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INTRODUCTION 
 

CRC is one of the most common malignancies of the 

digestive system, and is the second leading cause of 

cancer-related death worldwide. [1, 2]. The morbidity 

rate of CRC continues to increase, with nearly 1.8 
million individuals diagnosed and over 900,000 deaths 

each year [3]. Recently, the incidence and mortality of 

CRC in some European and Northern American 

countries have decreased. However, CRC incidence and 
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ABSTRACT 
 

Background: Evidence suggests that the tumor microenvironment (TME) affects the tumor active response to 
immunotherapy. Tumor angiogenesis is closely related to the TME. Nonetheless, the effects of angiogenesis on 
the TME of colorectal cancer (CRC) remain unknown. 
Methods: We comprehensively assessed the angiogenesis patterns in CRC based on 36 angiogenesis-related 
genes (ARGs). Subsequently, we evaluated the prognostic values and therapeutic sensitivities of angiogenesis 
patterns using multiple methods. We then performed the machine learning algorithm and functional 
experiments to identify the prognostic key ARGs. Ultimately, the regulation of gut microbiota on the expression 
of ARGs was further investigated by using whole genome sequencing. 
Results: Two angiogenesis clusters were identified and angiogenesis cluster B was characterized by increased 
stromal and immunity activation with unfavorable odds of survival. Further, an ARG_score including 9 ARGs to 
predict recurrence-free survival (RFS) was established and its predominant predictive ability was confirmed. 
The low ARG_score patients were characterized by a high mutation burden, high microsatellite instability, and 
immune activation with better prognosis. Moreover, patients with high KLK10 expression were associated with 
a hot tumor immune microenvironment, poorer immune checkpoint blocking treatment, and shorter survival. 
The in vitro experiments also indicated that Fusobacterium nucleatum (F.n) infection significantly induced 
KLK10 expression in CRC. 
Conclusions: The quantification of angiogenesis patterns could contribute to predict TME characteristics, 
prognosis, and individualized immunotherapy strategies. Furthermore, our findings suggest that F.n may 
influence CRC progression through ARGs, which could serve as a clinical biomarker and therapeutic target for 
F.n-infected CRC patients. 
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mortality continue to increase in China [4]. Chemo-

therapeutic regimens for the treatment of advanced 

CRC (e.g., oxaliplatin and 5-fluorouracil (5-FU)) have 

made substantial progress [5, 6]. However, the overall 

results of various targeted drugs currently used for the 

treatment of advanced CRC (such as the anti-EGFR 

agent cetuximab and the anti-angiogenesis agent 

bevacizumab) remain a challenge [7, 8]. Immuno-

therapy offers additional options and hope for the 

treatment of CRC patients. In fact, not all types of 

patients can benefit from immunotherapy [5]. There is 

therefore an urgent need to construct a novel valuable 

biomarker that can categorize different features of 

patients into distinct groups and predict the efficacy of 

immunotherapy in CRC. 

 

A sufficient supply of oxygen and nutrients from the blood 

facilitates the survival and rapid growth of malignant 

tumors, which need ample vascularization to enter the 

circulatory system [9]. Thus, it is important to note that the 

initiation of tumor angiogenesis is a crucial factor in tumor 

development [10]. Anti-angiogenic therapy (including 

gastric cancer, non-small-cell lung cancer, renal cell 

carcinoma, and colorectal cancer) has been approved for 

the treatment of multiple cancers [11–14]. However, 

studies have revealed that anti-angiogenic therapy provides 

only a short-term remission and tumor growth inhibition 

before drug resistance is developed [9]. Immunotherapy, 

such as immune checkpoint inhibitors (ICIs) for PD-1, PD-

L1, and CTLA-4, is a promising treatment modality for 

diverse tumors, whose safety and effectiveness have been 

proven by a growing body of clinical studies [15, 16]. 

Accumulative evidence shows that the TME is responsible 

for tumor aggressive behaviors and influences immuno-

therapy efficacy [17]. The TME is mainly composed of 

tumor cells, blood vessels, infiltrating immune, and 

stromal cells [18]. The formation of neovascularization 

characterized by continuous and disordered is a 

characteristic of the TME. Interestingly, cross-talk between 

the tumor cells and angiogenesis mediates an immuno-

suppression microenvironment to promote immune 

escape of tumor cells, which seriously interferes with 

anti-tumor immunity and is an important reason for 

promoting tumor progression [19]. Hence, a 

comprehensive analysis of the association between 

angiogenesis and the TME can be used to recognize 

different tumor immunophenotypes and improve the 

predictive power of immunotherapy. 

 

At present, several ARGs have been found to be 

involved in CRC development. The large proteoglycan 

versican (VCAN) is one of the main components of the 

extracellular matrix, which is involved in cell adhesion, 
proliferation, migration, and angiogenesis [20, 21]. 

Recent studies have demonstrated a positive correlation 

between VCAN and VEGF expression and microvessel 

density, with a worsened outcome in CRC patients with 

peritoneal metastasis [22]. Moreover, periosteum 

protein (POSTN), also known as osteoblast-specific 

factor 2, is a secreted extracellular matrix protein 

originally found in mesenchymal lineage cells (e.g., 

osteoblasts), and plays a key role in development and 

tissue regeneration [23]. There is a significant 

association between POSTN and the complete deletion 

of p53 in CRC tissues, and high POSTN expression is 

related to peritoneal and distant organ metastasis [24]. 

SERPINB5 (Serpin family B member 5) is a non-

inhibitory member of the Serpin protease inhibitor 

superfamily with a variety of biological activities, 

including the regulation of cell adhesion, migration, 

apoptosis, oxidative stress response, and angiogenesis 

[25, 26]. SERPINB5 expression is significantly 

upregulated in CRC tissues, and is negatively correlated 

with progression-free survival of CRC patients [27, 28]. 

Dishearteningly, most current studies have focused on 

discovering the role of single ARG in CRC progression 

and prognosis. Moreover, the combination of the effects 

of multiple ARGs on TME infiltration characteristics of 

CRC have yet to be researched. Thus, a global analysis 

of the relationship between ARGs and TME, especially 

the tumor immune microenvironment, may provide  

the possibility of combining targeted therapy and 

immunotherapy to boost the predictive power of 

immunotherapy. On the other hand, reshaping the tumor 

immune microenvironment through a comprehensive 

understanding of the cross-talk between tumor 

angiogenesis and immune cells in the TME will 

contribute to the development of a strategy for a long-

lasting anti-tumor immunity response. 

 

Here, a comprehensive bioinformatic analysis of ARGs 

in CRC was performed by using TCGA and GEO 

databases. First, 1109 CRC patients were stratified into 

two discrete subtypes based on the ARGs expression. 

According to the differentially expressed genes (DEGs) 

identified in the two angiogenesis subtypes, we then 

identified three distinct gene subtypes and evaluated their 

molecular genetic features and prognostic value, as well 

as the abundance of infiltrating immune cells. We further 

established an ARG_score that precisely predicted the 

RFS of CRC patients and immunotherapeutic response. 

Finally, we observed evidence of a potential relationship 

between KLK10, F.n, and CRC based on whole genome 

microarray analysis. To further verify this association, we 

cultured two CRC cell lines in vitro with or without F.n. 

The results confirmed that the mRNA and protein levels 

of KLK10 were significantly upregulated by F.n 

infection at different time intervals. These findings not 

only extend the research community’s current 
understanding of ARGs in the CRC immunotherapy field 

but also provide a promising clinical biomarker and 

potential therapeutic target for F.n-infected CRC patients. 
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We hope that our results will be helpful to the 

development of effective CRC immunotherapies. 

 

MATERIALS AND METHODS 
 

Data sources preparation and preprocessing 

 

The microarray datasets that investigated the gene 

expression of CRC tissues were downloaded from the 

Gene Expression Omnibus (GEO) database, including 

GSE39582, GSE17536, and GSE38832. The mRNA 

expression profiles of 568 CRC tissues and 44 normal 

tissues were obtained from The Cancer Genome Atlas 

(TCGA) database. In addition, the relevant clinical data 

of the CRC patients were acquired using TCGA on 

November 8, 2021. The four datasets were preprocessed 

via the elimination of batch effects using the “ComBat” 

algorithm of the “SVA” package [29]. CRC patients 

with missing survival values were removed from further 

analysis. A total of 36 ARGs were gained from the 

MSigDB Team (Hallmark Gene set) (Supplementary 

Table 1). 

 

Unsupervised clustering analysis 

 

Based on the expression of 36 ARGs, patients were 

identified as different molecular subtypes by k-means 

using the “ConsensusClusterPlus” package in R [30, 

31]. In order to ensure the stability of the classification, 

the experiment was repeated 1000 times. Principal 

component analysis (PCA) was performed for the 

different clustering subtypes. The “GSVA” package in 

R was then used to carry out GSVA enrichment analysis 

[32]. 

