNSC (Supplementary Figures 5, 6), KIRC 

(Supplementary Figures 7, 8), KIRP (Supplementary 

Figures 9, 10), LUAD (Supplementary Figures 11, 12), 

PAAD (Supplementary Figures 13, 14), SARC 

(Supplementary Figures 15, 16), STAD (Supplementary 

Figures 17, 18) and UCEC (Supplementary Figures 19, 

20), were presented in a form similar to that for BRCA. 

 

Methylation level of GPER1 in cancers 

 

Gene methylation is closely associated with the 

development and progression of several cancers. This 

study obtained the methylation data of GPER1, which 

have been considered significant in the survival 

analysis with corresponding normal tissues, for 10 

cancers using the MethSurv database. The database 

does not include information on the methylation of 
GPER1 in DLBC. The methylation information of 

GPER1 for 10 cancers were presented as heatmaps in 

Supplementary Figure 21A–21J. 
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Figure 6. Genetic alteration of GPER1 in pan-cancer. (A) Bar chart of GPER1 mutation in pan-cancer based on TCGA database. (B) The 

alteration frequency with different types of GPER1 gene mutations in pan-cancer. Kaplan-Meier curve of (C) OS, (D) DSS, (E) DFS, (F) PFS in 
pan-cancer patients with altered (red) and unaltered (blue) mRNA expression of the GPER1 gene. 
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We further compared the GPER1 methylation levels 

among the identified cancers. Except for DLBC, 

methylation data of GPER1 for 10 cancers and normal 

tissues were obtained. Our findings showed that the 

methylation level of GPER1 was significantly higher  

in BRCA (p < 0.001), ESCA (p < 0.001), HNSC  

(p < 0.05), LUAD (p < 0.005) and UCEC (p < 0.001) 

compared to that in normal tissues. In contrast, the 

 

 
 

Figure 7. DEGs of high and low GPER1 expression in BRCA and PPI network of DEGs. (A) The heatmap of top 30 up-regulated DEGs, 

(B) The heatmap of top 30 down-regulated DEGs. Each square represents the expression value of other molecules after undergoing Z-score 
transformation across various samples (Z-score involves subtracting the mean expression value of each molecule in individual samples from 
its mean expression value across all samples and then dividing by the standard deviation), with color intensity indicating the absolute value of 
the expression level. (C) The volcano plots of DEGs between high and low GPER1 expression groups, (D) PPI network of DEGs of high and low 
GPER1 expression in BRCA. * p < 0.05, ** p < 0.01, *** p < 0.001. The “p” value represents the p-value obtained from the Spearman test 
conducted to calculate the correlation coefficient between GPER1 and the top 30 up- and downregulated genes. 
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Figure 8. Functional enrichment analysis for DEGs between High and Low expression of GPER1 expression in BRCA.  
(A) GO/KEGG pathway enrichment joint logFC for DEGs between High and -Low expression of GPER1 expression in BRCA presented as string 
graph. The left half of the figure shows the gene blocks, and the different colors of the blocks represent the corresponding logFC values. 
The right half of the graph shows the entry blocks, the size of the blocks represents the corresponding Counts, and the lines (strings) 
between the blocks on the left and right half of the graph represent the molecules contained in the entry, the presence of the lines means 
that the entry contains the corresponding molecules. (B) GO/KEGG joint logFC results presented as circle graph. The circle diagram can be 
divided into two parts: the inner circle and the outer circle. Each bar in the inner circle corresponds to an entry, and the height is the 
relative size of the p.adj. The higher the bar, the smaller the p.adj of the ID. The color of the corresponding filled column represents the 
Zscore value of the entry. (C) GO/KEGG pathway enrichment presented as bubble chart, (D) GSEA of the signaling pathways associated with 
DEGs of GPER1 expression in BRCA. 
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methylation level of GPER1 was significantly lower  

in KIRC (p < 0.001), KIRP (p < 0.001) and PAAD  

(p < 0.05) compared to that in normal tissues. No 

differences were found between SARC and STAD 

tissues and corresponding normal tissues (Figure 9A–9J). 

 

Pan-cancer immunogenomic analyses of GPER1 

 

The correlation between GPER1 expression level and 

immune components in pan-cancer were inferred via the 

TISIDB database. The relationship between GPER1 and 

TILs (Figure 10A), immunoinhibitors (Figure 10B), 

immunostimulators (Figure 10C), MHC molecules 

(Figure 10D), chemokines (Figure 10E) and chemokine 

receptors (Figure 10F), as well as that between 

methylation level of GPER1 and immune components 

(Figure 11A–11F), were presented as heatmaps. 

 

Our findings showed that GPER1 expression was 

positively correlated with TILs in majority cancers. 

 

 
 

Figure 9. Promoter methylation level of GPER1 between 10 types of cancer and normal tissue. (A) BRCA, (B) ESCA, (C) HNSC, (D) 

KIRC, (E) KIRP, (F) LUAD, (G) PAAD, (H) SARC, (I) STAD, (J) UCEC. 
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Figure 10. Correlation of GPER1 with TILs and immunoregulation-related genes in pan-cancers. Correlations between GPER1 and 

(A) TILs, (B) immunoinhibitors, (C) immunostimulators, (D) MHC molecules, (E) Chemokines, (F) Chemokine receptors. 
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Figure 11. Correlation of GPER1 DNA methylation with TILs and immunoregulation-related genes in pan-cancers. Correlations 

between GPER1 DNA methylation and (A) TILs, (B) immunoinhibitors, (C) immunostimulators, (D) MHC molecules, (E) Chemokines, (F) 
Chemokine receptors. 
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However, we found that GPER1 expression was 

negatively correlated with TILs in KIRC, KIRP, LIHC, 

MESO, PAAD, SKCM and THCA. Of interest was  

the negative correlation between GPER1 and act CD4  

in most cancers. Our results also found that  

GPER1 expression was negatively correlated with TILs, 

immunoinhibitors, immunostimulators, MHC molecules, 

chemokines and chemokine receptors in LIHC, MESO, 

PAAD and THCA. In particular, the negative correlation 

in THCA was greater than that in other cancers. The 

correlation between GPER1 methylation and immune 

components differed from that between GPER1 and 

immune components. The positive correlation in ACC, 

BLCA, KICH, PCPG and PRAD turned out to be a 

negative correlation, whereas the negative correlation in 

KIRP, LIHC, MESO and THCA turned out to be a 

positive correlation. 

