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ABSTRACT 
 

The abnormality of surfactant protein C (SFTPC) has been linked to the development of a number of interstitial 
lung diseases, according to mounting evidence. Nonetheless, the function and mechanism of SFTPC in the 
biological progression of lung adenocarcinoma (LUAD) remain unclear. Analysis of public datasets and testing of 
clinical samples suggested that SFTPC expression was abnormally low in LUAD, which was associated with the 
onset and poor prognosis of LUAD. The SFTPC-related risk score was derived using least absolute shrinkage and 
selection operator Cox regression as well as multivariate Cox regression. The risk score was highly correlated 
with tumor purity and tumor mutation burden, and it could serve as an independent prognostic indicator for 
LUAD. Low-risk LUAD patients may benefit more from CTLA-4 or/and PD-1 inhibitors. Overall, the risk score is 
useful for LUAD patient prognostication and treatment guidance. Moreover, in vitro and in vivo experiments 
demonstrated that SFTPC inhibits the proliferation of LUAD by inhibiting PI3K/AKT/mTOR signaling 
transduction. These results reveal the molecular mechanism by which SFTPC inhibits the proliferation of LUAD 
and suggest that SFTPC could be a new therapeutic target for LUAD. 
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INTRODUCTION 
 

Lung cancer is considered as a leading cause of cancer-

related mortality worldwide in 2020, accounting for 

18.4% [1]. Small-cell lung cancer (SCLC) and non-

small-cell lung cancer (NSCLC) are the two subtypes of 

lung cancer. NSCLC accounts for about 85% of all lung 

cancer cases. Lung adenocarcinoma (LUAD) is the 

most common histological subtype of NSCLC, and its 

incidence is rising more rapidly than lung squamous cell 

carcinoma (LUSC) [2, 3]. As early-stage LUAD is 

prone to metastasis and two-thirds of patients have 

advanced disease at diagnosis, their prognosis is poor, 

with a 5-year survival rate below 20% [4, 5]. Despite 

diagnostic and therapeutic advances over the past few 

decades, the outlook for patients with LUAD remains 

dismal. Therefore, it remains urgent to investigate new 

therapeutic targets for LUAD and to develop precise 

prognostic models. 

 

Pulmonary surfactant (PS) is a lipoprotein compound 

primarily composed of phospholipids, with approxi-

mately 10% protein content [6]. The pulmonary 

surfactant protein family consists of four members: 

surfactant protein A (SFTPA), surfactant protein B 

(SFTPB), surfactant protein C (SFTPC), and surfactant 

protein D (SFTPD), which play important roles in 

diverse aspects of surfactant structure, function, and 

metabolism [7]. SFTPA and SFTPD are hydrophilic 

proteins that regulate the pulmonary immune system, 

whereas SFTPB and SFTPC are hydrophobic proteins 

that reduce pulmonary surface tension [8].  

 

SFTPC is only expressed in type II alveolar cells, unlike 

other members of its family. Not only is SFTPC heavily 

involved in surfactant protein-derived innate immunity, 

but it is also linked to the development of a number of 

interstitial lung diseases [9]. According to studies, 

SFTPC is abnormally low expressed in LUAD and 

closely linked to a poor prognosis for patients [10]. In 

vivo and in vitro, SFTPC overexpression significantly 

inhibits the proliferation of NSCLC cells. In addition, 

the expression levels of matrix metalloproteinases 

MMP-2 and MMP-9 in alveolar macrophages of SFTPC 

knockout mice were significantly elevated, which was 

closely associated with tumor occurrence and 

development [11]. However, the specific mechanism by 

which SFTPC inhibits LUAD development has yet to be 

identified. 

 

We discovered in this study that SFTPC was 

downregulated in LUAD, which was associated with a 

poor prognosis. Furthermore, in vitro and in vivo 

experiments suggested that SFTPC could inhibit LUAD 

proliferation by inhibiting the activity of the 

PI3K/AKT/mTOR signaling pathway. We developed a 

SFTPC-related risk model, which could serve as an 

independent prognostic factor for LUAD. We also 

utilized the SFTPC-related risk model and the clinical 

characteristics of lung adenocarcinoma patients to 

develop a nomogram that could accurately assess the 

prognosis of patients. 