 

Association of molecular patterns with clinico-

pathologic factors and prognosis in CRC 

 

To identification the clinical significance of the two 

subgroups produced by cluster analysis, we compared 

the relationships between molecular patterns and 

clinicopathological features. Furthermore, we evaluated 

the significance of RFS in distinct subtypes by using the 

“survival” and “survminer” packages in R [33]. 

 

Evaluation of TME infiltration and immune 

checkpoints between different molecular patterns 

 

The TME scores were assessed using the ESTIMATE 

algorithm, and TME cell infiltration was calculated 

using the CIBERSORT algorithm [34]. We also 

assessed the infiltrating immune cell scores and 

immune-related pathway activity by using the ssGSEA 

algorithm [35]. Furthermore, the association between 

the two subtypes on 47 immune checkpoints expression 

was analyzed [36–39]. 

Identification of DEGs and functional enrichment 

analysis 

 

The differentially expressed genes (DEGs) were 

identified by using the “limma” R package between the 

different angiogenesis subtypes (|log Foldchange (FC)| 

> 1 and false discovery rate (FDR) < 0.05). Further, the 

functions of these DEGs were performed by Gene 

Ontology (GO) analyses with the “clusterProfiler” 

package in R, which included biological process (BP), 

cellular component (CC), and molecular function (MF). 

Similarly, Kyoto Encyclopedia of Genes and Genomes 

(KEGG) analyses were also conducted to identify the 

significant enrichment pathways of these DEGs by the 

“clusterProfiler” package in R [40]. 

 

Construction and validation of the angiogenesis-

associated prognostic ARG_score 

 

The ARG_score was constructed to evaluate the 

angiogenesis patterns of CRC patients. The DEGs 

expression data for different subtype groups (angio-

genesis cluster A and angiogenesis cluster B) were 

standardized in CRC specimens and the intersect genes 

were selected. We first performed univariate Cox 

regression analysis to screen those DEGs associated 

with CRC RFS. Then, a deeper analysis was performed 

using unsupervised clustering method based on the 

expression of prognostic DEGs to classify patients into 

angiogenesis gene subtype A, angiogenesis gene 

subtype B, and angiogenesis gene subtype C. 

Subsequently, the CRC patients were randomly clarified 

into training (n = 555) and testing (n = 554) sets at a 

ratio of 1:1, and the former was selected to construct the 

angiogenesis-related prognostic ARG_score. In short, 

we performed the Lasso Cox regression algorithm to 

minimize the risk of overfitting by using the “glmnet” 

package in R based on prognostic genes associated with 

angiogenesis. We established a predictive model using 

LASSO Cox regression analysis: ARG_score = ∑Expi 

× βi, where Expi and βi represented each genes 

expression level and each genes coefficient index, 

respectively. 

 

RNA extraction, real-time PCR (RT-qPCR), and 

oligonucleotide transfection 

 

The Trizol reagent (Invitrogen, Carlsbad, CA) was used 

to extract the total RNA from CRC cells (HCT116 and 

HT29) and tissues (six pairs CRC and nearby non-tumor 

tissues). Then, the PrimeScript RT reagent Kit (Takara, 

Japan) was performed to generate cDNA from 1 µg of 

total RNA. Finally, mRNA transcripts were quantified 
with a CFX-96 instrument RT-qPCR System (Bio-Rad 

Laboratories) and SYBR Green assays (Takara). SiRNA 

was purchased from GenePharma (Shanghai, China), 
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and Lipofectamine 3000 (Invitrogen, USA) was used to 

perform transfection of siRNA. Moreover, nonspecific 

siRNA was used as negative controls, according to the 

manufacturer’s protocol. The 2−ΔΔCT method was used 

to evaluate the relative target genes expression levels, 

normalizing with β-actin. The sequences of the primers 

used are shown in Supplementary Table 2. 

 

Clinical significance and stratification analysis of the 

prognostic ARG_score 

 

The clinical characteristics of the CRC patients were 

isolated from the GEO and TCGA datasets. Then, a 

stratified analysis was performed to assess the predictive 

ability of the ARG_score in different subgroups. Further, 

univariate and multivariable Cox regression analyses 

were used to confirm the independent prognostic value 

of the ARG_score in training, testing, and entire sets. In 

addition, we examined the correlations between 

ARG_score and the 22 immune cells infiltrating levels, 

47 immune checkpoints, tumor mutation burden (TMB), 

microsatellite instability (MSI), and cancer stem cells 

(CSC) index. 

 

Development of a nomogram for prediction 

 

To explore independent prognostic value of the 

ARG_score, we established a nomogram prediction 

model for predicting the 1-year, 5-year, and 10-year 

RFS [41]. Moreover, the calibration maps described the 

precision of the nomogram in prognosis prediction 

(There are 1000 duplicate bootstrap methods). 

 

Mutation and drug sensitivity analysis 

 

The TCGA-COAD/READ database was used to draw 

the 36 ARGs mutation frequency and oncoplot waterfall 

plot by using the “maftools” package in R [42]. Further, 

the location of CNV alteration of 36 ARGs on 23 

chromosomes was produced by using the “Rcircos” 

package in R [43]. The semi-inhibitory concentration 

(IC50) values of chemotherapeutic drugs, which 

commonly used for CRC treatment were estimated by 

using the “pRRophetic” package in R [44]. Moreover, 

we used anti-angiogenic therapy and immunotherapy 

clinical trials (the gene expression profile and clinical 

manifestations of publicly available datasets) to explore 

the prediction ability of ARG_score for the therapeutic 

responses of tumor patients (GSE53127: a phase III 

study of metastatic CRC patients treated with 

bevacizumab [45], GSE103668: a phase II study of 

bevacizumab vs. platinum in patients with triple 

negative breast cancer [46], GSE78220: a phase III 
study of nivolumab vs. pembrolizumab in patients with 

previously treated metastatic melanoma [47], 

GSE126044: a phase II study of nivolumab vs. 

pembrolizumab in patients with non-small cell lung 

cancer [48], E-MTAB-3218 (ArrayExpress database, 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E

-MTAB-3218?accession=E-MTAB-3218#): a phase III 

study of nivolumab in patients with previously treated 

metastatic renal cell carcinoma [49]). The 

transcriptional information was adjusted and normalized 

by using the “edgeR” package in R [50], and the data 

were converted by using “voom” in the “limma” 

package in R [51]. Meanwhile, we also collated the 

prognostic and immunotherapy information of patients. 

 

Bacteria strains and cell lines 

 

The Fusobacterium nucleatum strain ATCC 25586, 

purchased from American Type Culture Collection 

(ATCC, Manassas, VA, USA), was cultured overnight in 

brain heart infusion (BHI) broth under anaerobic 

conditions at 37°C. Human colorectal cancer cell lines 

HCT116 and HT29 were purchased from ATCC and 

cultured in McCoy’s 5A (Gibco, USA) supplemented 

with 10% fetal bovine serum (FBS) at 37°C in a 

humidified 5% CO2 atmosphere. Cells were seeded in 

6-well plates and then incubated with or without bacteria 

at a multiplicity of infection (MOI) 100:1 [52, 53]. 

 

Western blot analysis 

 

Firstly, the cells were washed twice with ice-cold PBS 

and collected cell extracts with RIPA lysis buffer 

supplemented with Halt™ Protease Inhibitor Single-Use 

Cocktail (Thermo Fisher Scientific). Then, protein 

concentrations were quantified using BCA Protein 

Assay Kit (Thermo Fisher Scientific). Further, an equal 

amount of protein (10 µg) was separated by 10% SDS-

PAGE and transferred to PVDF membranes 

(Invitrogen). The membranes were blocked in 1× TBS, 

0.1% Tween-20 detergent (TBST) (Thermo Fisher 

Scientific) with 5% non-fat dry milk at room 

temperature for 2 h and then incubated with primary 

antibodies (E-cadherin (3195; Cell Signaling 

Technology), N-cadherin (13116; Cell Signaling 

Technology), Vimentin (5741; Cell Signaling 

Technology), β-actin (8457; Cell Signaling 

Technology)) overnight at 4°C. Next, after washing with 

TBST, the membranes were incubated with secondary 

antibodies for another 1 h at room temperature. Finally, 

the enhanced chemiluminescent (ECL) assay kit 

(Thermo Scientific, PA, USA) was applied for film 

visualization. 

 

Cell proliferation assay and wound healing assay 

 
Firstly, approximately 1 × 104 cells in 100 µl of medium 

were seeded in 96-well plates. Then, 10 µl of Cell 

Counting Kit-8 (CCK8, Yeasen, China) solution was 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-3218?accession=E-MTAB-3218
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-3218?accession=E-MTAB-3218
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added to each well at 24, 48, and 72 h. After an additional 

incubation period at 37°C for 3 h, the OD value was 

measured at 450 nm using a microplate reader. The 

wound healing assay was performed as previously 

described [54]. Briefly, the two cell lines (1 × 105) were 

cultured in 6-well plates. The complete medium was 

replaced with a low concentration of serum fresh medium 

(2%) after 16 h. A 200-µl pipette tip was used to scratch 

across each well and wash gently with PBS two times. 