 

DISCUSSION 
 

Cancer, a leading cause of global mortality, demands 

improved prevention and treatment. Tumor biomarkers 

offer versatile clinical applications. Estrogen’s roles 

extend beyond reproduction, impacting physiology  

and carcinogenesis through regulating apoptosis, 

proliferation, and tumor microenvironment interactions. 

GPER1, alongside classical estrogen receptors, is 

expressed widely, mediating rapid estrogen effects 

across various systems. It affects tumor processes, 

highlighting its therapeutic potential in cancer. However, 

comprehensive pan-cancer analysis of GPER1 remains 

lacking. This study comprehensively investigated the 

multifaceted role of GPER1 across various cancers. The 

study delved into GPER1’s expression, diagnostic 

potential, survival implications, epigenetic regulation, 

genetic alterations, functional significance, and 

immunogenomic interactions. GPER1’s mRNA and 

protein were found to be widely expressed in diverse 

tissues, forming the basis for pan-cancer analyses. These 

analyses unveiled its diagnostic potential, as elevated 

expression was observed in specific cancers such as 

GBM, LGG, and HNSC, while decreased expression 

characterized others. Interestingly, GPER1 expression 

correlated with diverse overall survival outcomes in 

distinct cancer types. Furthermore, the study explored 

GPER1’s epigenetic landscape, highlighting methylation 

patterns that exhibited heterogeneity across cancers, 

contributing to its regulatory complexity. Genetic 

mutations, encompassing amplifications and deletions, 

were associated with distinct survival profiles. 

Functional analyses provided insights into GPER1’s 

potential roles in various pathways. The investigation 

extended to GPER1’s intricate relationship with the 

immune microenvironment, revealing both positive and 

negative correlations with immune components in 

different cancers. 

Timely diagnosis holds paramount importance in the 

realm of cancer prevention and treatment. Furthermore, 

the correlation between early diagnosis and prompt 

therapeutic intervention has been well-established, 

demonstrating a substantial enhancement in the survival 

rates across various malignancies [6]. Therefore, 

identifying tumour markers with high diagnostic value 

is imperative. Our results showed that GPER1 is widely 

expressed in various organs and tissues, both in mRNA 

and protein. Furthermore, the expression of GPER1 

differs significantly between normal or paracancerous 

tissues in numerous cancers, providing easy access to 

samples for clinical diagnosis. Our findings also showed 

that the AUC of GPER1 Receiver operator charac-

teristic (ROC) was more than 0.7 in 21 cancers, 

indicating that GPER1 had a wide diagnostic efficacy in 

cancer. Notably, its AUC exceeded 0.9 in nine cancers, 

suggesting that GPER1 has great detective ability and 

reliable efficiency, allowing its use as a diagnostic 

biomarker in these cancers. 

 

GPER1 is involved in regulating various tumours, such 

as breast, pancreatic, oesophageal, endometrial, ovarian, 

cervical, prostate and testicular cancers, as well as lung, 

liver, thyroid, colorectal and kidney cancers [13]. 

Although an increasing number of studies have focused 

on the role of GPER1 in different types of cancers, it 

remains controversial whether GPER1 plays a pro- or 

anti-cancer role in tumours. Several studies have shown 

that activation of GPER1 can promote carcinogenesis, 

whereas others have shown that its activation can 

suppress tumours (reviewed in [14]). Neither ex vivo 

nor in vivo experiments have so far led to definitive 

conclusions. Our results showed that low GPER1 

expression was associated with poor prognosis in 

BRCA, DLBC, ESCA, HNSC, KIRC, KIRP, LUAD, 

PAAD, SARC and UCEC, whereas high GPER1 

expression was associated with poor prognosis in 

STAD. Evidence has suggested that GPER1 may be a 

prognostic predictive marker for these cancers. 

Although our results had been derived from the 

aggregation of multiple studies’ samples in the TCGA 

database, the limited number of individual study 

samples may explain the inconsistency within our 

results derived from individual studies. Moreover, the 

results of some experiments had been derived from cell 

lines that may differ from the results of the primary 

tumour. 

 

GPER1 plays an important biological role in regulating 

oestrogenic responses in breast malignancies and has 

been associated with increased tumour size, increased 

risk of recurrence and metastasis, decreased survival 
and therapy resistance in breast cancer patients [17]. 

However, additional studies have reported that GPER1 

inhibits breast cancer proliferation, progression and 
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tumour angiogenesis [18–20]. Study concerning 

endometrial cancer had found that GPER1 expression 

was reduced in endometrial cancer cell lines, which is 

consistent with our results [21]. The GPER1 agonist G1 

dose-dependently inhibited the growth of GPER1-

positive cell lines RL95-2 and HEC-1A, whereas the 

GPER1-negative cell line HEC-1B was not affected 

[21]. This indicates that G1 requires only a moderate 

amount of GPER1 to exert growth inhibitory effects. 

This also suggests that the effects of GPER1 on tumours 

may not depend on the amount of expression but rather 

in the activation. In gastric cancer, GPER1 promotes 

gastric cancer proliferation, migration and invasion 

through PI3K/akt-mediated EMT [22]. This is 

consistent with our results showing that high GPER1 

levels are associated with poor prognosis in STAD. 

GPER1 agonist G1 increased the number of tumour 

nodules, tumour grade and tumour index in urethane-

induced lung adenocarcinoma models [23]. However, 

another study reported that G1 can mediate anti-

proliferative and pro-apoptotic effects of oxidants and 

antioxidant molecules on A549 cells [24] and that 

GPER1 activation can also inhibit migration of human 

NSCLC cells by suppressing IKK-β/NF-κB signalling 

[25]. Furthermore, the activation of GPER1 had also 

been found to inhibit the migration and invasion of 

osteosarcoma cells through FBXL5-mediated post-

translational downregulation of Snail [26]. In pancreatic 

cancer, high GPER1 expression has been associated 

with improved survival [27], and GPER1 activation 

leads to peritumoral mesenchymal remodelling  

in PDAC, reducing fibrous tissue proliferation, inflam-

mation and immunosuppression [28]. 

 

Methylation of gene promoter regions can lead to  

gene transcriptional repression, and aberrant gene 

methylation may contribute to oncogenic transformation 

[29]. Our study findings demonstrate that across the 10 

studied cancer types, GPER1 exhibits high methylation 

in 5 cancers (BRCA, ESCA, HNSC, LUAD, and 

UCEC) and low methylation in 3 cancers (KIRC, KIRP, 

and PAAD). We observe decreased GPER1 expression 

in BRCA, ESCA, LUAD, and UCEC compared to 

normal or adjacent tissues, while it is elevated in KIRC, 

KIRP, and PAAD, consistent with our methylation 

analysis results. In HNSC, GPER1 expression results do 

not align with methylation outcomes. Methylation 

analysis reveals minimal differences in median BETA 

values between HNSC and LUAD, suggesting uncertain 

biological significance despite potential statistical 

disparities. This might elucidate the discrepancy 

between elevated GPER1 expression and unexpectedly 

“higher” DNA methylation in HNSC compared to 
normal tissue. GPER1 shows no significant differences 

in methylation compared to normal tissue in two 

cancers (SARC and STAD). GPER1 exhibits lower 

expression in STAD, contradictory to survival analysis 

indicating better OS in the low GPER1 subgroup of 

STAD. This complexity might suggest intricate 

epigenetic regulation of GPER1, with DNA 

methylation potentially holding a dominant role while 

histone modifications might also play a crucial role. 

This also implies the intricate involvement of GPER1 

in cancer development. Whether GPER1 promotes or 

suppresses cancer lacks a definite conclusion, as 

GPER1 methylation involves a series of subsequent 

changes, encompassing downstream signaling pathways 

and immune modulation [13]. 

 

Gene mutations affect not only cancer development but 

also cancer progression. Loss of homozygous ancestral 

genotype GG is more common in two polymorphisms 

(rs3808350 and rs3808351) in the GPER1 promoter 

region of spermatocytomas but not in non-seminomas 

[30]. The T allele of the GPER1 gene SNP rs11544331 

triggers the expression of the P16L variant, which 

promotes the migration of breast cancer cells [31]. Our 

study found that GPER1 gene mutations were 

associated with poor prognosis in patients with tumours. 

In all samples from patients with tumour, GPER1 gene 

mutations decreased OS, DFS, DSS and PFS, 

suggesting that GPER1 gene alterations play an 

important role in cancer progression and that the 

associated changes in GPER1 expression levels could 

provide prognostic value for patients with tumour. 

However, this also implies that GPER1 itself plays a 

key role in the development and progression of several 

cancers and that mutations can cause failure or 

alteration of this role. 

 

Genes and proteins associated with differential 

expression of target genes may be associated with 

specific biological functions or pathways. Analysis of 

the associated genes or proteins can help us better 

determine the mechanism of action of the target genes 

in the disease. Among the 11 cancers selected for 

analysis, high or low GPER1 expression showed a 

significant effect on OS. Unlike other pan-cancer 

analyses, our study analysed the target genes in each 

specific cancer species. Thus, the biological pathways 

obtained during subsequent enrichment analysis were 

closely associated with that specific cancer species. 

 

Immune components, including TILs, immune 

activators, immunosuppressors, MHC, chemokines and 

chemokine receptors, are important components of 

tumour immunity. Our results found that GPER1 was 

associated with gene expression of these immune 

components various cancers. In some cancers, GPER1 
was correlated with immune components with some 

consistency. For instance, GPER1 was negatively 

correlated with immune components in LIHC, MESO 
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and THCA, suggesting its involvement in the immune 

infiltration of these tumours and the composition of the 

tumour microenvironment. However, this also indicates 

the complexity of the role played by GPER1. The 

negative or positive correlation between GPER1 and 

both immunosuppressive and immunostimulatory 

factors may explain why no conclusive conclusion can 

be reached on whether GPER1 is cancer-promoting or -

suppressing despite the numerous studies. This 

complexity is also compounded by differences in the 

genetic correlation between GPER1 and the same 

immune component among various tumours, suggesting 

that GPER1 has different effects on tumour immunity in 

different cancers. Our results also found that the 

correlation between GPER1 and immune component-

related genes was altered after methylation. For 

instance, the negative correlation in LIHC, MESO and 

THCA changed to a positive correlation, further 

suggesting that GPER1 is closely associated with the 

tumour immune microenvironment and ligand-receptor 

interactions between lymphocytes and malignant 

tumour cells, potentially influencing tumour progression 

and prognosis. 

 

Recent years of research accumulation have 

progressively unveiled the multifaceted association 

between GPER1 and various aspects of cancer 

pathogenesis, further accentuating its potential as a 

therapeutic target for cancer. Consequently, the 

development of cancer treatment strategies targeting 

GPER1 has garnered significant attention [32]. The 

study by Wegnera et al. [33] revealed that GPER1 

overexpression reduces proliferation and mitochondrial 

activity in MCF-7 breast cancer cells, concurrently 

inducing autophagy. However, this also diminishes 

MCF-7 cell sensitivity to doxorubicin while augmenting 

the cytotoxic effects of cyclophosphamide. Additionally, 

the application of fumaric acid ester further enhances the 

cytotoxic impact of these substances on GPER1-

overexpressing cells. On a different note, research by 

Sathya et al. [19] indicated that under low oxygen 

conditions, estrogen suppresses breast cancer growth via 

the GPER1/ROS/p38 MAPK/p21 signaling pathway. 

Weißenborn’s findings [34, 35] demonstrated that the 

GPER1-specific agonist G-1 activates GPER1 in a 

concentration-dependent manner, effectively inhibiting 

breast cancer cell growth. This suggests that cell surface-

expressed GPER1 holds promise as a potential 

therapeutic target for non-triple-negative and triple-

negative breast cancers. Recent meta-analysis results 

[36] correlate elevated GPER1 mRNA expression with 

improved survival rates in breast cancer patients. 

Furthermore, studies have indicated that GPER1 can 

inhibit tumor formation and metastasis in cervical cancer 

cells; reducing GPER1 expression may strengthen 

cervical cancer cell stemness and migration/invasion 

capabilities [37]. Moreover, Xu et al.’s research [22] 

demonstrated that silencing the GPER1 gene can inhibit 

gastric cancer cell proliferation, migration, and invasion 

by suppressing the PI3K/AKT-mediated EMT process. 

These research outcomes align with our findings of 

elevated GPER1 expression being correlated with 

adverse prognosis in STAD, indicating its potential as a 

therapeutic target for gastric cancer treatment [22]. 

 

CONCLUSIONS 
 

In summary, pan-cancer analysis of GPER1 in our study 

showed that it was widely expressed in human tissues 

and organs and that its expression differs from normal 

tissue in various cancers. The methylation, mutation and 

mutation-related prognosis of GPER1 in cancers, the 

associated pathways in specific cancers and its 

extensive correlation with immune components suggest 

that GPER1 may have a bright future in the diagnosis, 

and prognosis of multiple tumours, providing new 

concepts for precise and personalised anti-tumour 

strategies. 