Meanwhile, multiple location markers were performed at 

the inoculated cells surface to compare the same wound 

area in future. The scratch area was photographed with an 

inverted microscope at 0, 24 and 48 h, respectively. The 

experiment was conducted in triplicate. 

 

Statistical analysis 

 

R (v4.3.1), GraphPad Prism (version 10.0), and SPSS 

(27.0) were used to perform all statistical analyses. A 

p-value less than 0.05 was considered statistically 

significant. 

 

Availability of data and materials 

 

In this study, publicly available datasets were used to 

perform analyses, as described in the materials and 

methods. The datasets are available from TCGA 

(https://portal.gdc.cancer.gov/) and Gene Expression 

Omnibus (https://www.ncbi.nlm.nih.gov/geo/), includ-

ing GSE39582, GSE17536, and GSE38832. 

 

RESULTS 
 

Overview of the genetic and transcriptional 

alterations of ARGs in CRC 

 

Firstly, the somatic mutations pattern of 36 ARGs in 

CRC cohort (COAD and READ samples) was 

investigated. The Figure 1A demonstrated that 157 

(39.35%) had mutations of these ARGs in 399 COAD 

cohort. Notably, VCAN was the gene with the highest 

mutation frequency (10%), however, there were no 

mutations in two ARGs (CCND2 and TIMP1). In 

addition, the Figure 1B showed that 34 (24.82%) had 

mutations of these ARGs in 137 READ cohort, and 

VCAN was also the gene with the highest mutation rate 

(9%). Further, the protein–protein interaction (PPI) 

analysis was performed to construct, and indicated that 

VEGFA, SPP1, POSTN, VTN, COL3A1, ITGAV, and 

TIMP1 were the hub genes (Figure 1C). We then 

performed to compare the mRNA expression levels 

between normal and tumor tissues. A total of 26 DEGs 

were determined, most of which were rich in the tumor 

tissues (Figure 1D). Moreover, the somatic copy 

number alterations of ARGs were investigated, and the 

copy number variation (CNV) alterations on their 

respective chromosomes were demonstrated in Figure 

1E. As shown in Figure 1F, 36 ARGs demonstrated 

evident CNV alterations. Notably, there was a positive 

association between the levels of ARGs and CNV 

alteration; for example, the expression levels of PRG2, 

SERPINA5, and THBD were low in tumor tissues, 

while VEGFA, PF4, and PTK2 were expressed at high 

levels. These results indicate that CNV may modulate 

the expression of ARGs in CRC. According to clinical 

characteristics, the CRC patients were divided into 

early-stage groups (I + II) and advanced-stage groups 

(III + IV). As shown in Figure 1G, there were 

significant differences between the two groups in 36 

ARGs. The expression levels of 12 ARGs (VEGFA, 

VCAN, POSTN, STC1, COL5A2, ITGAV, COL3A1, 

SPP1, OLR1, PTK2, TIMP1, and JAG2) were higher in 

both CRC tissues and the advanced-stage groups, which 

indicated that their potential function as carcinogenic 

genes in CRC. 

 

Identification of angiogenesis patterns in CRC 

 

Supplementary Figure 1 displays the article framework 

and workflow. Our study integrated 1109 patients from 

four eligible CRC datasets to identify potential 

angiogenesis patterns of CRC. Detailed clinical 

information of 1109 patients are presented in 

Supplementary Table 3. We extracted the expression 

levels of 36 ARGs and then revealed their prognostic 

value using uniCox and Kaplan–Meier analysis [55] 

(Supplementary Table 4). Next, we established the 

angiogenesis network to visualize the landscape of 36 

ARGs, including their interactions, connections, and 

prognostic values (Figure 2A, Supplementary Table 5). 

Based on these ARGs, we identified two different 

angiogenesis-related patterns by consensus clustering, 

including 612 cases in Cluster A and 497 cases in 

Cluster B (Figure 2B). Further, PCA analysis confirmed 

that the CRC patients were well-differentiated when k = 

2, indicating the robust and reliable clustering of the 

samples (Figure 2C). The Kaplan–Meier curves 

demonstrated that the survival outcome of Cluster A 

was better than that of Cluster B (P < 0.001, Figure 2D). 

Furthermore, the heatmap was used to visualize the 

relationship between 36 ARGs expression and clinical 

features. Compared to Cluster B, we found that Cluster 

A was markedly associated with early pathological 

stage (P < 0.001), left-sided CRC (P < 0.01), without 

BRAF mutations (P < 0.001), and low risk of 

recurrence (P < 0.001, Figure 2E). 

 

Variation in characteristics of TME infiltration 

between two angiogenesis subtypes 

 

GSVA enrichment analysis showed that cluster B was 

significantly enriched in cancer-associated pathways 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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(e.g., renal cell carcinoma, glioma, and small cell lung 

cancer), metastasis-associated pathways (e.g., cell 

adhesion molecules cams, ECM receptor interaction, 

and focal adhesion), and immune fully-activated 

pathways (e.g., B cell receptor signaling pathway, 

cytokine receptor interaction, chemokine signaling 

 

 
 

Figure 1. Landscape of the ARG genetic alterations in CRC. (A, B) Mutation frequencies of 36 ARGs in 399 and 137 patients with 

COAD and READ based on the TCGA cohort, respectively. (C) PPI network showing the interactions of ARGs (the minimum required 
interaction score was 0.4). (D) Expression distributions of DEGs between tumor and normal tissues. (E, F) Locations of CNV alterations in 
ARGs on 23 chromosomes and the frequencies of CNV gain, loss, and non-CNV among ARGs, respectively. (G) Expression distributions of 
DEGs between the high- and low-stage groups. *P < 0.05; **P < 0.01; ***P < 0.001. 



www.aging-us.com 12419 AGING 

pathway activation, and the NOD-like and Toll-like 

receptor signaling pathways) (Figure 3A). To further 

investigate the correlation between ARGs and the TME 

of CRC, we analyzed the infiltrating levels of 23 human 

immune cell subsets in distinct subtypes with the 

CIBERSORT algorithm. We observed that, except for 

 

 
 

Figure 2. ARG-related subtypes and clinicopathological and biological characteristics of two distinct subgroups of samples 
divided by consistent clustering. (A) The correlation network of ARGs in CRC (red line: positive correlation; blue line: negative 

correlation). (B) Consensus matrix heatmap defining two clusters (k = 2) and their correlation area. (C) PCA showing a remarkable 
difference in transcriptomes between the two subtypes. (D) Univariate analysis showing 36 ARGs related to the RFS time. (E) Differences in 
clinicopathological and biological characteristics of the two distinct subtypes. *P < 0.05; **P < 0.01; ***P < 0.001. 
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the monocyte cells, the other 22 types of immune cells 

were all poorly activated in Cluster A (Figure 3B). 

Further, we analyzed the differences in terms of the 

immune score, stromal score, and estimate score 

between Cluster A and Cluster B using the ESTIMATE 

algorithm. Our results revealed that Cluster B had 

higher TME scores than Cluster A, which indicates that 

Cluster B had a higher levels of angiogenesis-dependent 

extracellular matrix components (P < 0.001, Figure 3C). 

Moreover, we analyzed the expression of 47 important 

immune-oncology targets between Cluster A and 

Cluster B. As shown in Figure 3D, significant 

differences were observed in 36 immune checkpoints 

between the two subtypes, including PD-L1, CTLA-4, 

and LAG3 (P < 0.001). Altogether, our findings suggest 

that ARGs were involved in the formation of TME 

infiltration and represent different prognostic features in 

patients of CRC. 

Generation of gene subtypes based on two 

angiogenesis clusters 

 

To confirm the biological behavioral differences 

between these two angiogenesis subtypes, 927 

angiogenesis clusters related DEGs were obtained using 

the “limma” package in R to obtain insights into their 

biological function. These angiogenesis subtypes related 

DEGs were mainly enriched in biological metastasis 

processes (Figure 4A). KEGG analysis showed 

enrichment of immune-, cancer- and metastasis-related 

pathways (Figure 4B), indicating that angiogenesis 

plays a vital role in the immune regulation of the TME 

and the modulation of tumor metastasis. Next, uniCox 

analysis was performed to explore the prognostic value 

of these DEGs and 620 genes related to RFS time were 

extracted (P < 0.05, Supplementary Table 6). To further 

understand specific regulation mechanism, a consensus 

 

 
 

Figure 3. Two ARG subtypes showed diverse tumor immune cell microenvironments. (A) Biological processes analyzed by GSVA 

showing the active biological pathways in distinct subtypes. (B) The abundance of 23 TME infiltrating cells between the two subtypes of 
ARGs. (C) Correlations between the two ARG subgroups and the TME score. (D) Expression levels of 47 immune checkpoints in the two 
subtypes. *P < 0.05; **P < 0.01; ***P < 0.001. 
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clustering method was performed to divide patients into 

different gene clusters (named gene_Cluster A, B, and 

C, respectively) based on prognostic genes (Sup-

plementary Figure 2). Kaplan-Meier curves indicated 

that patients in gene_Cluster C showed the worst RFS, 

whereas patients in gene_Cluster A had a favorable RFS 

(P < 0.001, Figure 4C). Furthermore, angiogenesis 

related gene_Cluster C was related to the advanced 

TNM stage, KRAS and BRAF mutations, and a higher 

recurrence risk (Figure 4D). Furthermore, the 

 

 
 

Figure 4. Identification of gene subgroups based on DEGs. (A, B) The bubble graph for Gene Ontology (GO) analysis and the barplot 

graph for Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in the two ARG subtypes. (C) Kaplan–Meier curves for the RFS of the 
three gene subtypes. (D) Relationships between clinicopathologic characteristics and the three gene subtypes. (E) Differences in the 
expression of 36 ARGs among the three gene subtypes. *P < 0.05; **P < 0.01; ***P < 0.001. 
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angiogenesis-related gene clusters demonstrated 

significant differences in ARG expression, which were 

consistent with the expected results of the angiogenesis 

clusters (Figure 4E). 

 

Construction and validation of the prognostic 

ARG_score in CRC 

 

The ARG_score was constructed based on the DEGs 

associated with angiogenesis clusters. First, we 

randomly assigned the patients into training (n = 555) 

and testing (n = 554) groups at a ratio of 1:1. LASSO 

and multivariate Cox analyses for 620 angiogenesis 

cluster-related prognostic DEGs were then used to 

identify an optimal prognostic signature (Supplemen-

tary Figure 3). A total of 9 RFS-associated genes were 

identified based on the minimum partial likelihood 

deviance, and the ARG_score for each patient in the 

training, testing, and entire datasets were calculated 

based on the risk formula, as follows: risk score = 

(expression of SLC2A3 × 0.2758) + (expression of 

SCG2 × 0.1617) + (expression of KDR × 0.3094) + 

(expression of MMP11 × 0.1725) + (expression of 

CXCL10 × −0.2112) + (expression of CXCL13 × 

−0.0965) + (expression of SPINK1 × −0.1023) + 

(expression of KLK10 × 0.0877) + (expression of 

MMP3 × −0.1427). A Sankey diagram was constructed 

to visualize the patients’ distribution in the two 

angiogenesis clusters, three gene clusters, and two 

ARG_score groups (Figure 5A). In addition, significant 

 

 
 

Figure 5. Construction of the ARG_score in the training set. (A) Alluvial diagram of subtype distributions in groups with a different 

ARG_score and prognosis. (B) Differences in ARG_score between the two ARGs clusters. (C) Differences in ARG_score among the three 
gene subtypes. (D) Kaplan–Meier analysis of the RFS between the low- and high-ARG_score groups. (E) ROC curves to predict the sensitivity 
and specificity of 1-, 5-, and 10-year survival according to the ARG_score. (F) PCA analysis based on the prognostic model. (G–I) The 
distribution of the risk score, survival time, and survival status, and the heatmap of the 9 selected prognostic genes between the high- and 
low-ARG_score groups, respectively. 
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differences were observed in the ARG_score of the 

angiogenesis clusters and gene clusters (Figure 5B, 5C). 

The highest and lowest ARG_score was observed in 

gene_Cluster C and gene_Cluster A, respectively, 

suggesting a low ARG_score may be closely associated 

with immune activation-associated features. According 

to the results of survival analysis, we found that the 

higher ARG_score of both classifications were 

associated with a worse RFS. Moreover, Kaplan-Meier 

analysis implied that low ARG_score patients had a 

better RFS over patients with a high ARG_score in the 

training cohort (P < 0.001, Figure 5D), and the AUCs of 

the 1-, 5-, and 10-year RFS were 0.702, 0.755, and 

0.753 in the training cohort, respectively (Figure 5E). 

PCA analysis demonstrated a clear distribution between 

the low- and high-ARG_score groups (Figure 5F).  

The relationships between the 9 selected prognostic 

signatures and the ARG_score can be witnessed in the 

heatmap (Figure 5G). Meanwhile, the distribution of the 

ARG_score and RFS time of patients is shown in Figure 

5H, 5I. To assess the predictive robustness of the risk 

model, the ARG_score of the testing cohort and the 

entire cohort were obtained (Supplementary Figures 4, 

5). Based on the median score of the training cohort, we 

also separated patients into different risk subgroups. 

Also, survival analysis revealed a superior RFS of low 

score patients compared to high score patients (P < 

0.001). Further, the classification efficiency analysis of 

1-, 5- and 10-years survival prediction showed that 

ARG_score had a high AUC values, suggesting that the 

model had the ability to evaluate the survival of CRC 

patients. 

 

Validation of the 9 prognostic ARGs in CRC tissues 

 

To more effectively verify our findings, the expression 

levels of 9 prognostic signatures were measured in 6 

pairs of tumor tissues and normal adjacent tissue 

samples by RT-qPCR. As shown in Supplementary 

Figure 6I–6O, the expression levels of SLC2A3, 

MMP11, CXCL10, KLK10, and MMP3 were 

upregulated, while those of SCG2 and CXCL13 were 

downregulated in CRC tissues compared to normal 

tissues. No statistically significant difference was 

observed in the mRNA levels of KDR and SPINK1 

between the normal and tumor tissues (data not shown). 

These experimental results were consistent with those 

predicted by the bioinformatics methods (Sup-

plementary Figure 6A) and the GEPIA database 

(Supplementary Figure 6B–6H). 

 

Stratified analysis and independent prognostic value 

of ARG_score 

 

To determine the influence of the ARG_score on 

clinical features, the association between ARG_score 

and clinical factors was investigated in CRC patients, 

including age, gender, TNM stage, tumor location, 

KRAS, and BRAF mutation status. We found a higher 

ARG_score in patients in the stage III–IV subgroup 

than those in the stage I–II subgroup (P < 0.001, 

Supplementary Figure 7A). To determine whether the 

ARG_score could be used as an independent prognostic 

factor, we carried out univariate and multivariate Cox 

regression analyses by using ARG_score and multiple 

clinical characteristics. As shown in Supplementary 

Figure 7B–7D, ARG_score was an independent 

predictor of CRC outcome in the training cohort, with 

consistent results observed across the testing cohort and 

the entire cohort (P < 0.001). To further investigate the 

prognostic significance of the ARG_score in CRC, we 

performed a stratified analysis in different clinical 

parameter subgroups. As shown in Supplementary 

Figure 8, CRC patients in the high ARG_score group 

tended to have a shorter RFS than that in the low 

ARG_score group (P < 0.001), as demonstrated by the 

results for age, sex, tumor location, TNM stage, and 

KRAS and BRAF mutations. 

 

Establishment of a clinical nomogram for the 

prediction model in CRC 

 

Given the high correlation between the ARG_score and 

patients’ prognosis in CRC, we further performed to 

establish a nomogram by using multivariate Cox 

regression to predict the 1-, 5-, and 10-year RFS (Figure 

6A). Calibration plots showed that 1 -, 5 -, and 10-year 

RFS could be predicted relatively well (Figure 6B). 

Further, the AUC values of the nomogram with that of 

the TNM stage were estimated for predicting the 1-, 5-, 

and 10-year RFS, respectively. Compared with TMN 

staging features, the prediction ability of ARG_score in 

the nomogram was superior (Figure 6C–6E). 

 

Relationship between ARG_score and TME 

infiltration in CRC 

 

There is increasing evidence that TME cell infiltration 

is critical to tumor development and therapeutic 

response. Thus, we used the CIBERSORT algorithm to 

investigate the abundance of different immune cell 

types between the low- and high-ARG_score groups. As 

shown in Figure 7A, the ARG_score was positively 

correlated with the infiltration of M0 and M2 

macrophages, neutrophils, regulatory T cells (Tregs), 

and activated mast cells, while being negatively 

correlated with the infiltration of M1 macrophages, 

naïve B cells, follicular helper T cells, CD8 + T cells, 

CD4 + memory-activated T cells, plasma cells, 
activated NK cells, and resting NK cells. In addition, a 

low ARG_score was also closely related to a high 

immune score, whereas a high ARG_score was linked 
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to a high stromal score (Figure 7B). We then evaluated 

the potential relationship between the 9 selected genes 

in the prognostic signature and the abundance of 

immune cells, and found that most immune cells were 

significantly associated with these 9 genes (Figure 7C). 

Furthermore, we evaluated the correlations between 47 

immune checkpoints and this prognostic signature. As 

shown in Figure 7D, 30 immune checkpoints were 

discrepantly represented in the two groups, including 

PD-L1, CTLA-4, and LAG3. 