 

MATERIALS AND METHODS 
 

GPER1 expression and datasets obtained 

 

A summary on GPER1 RNA and protein expression  

in humans was obtained from HPA (https://www. 

proteinatlas.org/). GPER1 RNA expression was 

presented as consensus datasets created by combining 

data from the three transcriptomics datasets (HPA, GTEx 

and FANTOM5) using the internal normalisation 

pipeline. 

 
GPER1 mRNA expression of tumour samples and 

corresponding paracancer samples were determined 

using TCGA (https://cancergenome.nih.gov), UCSC 

XENA (https://xenabrowser.net/datapages/) and GTEx 

(https://gtexportal.org/). Samples with ‘0’ values for 

gene expression were excluded. The analysis involves 

the direct examination of molecular distinctions in 

various pan-cancer datasets, enabling a comparative 

analysis between tumor and normal (adjacent) groups. 

The Wilcoxon rank sum test is employed for statistical 

analysis. In cases where a group consists of fewer than 

three observations or exhibits a standard deviation 

greater than zero, said groups will be excluded from the 

statistical analysis. 
 

Paired samples were retained for paired sample 

analysis. The analysis is conducted by directly assessing 

molecular variations across diverse pan-cancer datasets, 

specifically targeting the differential analysis between 

tumor samples and adjacent or normal tissue  

groups within samples exhibiting paired relationships. 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://cancergenome.nih.gov/
https://xenabrowser.net/datapages/
https://gtexportal.org/
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Statistically, it is stipulated that each group of samples 

must comprise a minimum of three observations and 

possess a non-zero variance; failure to meet these 

conditions will result in the exclusion of said groups 

from the statistical analysis. 

 

RNA sequencing data in Fragments Per Kilobase per 

million format were converted and normalised as 

transcripts per million reads using the Toil process and 

log2 transformed for further analysis [38]. The statistical 

analysis employs the Wilcoxon rank sum test. R 

software was used to perform statistical analyses in this 

study (version 3.6.3). The ‘ggplot2’ package was used to 

present GPER1 gene expression as bar graphs in patients 

with pan-cancer. 

 

ROC curve of GPER1 in pan-cancer 

 

ROC curves were used to estimate the diagnostic value 

of GPER1 in pan-cancer. ROC curves were calculated 

using the package ‘pROC’ (version 1.17.0.1) of R 

software and plotted by package ‘ggplot2’ (v3.3.3). 

The AUC, cutoff, sensitivity, specificity, positive 

predictive value, negative predictive value and 

Youden’s index (YI) were also calculated [39]. An 

AUC closer to 1 indicates better diagnostic value. 

Accordingly, an AUC of 0.5 to 0.7, 0.7 to 0.9 and 0.9 

or more indicates low, good and high accuracy, 

respectively [40]. YI indicates the total ability of the 

screening method to detect real patients from non-

patients, with a larger index indicating a more valid and 

true screening method [41, 42]. 

 

Survival analysis of GPER1 in pan-cancer 

 

The ‘survival’ package was used to conduct K-M 

analysis. The patients with corresponding cancers in the 

TCGA database were divided into “high” and “low” 

expression level groups based on the median expression 

level of GPER1. The OS rates in the high and low 

GPER1 gene expression groups were compared across 

35 cancer types. The p value was determined using Cox 

regression analysis. The forest plots plotted the HR and 

95% CI, and the p values of the survival curves were 

calculated and visualised using ‘survminer’ and 

‘ggplot2’ (version 3.3.3) package. 

 

Genetic alteration analysis of GPER1 

 

Genetic Alteration Analysis of GPER1 was performed 

using cBioPortal (https://www.cbioportal.org/) [43]. 

The ‘OncoPrint’ module was used to explore genetic 

alterations of GPER1. The somatic mutation frequency 
and genomic information of GPER1 mutations in  

pan-cancer were explored using the ‘cancer types 

summary and mutations’ module. The prognostic value 

of GPER1 for pan-cancer was investigated using the 

‘Comparison/Survival’ module. 

 

DEGs analysis between high and low GPER1 

expression 

 

According to the expression value of GPER1, patients 

were divided into high and low GPER1 expression 

groups, and the DEGs of the two groups were analyzed. 

These DEGs will be utilized for subsequent analyses 

involving functional enrichment and gene set enrichment. 

 

During the detection of DEGs, it is necessary to perform 

differential statistical tests individually on thousands  

of genes within a single cancer type. This process 

involves multiple comparisons, which can potentially 

lead to false positive results, necessitating the 

implementation of a multiple hypothesis testing 

correction. We utilize the Benjamini-Hochberg (BH) 

method for False Discovery Rate (FDR) correction [44]. 

FDR is a widely employed technique for correcting 

multiple hypothesis testing, designed to control the 

proportion of erroneous rejections of null hypotheses. 

Compared to the conventional Bonferroni correction, 

the FDR method demonstrates increased applicability, 

particularly when facing a substantial number of 

hypothesis tests. 

 

‘DESeq2’ analysis was performed in R to identify 

DEGs between pan-cancer patients related to GPER1 

expression using unpaired Student’s t-test, with the 

thresholds set at an adjusted P < 0.01 and absolute log-

fold change >1. Identified genes were analysed and 

presented as volcano plots. The top 30 up- and 

downregulated genes were presented as heat maps. The 

correlation between GPER1 and the top 30 up- and 

downregulated genes was assessed using the Spearman 

non-parametric correlation test. This method evaluates 

the presence of correlation between two sets by 

analyzing their rank orders. Each square represents the 

expression value of other molecules after undergoing z-

score transformation among various samples, with the 

color intensity reflecting the absolute magnitude of the 

values. Z-score transformation is a commonly 

employed data conversion method in generating 

heatmap visualizations, utilized to mitigate expression 

value discrepancies across diverse molecules within a 

dataset. This approach involves subtracting the mean 

value of each molecule’s expression in individual 

samples from its global mean across all samples, 

followed by division by the standard deviation. 

Consequently, the data is endowed with similar  

scales and distributions across different molecules. This 
aids in diminishing the impact of extreme expression 

values on heatmap visualization while retaining the 

depiction of molecular differences among samples. 

https://www.cbioportal.org/
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Visualisation of all data was achieved using the 

‘ggplot2’ package in R. 

 

PPI network analyses of GPER1 

 

To collect and integrate potential protein interactions 

with GPER1 in cancer patients whose OS was 

significantly associated with GPER1 expression, the top 

30 up- and downregulated DEGs for individual types of 

cancers were used to search the STRING database 

(https://string-db.org/) [45] and conducted PPI network 

analysis. Through this apo reach, the PPI network was 

strongly associated with specific cancers. A confidence 

score >0.7 was set as the significance threshold. 

 

Functional enrichment analysis of DEGs related to 

GPER1 expression 

 

The ‘clusterProfiler’ and ‘org.Hs.eg.db’ packages of R 

were used to conduct GO function and KEGG enrichment 

analyses for statistically significant DEGs. The p-value 

cutoff threshold for DEGs included in the GO function 

and KEGG enrichment analyses is set at < 0.01. The 

results were presented as a bubble chart via the ‘ggplot2’ 

(v.3.3.3). The bubble chart displays the top 4 results from 

each category, ranked based on the magnitude of adjusted 

p-values of GO/KEGG analyses’ result in ascending 

order, with smaller adjusted p-values corresponding to 

higher rankings. If the number of results is fewer than 

four, then all entries will be displayed. GO/KEGG joint 

logFC results are presented as a string and circle graph 

via ‘Goplot’ (version 1.0.2) and ‘ggplot2’ (version 3.3.3) 

package in R. The threshold employed for the 

categorization of data used in generating the circle graph 

is defined as adjusted p-values < 0.05 for the GO/KEGG 

joint logFC results. Results with too few enrichment 

entries (count < 5) cannot be displayed as a circle graph. 

 

Gene set enrichment analysis 

 

GSEA was performed via the ‘clusterProfiler’ package 

to determine the biological pathway, GO and 

immunologic signature differences between the high 

and low GPER1 groups. Pathways with a false 

discovery rate <0.25 and adjusted p value <0.05 were 

considered to have remarkably changed. Gene set 

permutation was performed 1,000 times for each 

analysis. The top five entries of the enrichment analysis 

were presented as a mountain map. DEGs not enriched 

to the relevant entry were not presented. GSEA results 

were presented using the ‘ggplot2’ package in R. 

 

Promoter methylation level of GPER1 in cancers 

 

Heatmaps of the DNA methylation of GPER1  

in cancers were obtained from the MethSurv data-  

base (https://biit.cs.ut.ee/methsurv/) [46]. Promoter 

methylation level of GPER1 in cancers whose OS was 

significantly associated with GPER1 expression was 

explored. GPER1 methylation levels in cancers and 

corresponding adjacent tissues were determined from 

TCGA and presented via the UALCAN database [47] 

(http://ualcan.path.uab.edu/analysis.html). Student’s t-

test was used to determine whether differences were 

significant. A p value of <0.05 indicated statistical 

significance. 

 

Pan-cancer immunogenomic analyses of GPER1 

 

Pan-cancer immunogenomic analyses of GPER1  

was performed via the TISIDB online tool (http://cis. 

hku.hk/TISIDB/index.php) [48]. Correlations between 

expression and methylation level of GPER1 and immune 

components, such as TILs, immunoinhibitors, immuno-

stimulators, MHC molecules, chemokines and 

chemokine receptors in pan-cancer, were presented as 

heatmaps. A p value <0.05 indicated statistical 

significance. 

 

Data availability 

 

The datasets for this study can be found in  

the HPA(https://www.proteinatlas.org/), TCGA 

Research Network (https://www.cancer.gov/tcga), 

GTEx (http://commonfund.nih.gov/GTEx/), UCSC 

Xena (http://xena.ucsc.edu/), MethSurv (https://biit. 

cs.ut.ee/methsurv/), UALCAN (http://ualcan.path. 

uab.edu/), cBioPortal (http://www.cbioportal.org/), 

STRING (https://string-db.org/) and TISIDB 

(http://cis.hku.hk/TISIDB/) detabases. 

 

Abbreviations 
 

GPER1: G protein-coupled oestrogen receptor 1; ACC: 

Adrenocortical carcinoma; BLCA: Bladder Urothelial 

Carcinoma; BRCA: Breast invasive carcinoma; CESC: 

Cervical squamous cell carcinoma and endocervical 

adenocarcinoma; CHOL: Cholangiocarcinoma; COAD: 

Colon adenocarcinoma; DLBC: Lymphoid Neoplasm 

Diffuse Large B-cell Lymphoma; ESCA: Esophageal 

carcinoma; GBM: Glioblastoma multiforme; HNSC: 

Head and Neck squamous cell carcinoma; KICH: Kidney 

Chromophobe; KIRC: Kidney renal clear cell carcinoma; 

KIRP: Kidney renal papillary cell carcinoma; LAML: 

Acute Myeloid Leukemia; LGG: Brain Lower Grade 

Glioma; LIHC: Liver hepatocellular carcinoma; LUAD: 

Lung adenocarcinoma; LUSC: Lung squamous cell 

carcinoma; MESO: Mesothelioma; OS: Osteosarcoma; 

OV: Ovarian serous cystadenocarcinoma; OSCC: Oral 

Squamous Cell Carcinoma; PAAD: Pancreatic 

adenocarcinoma; PCPG: Pheochromocytoma and 

Paraganglioma; PRAD: Prostate adenocarcinoma; 
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http://xena.ucsc.edu/
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READ: Rectum adenocarcinoma; SARC: Sarcoma; 

SKCM: Skin Cutaneous Melanoma; STAD: Stomach 

adenocarcinoma; TGCT: Testicular Germ Cell Tumors; 

THCA: Thyroid carcinoma; THYM: Thymoma; UCSC 

XENA: University of California, Santa Cruz Xena; 

UCEC: Uterine Corpus Endometrial Carcinoma; UCS: 

Uterine Carcinosarcoma; UVM: Uveal Melanoma; The 

UALCAN: University of Alabama at Birmingham 

CANcer data analysis Portal; HPA: Human Protein Atlas; 

TCGA: The Cancer Genome Atlas; GTEx: Genotype-

Tissue Expression; TILs: tumour-infiltrating lympho-

cytes; MHC: major histocompatibility complex; TME: 

tumour microenvironment; FPKM: Per Kilobase per 

Million; TPM: transcripts per million; ROC: Receiver 

Operator Characteristic; AUC: Area under Curve; YI: 

Youden’s index; K-M: Kaplan–Meier; BH: Benjamini-

Hochberg; FDR: False Discovery Rate; OS: overall 

survival; DFS: disease-free survival; BP: biological 

process; MF: molecular function; CC: cellular 

component; DSS: disease-specific survival; HR: Hazard 

ratio; CI: Confidence Interval; GGI: Gene-Gene 

Interaction; GO: Gene Ontology; KEGG: Kyoto 

Encyclopedia of Genes and Genomes; DEGs: different 

expression genes; GSEA: Gene set enrichment analysis; 