 

The ARG_score had observable correlations with 

the TMB, MSI, and CSC indices 

 

Several studies have reported that patients with high 

TMB or MSI-H status may be more sensitive to 

immunotherapy [5, 56, 57]. As shown in Figure 8A, a 

higher TMB was observed in the low ARG_score 

groups compared to the high ARG_score groups (P < 

0.05), indicating that low ARG_score patients may 

benefit more from immunotherapy drugs. In addition, 

our findings indicate that the ARG_score was 

negatively correlated with TMB based on Spearman 

correlation analysis (R = −0.14, P < 0.05, Figure 8B). 

We further evaluated the potential relationship between 

TMB status and RFS, and found significant differences 

in clinical outcome between patients with high and low 

TMB groups (P < 0.05, Figure 8C). Meanwhile, this 

prognostic benefit in the high TMB groups was more 

affected by the ARG_score than that of the low TMB 

groups (P < 0.01, Figure 8D). Furthermore, correlation 

analysis showed that the high ARG_score group was 

associated with a microsatellite stable (MSS) state, 

while the low ARG_score group was associated with a 

high microsatellite unstable (MSI-H) state (Figure 8E, 

8F). This result also implies that the low ARG_score 

groups benefitted from immunotherapy, with consistent 

results observed in the TMB analyses. Furthermore, the 

relationships between ARG_score and cancer stem cell 

(CSC) index was analyzed. As shown in Figure 8G,  

the results showed that ARG_score was negatively 

correlated with CSC index values (R = −0.48, P < 

0.001), meaning that a lower ARG_score was 

associated with more pronounced stem cell 

characteristics and lower degree of cell differentiations. 

Additionally, the distribution differences of the top 20 

somatic mutations genes among distinct ARG_score 

groups were analyzed based on TCGA-COAD cohort.

 

 
 

Figure 6. Construction and evaluation of a predictive nomogram. (A) The nomogram predicts the probability of the 1-, 5-, and 10-

year RFS. (B) The calibration plot of the nomogram predicts the probability of the 1-, 3-, and 5-year RFS. (C–E) The time-dependent ROC 
curves of the nomograms compared for the 1-, 5-, and 10-year RFS in CRC, respectively. ***P < 0.001. 
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As shown in Figure 8H, the mutation incidences of 

APC, TP53, TTN, KRAS, MUC16, SYNE1, PIK3CA, 

and FAT4 were higher than or equal to 20% in the high 

ARG_score groups. Surprisingly, except for the USH2A, 

all other mutated genes were higher than or equal to 

20% in the low ARG_score groups (Figure 8I). Taken 

together, our results indicate that these genes were more 

likely to be mutated in the low ARG_score groups 

compared to the high ARG_score groups. 

Screening of the sensitive molecular drugs and 

prediction of the immunotherapy efficacy 

 

Currently, CRC patients usually receive chemotherapy, 

targeted therapy, and immunotherapy after radical 

surgery, which has been shown to significantly improve 

clinical outcomes [58]. To explore the potential 

therapeutic drugs of patients in the low- and high-

ARG_score groups, we analyzed the IC50 values of 

 

 
 

Figure 7. Evaluation of the TME and immune checkpoints between the distinct ARG_score groups. (A) Correlations between 
ARG_score and immune cell types. (B) Correlations between ARG_score and both immune and stromal scores. (C) Correlations between the 
abundance of immune cells and 9 selected genes in the proposed model. (D) Expression of 47 immune checkpoints in the low- and high-
ARG_score groups. *P < 0.05; **P < 0.01; ***P < 0.001. 
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common therapeutic drugs in CRC patients. Our data 

showed that the low ARG_score groups may positively 

react to cisplatin, ATRA, gefitinib, sunitinib, 

gemcitabine, obatoclax, mesylate, paclitaxel, campto-

thecin, and bosutinib, while the high ARG_score groups 

may respond better to shikonin, 11asatinib, erlotinib, 

imatinib, lapatinib, and nilotinib (Figure 9A). The 15 

associated candidate drugs were ranked by the p-value 

of differences, and top 6 most associated molecule 

drugs were screened for CRC patients. The 3D 

structures of ATRA, gemcitabine, camptothecin, 

shikonin, imatinib, and 11asatinib were displayed 

through the PubChem database (Figure 9B). The 

vascular endothelial growth factor (VEGF) pathway has 

been shown to play a critical role in the control of CRC 

angiogenesis [59]. Anti-angiogenic drugs targeting the 

VEGF signaling pathways, including bevacizumab, has 

been shown to be an effective and tolerable therapy that 

improves survival in advanced CRC patients [60]. We 

further investigated the ability of the ARG_score to 

predict response to bevacizumab therapy in the 

GSE53127 cohort. As shown in Figure 9D, the high 

ARG_score groups had a higher objective response rate 

compared to the low ARG_score groups (P < 0.001). 

Also, in the GSE103668 cohort, the proportion of 

response patients in the high ARG_score groups were 

significantly higher than that in the low ARG_score 

groups (P < 0.001, Figure 9E). Furthermore, 

 

 
 

Figure 8. Comprehensive analysis of the ARG_score in CRC. (A, B) Relationships between the ARG_score and TMB. (C) Kaplan–Meier 

analysis of the RFS between the low- and high-TMB groups. (D) Survival analysis among four groups stratified by both TMB and ARG_score 
in CRC. (E, F) Relationships between ARG_score and MSI. (G) The correlation of the ARG_score with CSC index. (H, I) The waterfall plot of 
somatic mutation features established with the high- and low-ARG_score groups. 
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we observed significant negative associations between 

immune checkpoint levels (e.g., PD-1/L1, CTLA-4, and 

LAG3) and the ARG_score during the evaluation of 

ARG-related TME characteristics. Thus, we used two 

methods to assess the predictive ability of the 

ARG_score in the immunotherapy response. The 

 

 
 

Figure 9. Relationships between the ARG_score and therapeutic sensitivity. (A) Relationships between the ARG_score and 
chemotherapy and sensitivity to targeted inhibitor therapy. (B) The 3D structure of 6 potential target drugs screened out from the cMap 
database. (C) The IPS in the different ARG_score groups. (D, E) Proportion of patients with different treatment outcomes (bevacizumab 
therapy) in the low- and high-ARG_score groups. The proportion of response patients in the low ARG_score groups were significantly higher 
than that in the high-ARG_score groups in both the GSE53127 and GSE103668 cohorts. (F–H) Patients with a high ARG_score exhibited 
poorer response outcomes after immunotherapy (anti-PD-1 therapy) using the GSE78220, GSE126044, and E-MTAB-3218 cohorts. 



www.aging-us.com 12428 AGING 

immunophenoscore (IPS) has been applied to predict 

the immunotherapeutic benefits to CTLA-4 and PD-1. 

Our results indicated that the low ARG_score group had 

a good response to PD-1 and CTLA-4 single positive, 

double positive, and double negative (Figure 9C). 

Further, three datasets (GSE78220, GSE126044, and E-

MTAB-3218 cohorts) containing patient pretreatment 

and immunotherapeutic (anti-PD-1 therapy) data were 

collected, which had various clinical (PR/CR: responses 

or PD/CD: no-responses) and transcriptional (RNA-seq) 

information. As shown in Figure 9F–9H, the proportion 

of response patients in the low ARG_score groups were 

significantly higher than that in the high ARG_score 

groups (P < 0.05), which is consistent with the 

characteristics of significant vascular infiltration and 

immunosuppression in the high ARG_score groups. 

Together, our findings suggest that the ARG_score 

model had greater potential for predicting immuno-

therapy efficacy. 

 

KLK10 was identified as a prognostic key ARG and 

immunotherapy target 

 

According to the expression of 9 prognostic ARGs, a 

machine learning algorithm was used to predict 

candidate ARGs based on survival and death as binary 

dependent variables. As shown in Figure 10A, the three 

most important ARGs were CXCL10, SPINK1, and 

KLK10 in the RF model. Further, we analyzed the 

expression levels of these ARGs by combining the 

GTEx and TCGA databases. Our results showed that 

KLK10 was the most significantly different gene 

between normal and tumor tissues (Figure 10B, FDR < 

0.001 and log2 FC > 5), which showed a high degree of 

consistency with the results of qRT-PCR analysis 

(Supplementary Figure 6N). To investigate the 

relationship between KLK10 expression and TME 

infiltration, we assessed the stromal score and immune 

score based on ESTIMATE analysis. As shown in 

Figure 10C, the stromal and immune score of high 

KLK10 expression groups were higher than those of 

low KLK10 expression groups, indicating that KLK10 

expression was related to a hot TME. Additionally, we 

performed different algorithms to determine the 

relationship between KLK10 expression and infiltration 

levels of different immune cell types. The lollipop 

shape demonstrated that most immune cells had a 

positive correlation with KLK10 expression (Figure 

10D). Furthermore, we used the TIDE algorithm to 

dissect the relationship between KLK10 expression and 

immunotherapy response. The results indicated that 

high KLK10 expression was positively correlated with 

the tumor immune escape (T cell dysfunction and T cell 
exclusion), which provides novel insights into precision 

immunotherapy in CRC (Figure 10E). Further, we 

explored the relationship between clinical and 

prognostic value and KLK10 expression, and found that 

the expression of KLK10 was significantly related to 

the pathologic stage (Figure 10F). Moreover, high 

KLK10 expression was markedly related to poor RFS 

based on the median of the KLK10 expression levels 

(Figure 10G), highlighting its potential function as the 

tumor promotor in the occurrence and development of 

CRC. 