PPI: Protein-Protein Interaction; ER: oestrogen receptors; 

MHC: major histocompatibility complex; TILs: tumor-

infiltrating lymphocytes. 
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Supplementary Figure 1. DEGs of high and low GPER1 expression in DLBC and PPI network of DEGs. (A) The heatmap of top 30 

up-regulated DEGs, (B) The heatmap of top 30 down-regulated DEGs, (C) The volcano plots of DEGs between high and low GPER1 expression 
groups, (D) PPI network of DEGs of high and low GPER1 expression in DLBC. 
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Supplementary Figure 2. Functional enrichment analysis for DEGs between High and Low expression of GPER1 expression in 
DLBC. (A) GO/KEGG pathway enrichment joint logFC for DEGs between High and -Low expression of GPER1 expression in DLBC presented as 

string graph. (B) GO/KEGG pathway enrichment presented as bubble chart, (C) GSEA of the signaling pathways associated with DEGs of 
GPER1 expression in DLBC. 
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Supplementary Figure 3. DEGs of high and low GPER1 expression in ESCA and PPI network of DEGs. (A) The heatmap of top 30 

up-regulated DEGs, (B) The heatmap of top 30 down-regulated DEGs. Each square represents the expression value of other molecules after 
undergoing Z-score transformation across various samples (Z-score involves subtracting the mean expression value of each molecule in 
individual samples from its mean expression value across all samples and then dividing by the standard deviation), with color intensity 
indicating the absolute value of the expression level. (C) The volcano plots of DEGs between high and low GPER1 expression groups, (D) PPI 
network of DEGs of high and low GPER1 expression in ESCA. 
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Supplementary Figure 4. Functional enrichment analysis for DEGs between High and Low expression of GPER1 expression in 
ESCA. (A) GO/KEGG pathway enrichment joint logFC for DEGs between High and -Low expression of GPER1 expression in ESCA presented as 

string graph. (B) GO/KEGG joint logFC results presented as circle graph. (C) GO/KEGG pathway enrichment presented as bubble chart,  
(D) GSEA of the signaling pathways associated with DEGs of GPER1 expression in ESCA. 
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Supplementary Figure 5. DEGs of high and low GPER1 expression in HNSC and PPI network of DEGs. (A) The heatmap of top 30 

up-regulated DEGs, (B) The heatmap of top 30 down-regulated DEGs. Each square represents the expression value of other molecules after 
undergoing Z-score transformation across various samples (Z-score involves subtracting the mean expression value of each molecule in 
individual samples from its mean expression value across all samples and then dividing by the standard deviation), with color intensity 
indicating the absolute value of the expression level. (C) The volcano plots of DEGs between high and low GPER1 expression groups, (D) PPI 
network of DEGs of high and low GPER1 expression in HNSC. 
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Supplementary Figure 6. Functional enrichment analysis for DEGs between High and Low expression of GPER1 expression in 
HNSC. (A) GO/KEGG pathway enrichment joint logFC for DEGs between High and -Low expression of GPER1 expression in HNSC presented as 
string graph. (B) GO/KEGG joint logFC results presented as circle graph. (C) GO/KEGG pathway enrichment presented as bubble chart, (D) 
GSEA of the biological pathways associated with DEGs of GPER1 expression in HNSC, (E) GSEA of the GO associated with DEGs of GPER1 
expression in HNSC, (F) GSEA of the Immunologic signatures associated with DEGs of GPER1 expression in HNSC. 
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Supplementary Figure 7. DEGs of high and low GPER1 expression in KIRC and PPI network of DEGs. (A) The heatmap of top 30 
up-regulated DEGs, (B) The heatmap of top 30 down-regulated DEGs. Each square represents the expression value of other molecules after 
undergoing Z-score transformation across various samples (Z-score involves subtracting the mean expression value of each molecule in 
individual samples from its mean expression value across all samples and then dividing by the standard deviation), with color intensity 
indicating the absolute value of the expression level. (C) The volcano plots of DEGs between high and low GPER1 expression groups, (D) PPI 
network of DEGs of high and low GPER1 expression in KIRC. 
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Supplementary Figure 8. Functional enrichment analysis for DEGs between High and Low expression of GPER1 expression in 
KIRC. (A) GO/KEGG pathway enrichment joint logFC for DEGs between High and -Low expression of GPER1 expression in KIRC presented as 

string graph. (B) GO/KEGG joint logFC results presented as circle graph. (C) GO/KEGG pathway enrichment presented as bubble chart,  
(D) GSEA of the biological pathways associated with DEGs of GPER1 expression in KIRC, (E) GSEA of the GO associated with DEGs of GPER1 
expression in KIRC. 
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Supplementary Figure 9. DEGs of high and low GPER1 expression in KIRP and PPI network of DEGs. (A) The heatmap of top 30 