 

Exploration and validation of the biological 

functions of KLK10 in CRC 

 

To determine the biological characteristics of KLK10, 

we performed GSVA enrichment analysis between the 

low- and high-expression groups. The results 

demonstrated that KLK10 was involved in cancer 

development and progression mechanisms, including 

the TP53, MAPK, and VEGF pathways, apoptosis 

pathway, chemokine pathway, and tumor metastasis 

pathway (Figure 10H), indicating that KLK10 may play 

an essential role in tumor growth and invasion. To 

validate our results further, specific siRNAs were 

transfected into HT29 and HCT116 cells, and the 

transfection efficiency of KLK10 siRNA was verified 

by qRT-PCR (Figure 11A). In terms of cell 

proliferation, the results of the CCK8 assay indicated 

that a reduction in KLK10 significantly suppressed the 

proliferation ability of HT29 and HCT116 cells (Figure 

11B). Further, the results of wound-healing assays 

showed that the knockdown of KLK10 markedly 

restrained the healing of scratched wounds (Figure 

11C). As we know, the epithelial-mesenchymal 

transition (EMT) is one of the key mechanisms of tumor 

metastasis and one of the main factors leading to the 

poor prognosis in patients. We conducted a correlation 

analysis and presented our findings in a heatmap 

(Figure 11D). The results indicated that the KLK10 

expression was positively associated with the 

mesenchymal markers (e.g., N-cadherin and vimentin), 

while being negatively related to the epithelial markers 

(E-cadherin). In line with these outcomes, western blot 

analysis confirmed that the knockdown of KLK10 

downregulated the protein level of N-cadherin and 

vimentin in two cell lines. On the contrary, reduced 

KLK10 expression markedly upregulated the protein 

level of E-cadherin (Figure 11E, 11F). Collectively, 

these results highlight the pro-tumor effects of KLK10 

in CRC, in accordance with the results of bioinformatics 

analysis. 

 

KLK10 was significantly associated with 

Fusobacterium nucleatum (F.n) infection in CRC 

 
The gut microbiota plays an important role in human 

health and disease. Recent studies have demonstrated 

that the presence of microbiota in various tumor tissues 
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is not accidental, but a common phenomenon [61]. 

Therefore, the intratumoral microbiota is also consi-

dered to be part of the TME. F.n is a gram-negative 

anaerobe parasitic in the oral cavity, which has been 

found to promote CRC development through inhibits 

host anti-tumor immunity [62, 63]. Given the essential 

 

 
 

Figure 10. Identification of the key biomarkers in ARGs based on multi-methods. (A) The variable importance of 9 prognostic 

ARGs in RF models. (B) Volcano plot of significant DEGs between the normal and tumor tissues in four CRC cohorts (red represents 
upregulated genes, blue indicates downregulated genes, and gray represents no change). (C) Correlations between KLK10 expression and 
both the immune and stromal scores. (D) Spearman correlation analysis performed using different algorithms between KLK10 expression 
and immune cell infiltration. (E) The relationship between KLK10 expression and the TIDE score. (F) The correlation of KLK10 expression 
with clinicopathological staging characteristics. (G) Survival analysis for CRC patients with distinct KLK10 expression. (H) The GSVA pathway 
enrichment analysis between distinct KLK10 expression groups. *P < 0.05; **P < 0.01; ***P < 0.001. 
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roles played by ARGs in the tumor immune 

microenvironment, we speculated that F.n dysregulation 

might affect the expression of ARGs and hence 

modulate local immune responses, in turn affecting 

immunotherapy. To determine the key ARGs associated 

with F.n, we performed whole genome microarray 

 

 
 

Figure 11. Influences of KLK10 expression on CRC cell proliferation, migration, and invasion. (A) The efficacy of the KLK10 

transcript was detected after KLK10 knockdown in two CRC cell lines. (B) Cell viability was assessed by CCK8 array when KLK10 expression 
was reduced in cells. (C) Wound-healing assay of CRC cells with KLK10 knockdown monitored for 48-h with 24-h intervals. (D) Correlations 
between KLK10 expression and EMT markers (E-cadherin, N-cadherin, and Vimentin) using Spearman analysis. (E, F) The protein levels of E-
cadherin, N-cadherin, and Vimentin were measured by western blotting after KLK10 knockdown in two CRC cell lines. Data are presented as 
mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001. 
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analysis of HCT116 cell lines infected with F.n for 

48 h. In addition, the gene expression profile of the 

RNA-seq dataset (GSE90944) from HT29 cell lines 

infected with F.n was also obtained and further 

analyzed. Surprisingly, KLK10 was identified as the 

key downstream ARG of F.n (DEGs was set as an FDR 

< 0.05 and |log2 FC| ≥ 1) (Figure 12A). Moreover, the 

results showed that the expression of KLK10 was 

significantly upregulated by F.n in two cell lines 

(Figure 12B). Further, qPCR was performed to validate 

the expression of KLK10 in CRC cell lines infected 

with F.n. As shown in Figure 12C, 12D, the mRNA 

expression of KLK10 was significantly upregulated in 

CRC cells by F.n infection for 24 h and 48 h, 

respectively. These findings were consistent with the 

results of western blot analysis (Figure 12E). Overall, 

our findings suggest that F.n infection strongly induces 

KLK10 expression in CRC cell lines. As such, KLK10 

could serve as a promising clinical indicator and 

therapeutic target for CRC patients infected with F.n. 

 

 
 

Figure 12. CRC cells co-cultured with F.n were found to have significantly upregulated KLK10 expression. (A) The Venn 

diagram demonstrating that KLK10 was shared by F.n infection-related DEGs and prognostic ARGs. (B) Microarray analysis of KLK10 
expression between HCT116 cells and F.n infected HCT116 cells (left panel) and expression of KLK10 in HT29 cells incubated with or without 
F.n (right panel). (C, D) The KLK10 mRNA expression in CRC cell lines infected with or without F.n for 24 h and 48 h, respectively, was 
determined by qPCR. (E) Representative western blot for KLK10 protein and β-actin protein extracted from CRC cells infected with F.n for 
0, 12, 24, and 48 h. *P < 0.05; **P < 0.01; ***P < 0.001. 
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DISCUSSION 
 

Evidence highlighting the critical role played by 

angiogenic factors in immune regulation and CRC 

progression is increasing [64–66]. Angiogenic factors 

excreted by CRC cells are known to stimulate endo-

thelial cells to regulate angiogenic switches during CRC 

development [67]. In addition, angiogenic factors 

contribute to a pattern of impaired immune activation 

(immunosuppression) by activating suppressive immune 

cells or inhibiting immune effector cells, which can in 

turn stimulate angiogenesis and tumor progression [68, 

69]. Notably, many researchers have shown that the 

indispensable relationship between angiogenesis and 

innate immunity and angiogenesis targeting has 

improved the immunotherapy efficacy and prognostic 

outcomes of tumor patients [70–73]. However, at 

present, there is a lack of bioinformatics analyses that 

demonstrate the holistic impact and TME cells 

infiltration features regulated by the combined role of 

multiple ARGs in CRC. 

 

Herein, we demonstrated global alterations in ARGs at 

the transcriptional and genetic level. Most of them were 

elevated in advanced CRC patients (stage III–IV) and 

related to RFS. Next, we identified two distinct 

angiogenesis subgroups (Cluster A and B) based on 36 

ARGs, and Cluster B was found to have more advanced 

clinicopathological characteristics and worse RFS 

compared to Cluster A. Furthermore, significant 

discrepancies were observed in TME infiltrations and 

biological functions between the two subgroups. Given 

the crucial roles played by gene mutations in the 

efficacy of immunotherapy, we further identified three 

gene_Clusters with different clinicopathological charac-

teristics, immune cell abundance, and functional 

characterization based on the DEGs between the two 

angiogenesis subgroups. To quantify the angiogenesis 

subgroups, a prognostic ARG_score with robust 

predictive ability was constructed. The Cluster B and 

gene Cluster C with the poorest RFS had the greatest 

ARG_score among the two ARG subgroups and three 

gene subgroups. Patients with low- and high-

ARG_score exhibited significantly distinct clinical 

outcomes, indicating that the ARG_score could predict 

poor clinical outcomes. Angiogenesis is confirmed that 

play a part in the aggressiveness of CRC [74, 75]. 

Interestingly, differences in mRNA transcriptomes 

between different angiogenesis subgroups were 

markedly enriched in cancer- and metastasis-related 

pathways, consistent with the existing conclusions. 

 

The clinicopathological characteristics differed 

significantly between the low- and high-ARG_score 

groups. Multivariate Cox regression analysis showed 

that ARG_score could be used as an independent 

predictor of RFS in CRC patients. Its predictive 

robustness for 1-, 5-, and 10-year RFS were validated 

by ROCs. Moreover, we confirmed that ARG_score 

could be used for the prognosis stratification of CRC 

patients, implying that the ARG_score may have a 

reliable predictive capacity. Further, a quantitative 

nomogram was established to improve the performance 

and facilitate the use of the model by integrating the 

ARG_score and tumor stage. Recently, chemoresistance 

has become a major challenge, and the prognosis for 

patients with CRC can be very poor due to disease 

recurrence [76]. To address this, we investigated the 

sensitivity of patients in different ARG_score groups to 

different drugs. Our findings indicated that combination 

with targeting angiogenesis was conducive to 

ameliorating drug resistance and improving prognosis. 

In this context, TMB and MSI are considered as 

response predictors for tumor immunotherapy, 

including CRC [77, 78]. Our results revealed that there 

were significant differences between TMB and MSI 

between the low- and high-ARG_score groups. 

Furthermore, the high TMB and MSI-H groups have 

been previously demonstrated to be associated with a 

better prognosis for CRC patients [14, 79], consistent 

with our expected results. Results from clinical trials 

have demonstrated that anti-PD-1 antibodies can 

ultimately achieve a lasting complete response in CRC 

patients [80, 81]. In the present study, the expression of 

immune checkpoints was found to be significantly 

different in the high- and low-ARG_score groups. Thus, 

our results suggested that the ARG_score can be used to 

predict the efficacy of targeting angiogenesis therapy 

and immunotherapy, and in conjunction with targeted 

therapy, may be a significant adjustive strategy for CRC 

immunotherapy. Taken together, these findings indicate 

that the ARG_score can be used as a predictor of 

response to immunotherapy and clinical outcomes 

independent of the TMB, and may also be useful in 

assessing the MSI status of CRC patients effectively. 

 

Evidence has increasingly shown that the TME plays a 

vital role in carcinogenesis, tumor progression, and drug 

resistance [82]. Currently, CRC patients continue to 

exhibit immunotherapy heterogeneity in their clinical 

outcomes, highlighting the important effects of the 

TME on CRC progression. The TME surrounding 

tumor cells is mainly composed of stromal cells and 

immune cells, such as tumor infiltrating immune cells, 

blood vessels, and tumor-associated fibroblasts [83]. 

Further, we evaluated the immune and stromal scores 

using the ESTIMATE algorithm and found that the high 

ARG_score groups significantly presented higher 

stromal scores than the low ARG_score groups, while 
the immune scores were poorer than those of the low 

ARG_score groups. These findings suggest that 

angiogenesis could be related to the involvement of the 
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TME, thus regulating CRC tumorigenesis and 

progression. Granulocytes, lymphocytes, and macro-

phages are primary tumor-infiltrating immune cells 

elements of the TME, and have been proven to take  

part in many host immune pathways, including 

inflammatory responses mediated by the tumor to 

improve survival [84]. Tumor-associated macrophages 

are mainly categorized into M1 macrophages and M2 

macrophages. M1 macrophages are characterized by 

anti-tumor function due to their ability to produce type I 

pro-inflammatory cytokines, while M2 macrophages 

contribute to the formation of immunosuppressive 

microenvironment and matrix remodeling, hence 

accelerating tumor growth [85, 86]. We noticed that the 

low ARG_score groups demonstrated favorable survival 

with more infiltrations of M1 macrophages, while 

increased infiltrations of M2 macrophages were 

observed in the high ARG_score groups with a worse 

prognosis. These findings are consistent with several 

previous studies. In addition, effector T cells, memory T 

cells, and T cell differentiation have been shown to play 

a crucial role in the immune defense of CRC, and 

higher densities of tumor-infiltrating T cells in CRC 

tissues indicate a good prognosis [87, 88]. We 

demonstrated that the low ARG_score groups showed a 

higher infiltration of activated memory CD4+, CD8 + T, 

and follicular helper T cells, indicating that they have a 

positive effect on CRC prognosis. Recent studies have 

revealed that the infiltration of Tregs can suppress anti-

cancer immunoreactivity, and hence favor tumor growth 

[89]. This is consistent with our finding of a higher Treg 

infiltration in the TME of patients with a high 

ARG_score. 

 

Kallikrein-related peptidase 10 (KLK10) is a member of 

the KLKs family with tryptic or chymotryptic activity 

[90, 91]. Several studies have found that CRC patients 

with high KLK10 expression have a poorer prognosis 

[92, 93]. In this study, we confirmed that KLK10 

expression was significantly upregulated at the mRNA 

level in CRC tissues compared to adjacent normal 

tissues. Prognosis analysis showed that higher levels of 

KLK10 expression in patients was significantly 

associated with a shorter RFS, which was consistent 

with the results of previously published studies. 

However, the roles of KLK10 in CRC development, 

immune infiltration, and immunotherapy response 

remain poorly understood. Functional enrichment 

analysis showed that higher KLK10 expression was 

involved in tumor cells adhesion, invasion, metastasis, 

and immune cell infiltration, which highlighted the 

potential mining value of KLK10 in CRC progression 

and the tumor immune microenvironment. Further 
in vitro experiments were performed to confirm that the 

knockdown of KLK10 in CRC cells markedly 

decreased in cell viability and proliferation. In addition, 

this study was the first to suggest that the 

downregulation of KLK10 suppressed the migration and 

invasion of CRC cells through the inhibition of the 

EMT. Recently, KLK10 was identified as a potential 

target for immunotherapy based on the immuno-

peptidome analysis of ovarian cancer antigens [94]. The 

results of different algorithms in immune cell 

infiltration showed that high KLK10 expression may be 

conducive to an immune hot type. Moreover, the TIDE 

analysis implied that patients with high KLK10 

expression were more susceptible to tumor immune 

escape, in accordance with previous studies. F.n has 

been confirmed to play an important role in the 

occurrence and development of CRC. Interestingly, we 

explored the sequencing results obtained after CRC 

cells were infected with F.n, and discovered that 

KLK10 expression was significantly upregulated. F.n 

may affect CRC cell proliferation, invasion, metastasis, 

and drug resistance via the upregulation of KLK10, and 

hence change the clinical outcomes of patients. At 

present, there are no studies on the impact of F.n on the 

survival and development of CRC regulated by the 

expression of ARGs. However, further systematic 

molecular experiments may elucidate novel pathogenic 

pathways and therapeutic targets. 
 

This study has some limitations. Namely, our results 

were obtained by analyzing public databases (TCGA 

and GEO), and future studies will need to incorporate 

the latest clinical samples for further verification. 

Furthermore, multicenter clinical immunotherapy 

cohorts should be performed to confirm the robustness 

and consistency of the ARG_score in predicting 

prognosis and immunotherapy efficacy, which will be 

the emphasis of future research. Lastly, complementary 

in vivo and in vitro studies will be needed to verify our 

findings. Our laboratory is further investigating the 

important links between these factors. 

 

CONCLUSIONS 
 

In this study, a novel angiogenesis-related molecular 

subtype based on ARGs in CRC was identified, 

providing a comprehensive assessment of the hetero-

geneity and complexity of TME. We also identified the 

therapeutic orientation of ARGs in targeting therapy 

and immunotherapy. Although these findings highlight 

the vital clinical implications of ARGs, future studies in 

multi-centers on a larger scale are essential. This study 

is the first to describe the potential contribution of F.n 

to the transcriptional changes in ARGs, and provides 

specific directions for further research. The results 

presented here suggest that ARGs could be used as an 

effective biomarker to predict prognosis and 

immunotherapy response in patients with CRC, 

highlighting their potential involvement in tumor 
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development in F.n-infected CRC patients. Further in 
vitro or in vivo experiments should be conducted to 

verify the relationships between these factors. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The specific workflow graph of data analysis. 

 



www.aging-us.com 12442 AGING 

 
 

Supplementary Figure 2. Unsupervised clustering of gene subtypes based on DEGs and Consensus matrix heatmaps for 
k = 2–9. 
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Supplementary Figure 3. Identifying representative candidate prognostic genes. (A, B) The LASSO regression analysis and partial 
likelihood deviance on the prognostic genes. (C) Forest plot of multivariate cox regression analysis for prognostic genes. 
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Supplementary Figure 4. Validation of ARG_score in testing cohort. (A) K-M analysis of the RFS between the two ARG_score 

groups. (B) ROC curves to predict the sensitivity and specificity of 1-, 5-, and 10-year survival according to the ARG_score. (C) The PCA 
analysis demonstrated that the patients in the different ARG_score groups were distributed in two directions. (D, E) The ranked dot plot 
indicates the ARG_score distribution and scatter plot presenting the patients’ survival status. (F) Expression patterns of 9 selected 
prognostic genes in high- and low-ARG_score groups. 