up-regulated DEGs, (B) The heatmap of top 30 down-regulated DEGs. Each square represents the expression value of other molecules after 
undergoing Z-score transformation across various samples (Z-score involves subtracting the mean expression value of each molecule in 
individual samples from its mean expression value across all samples and then dividing by the standard deviation), with color intensity 
indicating the absolute value of the expression level. (C) The volcano plots of DEGs between high and low GPER1 expression groups, (D) PPI 
network of DEGs of high and low GPER1 expression in KIRP. 
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Supplementary Figure 10. Functional enrichment analysis for DEGs between High and Low expression of GPER1 expression 
in KIRP. (A) GO/KEGG pathway enrichment joint logFC for DEGs between High and -Low expression of GPER1 expression in KIRP presented 
as string graph. (B) GO/KEGG pathway enrichment presented as bubble chart, (C) GSEA of the biological pathways associated with DEGs of 
GPER1 expression in KIRP, (D) GSEA of the GO associated with DEGs of GPER1 expression in KIRP. 
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Supplementary Figure 11. DEGs of high and low GPER1 expression in LUAD and PPI network of DEGs. (A) The heatmap of top 30 
up-regulated DEGs, (B) The heatmap of top 30 down-regulated DEGs. Each square represents the expression value of other molecules after 
undergoing Z-score transformation across various samples (Z-score involves subtracting the mean expression value of each molecule in 
individual samples from its mean expression value across all samples and then dividing by the standard deviation), with color intensity 
indicating the absolute value of the expression level. (C) The volcano plots of DEGs between high and low GPER1 expression groups, (D) PPI 
network of DEGs of high and low GPER1 expression in LUAD. 
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Supplementary Figure 12. Functional enrichment analysis for DEGs between High and Low expression of GPER1 expression 
in LUAD. (A) GO/KEGG pathway enrichment joint logFC for DEGs between High and -Low expression of GPER1 expression in LUAD presented 
as string graph. (B) GO/KEGG joint logFC results presented as circle graph. (C) GO/KEGG pathway enrichment presented as bubble chart,  
(D) GSEA of the biological pathways associated with DEGs of GPER1 expression in LUAD, (E) GSEA of the GO associated with DEGs of GPER1 
expression in LUAD, (F) GSEA of the Immunologic signatures associated with DEGs of GPER1 expression in LUAD. 
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Supplementary Figure 13. DEGs of high and low GPER1 expression in PAAD and PPI network of DEGs. (A) The heatmap of top 30 
up-regulated DEGs, (B) The heatmap of top 30 down-regulated DEGs. Each square represents the expression value of other molecules after 
undergoing Z-score transformation across various samples (Z-score involves subtracting the mean expression value of each molecule in 
individual samples from its mean expression value across all samples and then dividing by the standard deviation), with color intensity 
indicating the absolute value of the expression level. (C) The volcano plots of DEGs between high and low GPER1 expression groups, (D) PPI 
network of DEGs of high and low GPER1 expression in PAAD. 
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Supplementary Figure 14. Functional enrichment analysis for DEGs between High and Low expression of GPER1 expression 
in PAAD. (A) GO/KEGG pathway enrichment joint logFC for DEGs between High and -Low expression of GPER1 expression in PAAD presented 

as string graph. (B) GO/KEGG joint logFC results presented as circle graph. (C) GO/KEGG pathway enrichment presented as bubble chart,  
(D) GSEA of the biological pathways associated with DEGs of GPER1 expression in PAAD, (E) GSEA of the GO associated with DEGs of GPER1 
expression in PAAD, (F) GSEA of the Immunologic signatures associated with DEGs of GPER1 expression in PAAD. 
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Supplementary Figure 15. DEGs of high and low GPER1 expression in SARC and PPI network of DEGs. (A) The heatmap of top 30 
up-regulated DEGs, (B) The heatmap of top 30 down-regulated DEGs. Each square represents the expression value of other molecules after 
undergoing Z-score transformation across various samples (Z-score involves subtracting the mean expression value of each molecule in 
individual samples from its mean expression value across all samples and then dividing by the standard deviation), with color intensity 
indicating the absolute value of the expression level. (C) The volcano plots of DEGs between high and low GPER1 expression groups, (D) PPI 
network of DEGs of high and low GPER1 expression in SARC. 
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Supplementary Figure 16. Functional enrichment analysis for DEGs between High and Low expression of GPER1 expression 
in SARC. (A) GO/KEGG pathway enrichment joint logFC for DEGs between High and -Low expression of GPER1 expression in SARC presented 

as string graph. (B) GO/KEGG joint logFC results presented as circle graph. (C) GO/KEGG pathway enrichment presented as bubble chart, (D) 
GSEA of the biological pathways associated with DEGs of GPER1 expression in SARC, (E) GSEA of the GO associated with DEGs of GPER1 
expression in SARC, (F) GSEA of the Immunologic signatures associated with DEGs of GPER1 expression in SARC. 
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Supplementary Figure 17. DEGs of high and low GPER1 expression in STAD and PPI network of DEGs. (A) The heatmap of top 30 
up-regulated DEGs, (B) The heatmap of top 30 down-regulated DEGs. Each square represents the expression value of other molecules after 
undergoing Z-score transformation across various samples (Z-score involves subtracting the mean expression value of each molecule in 
individual samples from its mean expression value across all samples and then dividing by the standard deviation), with color intensity 
indicating the absolute value of the expression level. (C) The volcano plots of DEGs between high and low GPER1 expression groups, (D) PPI 
network of DEGs of high and low GPER1 expression in STAD. 
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Supplementary Figure 18. Functional enrichment analysis for DEGs between High and Low expression of GPER1 expression 
in STAD. (A) GO/KEGG pathway enrichment joint logFC for DEGs between High and -Low expression of GPER1 expression in STAD presented 

as string graph. (B) GO/KEGG joint logFC results presented as circle graph. (C) GO/KEGG pathway enrichment presented as bubble chart, (D) 
GSEA of the biological pathways associated with DEGs of GPER1 expression in STAD, (E) GSEA of the GO associated with DEGs of GPER1 
expression in STAD. 
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Supplementary Figure 19. DEGs of high and low GPER1 expression in UCEC and PPI network of DEGs. (A) The heatmap of top 30 

up-regulated DEGs, (B) The heatmap of top 30 down-regulated DEGs. Each square represents the expression value of other molecules after 
undergoing Z-score transformation across various samples (Z-score involves subtracting the mean expression value of each molecule in 
individual samples from its mean expression value across all samples and then dividing by the standard deviation), with color intensity 
indicating the absolute value of the expression level. (C) The volcano plots of DEGs between high and low GPER1 expression groups, (D) PPI 
network of DEGs of high and low GPER1 expression in UCEC. 
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Supplementary Figure 20. Functional enrichment analysis for DEGs between High and Low expression of GPER1 expression 
in UCEC. (A) GO/KEGG pathway enrichment joint logFC for DEGs between High and -Low expression of GPER1 expression in UCEC presented 
as string graph. (B) GO/KEGG joint logFC results presented as circle graph. (C) GO/KEGG pathway enrichment presented as bubble chart, (D) 
GSEA of the biological pathways associated with DEGs of GPER1 expression in UCEC, (E) GSEA of the GO associated with DEGs of GPER1 
expression in UCEC. 
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Supplementary Figure 21. The heatmaps of DNA methylation of GPER1 in (A) BLCA. (B) ESCA, (C) HNSC, (D) KIRC, (E) KIRP, (F) LUAD, (G) 
PAAD, (H) SARC, (I) STAD, (J) UCEC. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 3–5. 

 

 

Supplementary Table 1. Details of GPER1 ROC in pan-cancer. 