 

 

 
 

Supplementary Figure 5. Validation of ARG_score in entire cohort. (A) K-M analysis of the RFS between the two ARG_score groups. 
(B) ROC curves to predict the sensitivity and specificity of 1-, 5-, and 10-year survival according to the ARG_score. (C) The PCA analysis 
demonstrated that the patients in the different ARG_score groups were distributed in two directions. (D, E) The ranked dot plot indicates 
the ARG_score distribution and scatter plot presenting the patients’ survival status. (F) Expression patterns of 9 selected prognostic genes 
in high- and low-ARG_score groups. 

 



www.aging-us.com 12445 AGING 

 
 

Supplementary Figure 6. Expression levels of 9 selected angiogenesis-related prognostic genes in CRC tissues and 
corresponding normal tissues. (A) Expression of 9 prognostic genes in CRC tissues and normal human colon tissues (TCGA cohort). (B–H) 

Expression of 9 prognostic genes in CRC tissues and normal human colon tissues (GEPIA 2 cohort). (I–O) Expression levels of 9 prognostic 
genes in CRC tissues and corresponding normal tissues by RT-PCR. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Supplementary Figure 7. The correlation and independent prognosis analysis of ARG_score and clinicopathological 
variables in CRC. (A) The correlation between the ARG_score and clinical characteristics, including age, gender, TNM stage, tumor 

location, KRAS mutation status, and BRAF mutation status. (B) Univariate and multivariate analyses showed the prognostic value of the 
ARG_score in the training cohort. (C) Univariate and multivariate analyses showed the prognostic value of the ARG_score in the testing 
cohort. (D) Univariate and multivariate analyses showed the prognostic value of the ARG_score in the entire cohort. 
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Supplementary Figure 8. Stratification analysis of the ARG_score in CRC. (A, B) Age (age ≤ 68 and age > 68 years old). (C, D) 

Gender (female and male). (E, F) Tumor location (left-side or right-side). (G, H) Tumor stage (I–II or III–IV). (I, J) KRAS mutation (yes and no). 
(K, L) BRAF mutation (yes and no). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 3, 5 and 6. 

 

Supplementary Table 1. Summary of 36 recognized ARGs. 

Gene Type 

VCAN Angiogenesis 

POSTN Angiogenesis 

FSTL1 Angiogenesis 

LRPAP1 Angiogenesis 

STC1 Angiogenesis 

LPL Angiogenesis 

VEGFA Angiogenesis 

PF4 Angiogenesis 

THBD Angiogenesis 

FGFR1 Angiogenesis 

TNFRSF21 Angiogenesis 

CCND2 Angiogenesis 

COL5A2 Angiogenesis 

ITGAV Angiogenesis 

SERPINA5 Angiogenesis 

KCNJ8 Angiogenesis 

APP Angiogenesis 

JAG1 Angiogenesis 

COL3A1 Angiogenesis 

SPP1 Angiogenesis 

NRP1 Angiogenesis 

OLR1 Angiogenesis 

PDGFA Angiogenesis 

PTK2 Angiogenesis 

SLCO2A1 Angiogenesis 

PGLYRP1 Angiogenesis 

VAV2 Angiogenesis 

S100A4 Angiogenesis 

MSX1 Angiogenesis 

VTN Angiogenesis 

TIMP1 Angiogenesis 

APOH Angiogenesis 

PRG2 Angiogenesis 

JAG2 Angiogenesis 

LUM Angiogenesis 

CXCL6 Angiogenesis 
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Supplementary Table 2. The primer sequences for qRT-PCR. 

Gene Primer Sequence 

CXCL13 F: 5′-GGTCAGCAGCCTCTCTCCAGTC-3′ 

 R: 5′-TTGAATTCGATCAATGAAGCGT-3′ 

SLC2A3 F: 5′-GAAGAGGAGAATGCTAAG-3′ 

 R: 5′-CAATGGAAATGATGATGG-3′ 

CXCL10 F: 5′-GTGGCATTCAAGGAGTACCTC-3′ 

 R: 5′-GCCTTCGATTCTGGATTCAGACA-3′ 

KDR F: 5′-CTACTGATTTTTGCCCTTGTTC-3′ 

 R: 5′-TAGTCATTGTTCCCAGCATTTC-3′ 

KLK10 F: 5′-TCTACCCTGGCGTGGTCACC-3′ 

 R: 5′-GCAGAGCCACAGGGGTAAACAC-3′ 

MMP11 F: 5′-AAGAGGTTCGTGCTTTCTGG-3′ 

 R: 5′-CCATGGGAACCGAAGGAT-3′ 

MMP3 F: 5′-CCTGCTTTGTCCTTTGATGC-3′ 

 R: 5′-TGAGTCAATCCCTGGAAAGTC-3′ 

SCG2 F: 5′-ACCAGACCTCAGGTTGGAAAA-3′ 

 R: 5′-ACCAGACCTCAGGTTGGAAAA-3′ 

SPINK1 F: 5′-TGTCTGTGGGACTGATGGAA-3′ 

 R: 5′-GCCCAGATTTTTGAATGAGG-3′ 

β-actin F: 5′-GCATGGAGTCCTGTGGCAT-3′ 

 R: 5′-CTAGAAGCATTTGCGGTGG-3′ 

siKLK10#1 5′-CCTCCACACCTCTAAACATCTC-3′ 

siKLK10#2 5′-TTGTTGTACTTCACTCTCCGG-3′ 

siKLK10-NC 5′-UUCUCCGAACGUGUCACGUTT-3′ 

 

 

Supplementary Table 3. Clinical information of 1109 colorectal cancer patients. 

 

 

Supplementary Table 4. The prognostic values of 36 ARGs in patients with CRC. 

id HR HR.95L HR.95H P-value km 

VCAN 1.224994274 1.11397604 1.347076523 2.83E-05 1.19E-06 

POSTN 1.181163635 1.081386881 1.29014653 0.000217649 1.66E-06 

FSTL1 1.273841191 1.118843592 1.450311189 0.0002558 5.61E-06 

LRPAP1 0.67653805 0.510799323 0.896053914 0.006421073 0.000186841 

STC1 1.201646156 1.066394221 1.354052241 0.002568988 0.000953075 

LPL 1.19409106 1.094679196 1.302530881 6.34E-05 2.38E-05 

VEGFA 1.466477431 1.219837129 1.762986225 4.60E-05 2.23E-06 

PF4 0.947950341 0.865382536 1.038396098 0.250296529 0.048438335 

THBD 1.222489097 1.040031194 1.436956507 0.01485467 0.005430823 

FGFR1 1.31569863 1.108971297 1.56096275 0.001655545 0.000456971 

TNFRSF21 1.165541157 0.937967838 1.448329178 0.166925139 0.008317478 

CCND2 0.905160617 0.809083578 1.012646611 0.081779674 0.000854507 

COL5A2 1.237035349 1.121895833 1.363991568 1.98E-05 5.01E-07 
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ITGAV 1.249982819 1.078549708 1.448664847 0.00303005 0.003795799 

SERPINA5 1.197708641 1.027155793 1.396580732 0.021345418 0.001044201 

KCNJ8 1.389973359 1.213983433 1.591476364 1.87E-06 1.27E-08 

APP 1.062376145 0.833601656 1.353935739 0.624820263 0.078671415 

JAG1 1.016142325 0.838207208 1.231849612 0.870487009 0.030863117 

COL3A1 1.241335579 1.121609276 1.373842079 2.94E-05 1.20E-07 

SPP1 1.116360262 1.047764384 1.189447029 0.000668835 7.87E-05 

NRP1 1.317014905 1.13423922 1.529243769 0.000303391 2.38E-05 

OLR1 1.17399583 1.078246613 1.278247659 0.000219433 0.00037697 

PDGFA 0.913533642 0.77915275 1.071091278 0.265285904 0.110789116 

PTK2 1.307826879 1.020229861 1.676495868 0.034172484 0.009839317 

SLCO2A1 1.076135281 0.939249225 1.232971093 0.290480775 0.053553315 

PGLYRP1 0.916923323 0.703850283 1.194498888 0.52036185 0.141275291 

VAV2 1.139619561 0.966985174 1.343074102 0.118902964 0.008376223 

S100A4 1.198276931 1.084160975 1.324404436 0.00039635 7.44E-05 

MSX1 0.959960251 0.833859773 1.105130278 0.569546779 0.069710173 

TIMP1 1.390530524 1.186145976 1.630132527 4.81E-05 2.03E-05 

APOH 0.978210944 0.820736312 1.165900225 0.805686095 0.116002365 

PRG2 0.982731271 0.71948208 1.342299939 0.912807991 0.133462913 

JAG2 1.088750856 0.937652326 1.264198246 0.26465296 0.009779996 

LUM 1.140747631 1.03752703 1.254237354 0.006503175 0.001225002 

CXCL6 0.942957149 0.863324081 1.029935575 0.191984201 0.002126871 

 

 

Supplementary Table 5. Spearman correlation analysis of the 36 ARGs. 

 

 

Supplementary Table 6. Prognostic analysis of 620 subtype-related genes using a univariate Cox regression model. 

 

 