Tumor type Tumor(n) Normal(n) AUC(CI) 
Cut-

off 
Sensitivity Specificity 

Positive 

predictive value 

Negative 

predictive value 
YI 

ACC 128 77 0.687(0.598-0.776) 2.033 0.532 0.922 0.804 0.766 0.454 

BLCA 407 28 0.896(0.835-0.958) 1.272 0.865 0.786 0.983 0.286 0.651 

BRCA 1099 292 0.849(0.827-0.871) 1.763 0.768 0.832 0.945 0.488 0.6 

CESC 306 13 0.843(0.770-0.917) 1.128 0.596 1.000 1.000 0.095 0.595 

CHOL 36 9 0.951(0.886-1.000) 3.181 0.889 0.917 0.727 0.971 0.806 

COAD 290 349 0.964(0.951-0.977) 1.707 0.900 0.928 0.913 0.918 0.828 

DLBC 47 444 0.492(0.422-0.561) 1.373 0.596 0.523 0.117 0.924 0.118 

ESCA 182 666 0.781(0.745-0.818) 1.578 0.742 0.686 0.392 0.907 0.428 

GBM 689 1157 0.551(0.524-0.577) 2.410 .0.787 0.310 0.404 0.709 0.097 

HNSC 44 502 0.784(0.725-0.843) 1.037 0.745 0.791 0.228 0.968 0.495 

KICH 66 53 0.902(0.835-0.970) 1.491 0.909 0.868 0.896 0.885 0.777 

KIRC 531 100 0.690(0.635-0.745) 3.079 0.678 0.650 0.911 0.275 0.328 

KIRP 289 60 0.568(0.494)0.641 3.299 0.478 0.750 0.902 0.230 0.228 

LAML 173 70 0.959(0.936-0.983) 0.373 0.913 0.914 0.963 0.81 0.828 

LGG 523 1152 0.548(0.519-0.577) 2.058 0.946 0.161 0.339 0.869 0.107 

LIHC 371 160 0.548(0.497-0.598) 2.683 0.447 0.706 0.779 0.355 0.154 

LUAD 535 59 0.925(0.897-0.952) 2.704 0.898 0.865 0.424 0.987 0.764 

LUSC 498 338 0.919(0.899-0.939) 1.590 0.884 0.822 0.880 0.827 0.706 

OSCC 329 32 0.753 (0.678-0.828) 1.627 0.906 0.520 0.155 0.983 0.426 

OV 427 88 0.787(0.741-0.833) 1.046 0.621 0.830 0.946 0.311 0.450 

PAAD 179 171 0.854(0.813-0.895) 1.014 0.777 0.836 0.832 0.781 0.613 

PRAD 496 152 0.787(0.749-0.824) 2.272 0.659 0.822 0.924 0.425 0.482 

READ 93 318 0.965(0.947-0.983) 1.676 0.882 0.947 0.828 0.965 0.828 

SKCM 469 813 0.596(0.561-0.632) 0.884 0.337 0.899 0.658 0.702 0.236 

STAD 414 210 0.940(0.919-0.960) 2.555 0.903 0.848 0.921 0.817 0.751 

TGCT 154 165 0.831(0.779-0.883) 1.094 0.747 0.952 0.935 0.801 0.698 

THCA 512 338 0.723(0.689-0.757) 2.880 0.611 0.766 0.798 0.566 0.378 

THYM 119 446 0.469(0.420-0.517) 2.252 0.824 0.377 0.261 0.889 0.200 

UCEC 181 101 0.911(0.877-0.945) 1.805 0.845 0.901 0.939 0.765 0.746 

UCS 57 78 0.823 (0.742-0.905) 2.051 0.737 0.859 0.792 0.817 0.596 

Abbreviations: ROC, Receiver Operator Characteristic curve; AUC, Area Under Curve; CI, Confidence Interval; YI, Youden’s 
index. 
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Supplementary Table 2. Details of the prognostic  
K-M analysis of GPER1 in pan-cancer. 

Cancer N HR (95% CI) P value 

ACC 79 0.64(0.30-1.36) 0.243 

BLCA 433 1.19(0.89-1.59) 0.243 

BRCA 1090 0.69(0.50-0.97) 0.03 

CESC 309 1.04(0.66-1.65) 0.865 

CHOL 45 0.70(0.27-1.85) 0.473 

COAD 521 1.21(0.82-1.79) 0.33 

DLBC 48 0.09(0.01-0.79) 0.029 

ESCA 173 0.46(0.28-0.77) 0.003 

GBM 174 0.90(0.64-1.27) 0.548 

HNSC 500 0.75(0.57-0.99) 0.042 

KICH 89 1.30(0.35-4.83) 0.698 

KIRC 611 0.59(0.44-0.80) 0.001 

KIRP 288 0.45(0.25-0.81) 0.008 

LAML 151 1.18(0.78-1.80) 0.436 

LGG 529 0.75(0.54-1.05) 0.093 

LIHC 424 1.04(0.74-1.47) 0.825 

LUAD 513 0.71(0.52-0.98) 0.036 

LUSC 551 1.03(0.79-1.35) 0.826 

MESO 86 0.69(0.43-1.11) 0.131 

OS 101 1.26(0.68-2.35) 0.462 

OSCC 361 0.93(0.67-1.29) 0.675 

OV 379 1.16(0.89-1.50) 0.263 

PAAD 177 0.59(0.38-0.93) 0.022 

PCPG 186 0.63(0.15-2.65) 0.531 

PRAD 551 0.78(0.22-2.80) 0.703 

READ 177 2.15(0.93-4.95) 0.073 

SKCM 472 1.04(0.80-1.36) 0.764 

SARC 259 0.38(0.20-0.70) 0.002 

STAD 375 1.50(1.06-2.12) 0.023 

TGCT 156 1.24(0.17-9.35) 0.833 

THCA 568 1.72(0.64-4.65) 0.284 

THYM 121 0.52(0.13-2.09) 0.359 

UCEC 587 0.53(0.34-0.80) 0.003 

UCS 56 1.10(0.54-2.21) 0.798 

UVM 80 1.52(0.67-3.47) 0.321 

 

Supplementary Table 3. Top up and down 30 items of differential expressed genes of GPER1 in different 
cancers. 

 

Supplementary Table 4 The interaction proteins of top 30 DEGs of high- and low-GPER1 expression and their co-
expression scores in different cancers. 

 

Supplementary Table 5. GO and KEGG with logFC enrichment analysis for top 30 DEGs of high- and low-GPER1 
expression. 

 

Supplementary Table 6. GO and KEGG enrichment analysis for top 30 DEGs of high- and low-GPER1 expression. 
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Supplementary File 
 

Please browse Full Text version to see the data of Supplementary File 1. 

 

Supplementary File 1. All differentially expressed genes (DEGs). 