 

MATERIALS AND METHODS 
 

Data acquisition and processing  

 

The TCGA LUAD data set’s mRNA expression data 

and clinical information were retrieved from the Cancer 

Genome Atlas (TCGA) database (https://portal.gdc. 

cancer.gov). The GSE31210, GSE10072, GSE43458, 

GSE32863, GSE46539, GSE72094, GSE41271, and 

GSE3141 were obtained from the Gene Expression 

Omnibus (GEO) database (https://ncbi.nlm.nih.gov/gds). 

All datasets were processed according to the methods 

outlined in our previous study [12, 13]. 

 

Enrichment analysis 

 

Gene Set Enrichment Analysis (GSEA) was performed 

on LUAD patients from the TCGA LUAD cohort  

using the “cluster Profiler” package in R and  

the “c5.go.bp.v2022.1.Hs.symbols.gmt” gene set 

database [12]. 

 

Development of SFTPC-related risk score  

 

Based on the level of SFTPC expression, patients in 

the TCGA_LUAD and GSE72094 cohorts were 

divided into high- and low-expression subgroups, 

respectively. Then, the “limma” package in R (logFC 

≥ 1, FDR ≤ 0.05) was used to identify differentially 

expressed genes (DEGs). The common genes of DEGs 

from both datasets were utilized for univariate Cox 

regression analysis. Incorporating prognosis related 

genes (P < 0.01) into the Least Absolute Shrinkage 

and Selection Operator (LASSO) regression model 

generates essential genes and their corresponding 

coefficients, which was performed by “glmnet” and 

“survival” packages in R. A new score was calculated 

for each patient using the following formula: score = 

∑i Coefficient (Gene i) * Expression (Gene i). Each 

patient’s SFTPC-related risk score was calculated 

using the following formula: risk score = (score-Min) 

/ absolute (Max), which facilitated comparisons 

between datasets. 

 

Development and evaluation of the nomogram 

 

The “rsm” package in R was used to develop the 

nomogram, which was based on the SFTPC-related risk 

score and clinical characteristics including age, tumor 

https://portal.gdc.cancer.gov/
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purity, gender, tumor mutation burden (TMB), T stage, 

M stage, and N stage. 

 

Cell culture and lentiviral infection  

 

A549 and PC9 human LUAD cancer cells were 

obtained from the Cell Bank of the Shanghai Institute of 

Biological Sciences of the Chinese Academy of 

Sciences. Cells were cultured in a DMEM medium 

containing 10% FBS under humidified conditions of 5% 

CO2 and 37° C. Lentivirus was used to infect A549 and 

PC9 cells to produce stable overexpression or 

knockdown of SFTPC. Sequences of SFTPC-RNAi 

were displayed in Supplementary Table 1.  

 

CCK-8 assay 

 

A549 and PC9 cells were seeded into 96-well plates at 

0, 24, 48, and 72h, respectively. The working solution 

was prepared according to the instructions (Beyotime 

C0038, China), and the absorbance value was measured 

using an enzyme labeling instrument. 

 

Colony formation assay 
 

A549 and PC9 cells were seeded in 6-well plates (500 

cells/well), cultured for 12 days, then fixed with cold 

methanol, and stained with crystal violet. 

 

Western blotting 
 

Total proteins were extracted from the cells at the 

indicated times, and protein concentrations were 

determined using a BCA kit. The proteins separated on 

SDS/PAGE gels were transferred to nitrocellulose 

membranes and immunoblotted with the antibodies 

listed in Supplementary Table 2. 

 

Patients and specimens 
 

Patients in the Thoracic Surgery Department of Tangdu 

Hospital (Xi’an, China) provided fifty-two pairs of 

human LUAD tissues and adjacent normal tissues. The 

Ethics Committee of the Tangdu Hospital authorized 

the use of clinical specimens (202203-039). 

 

Immunohistochemistry and immunofluorescence 

assay 
 

The cancerous and adjacent normal tissues of 52 

LUAD patients were fabricated into tissue chips, and 

the protein levels of target genes were determined 

using immunohistochemical staining. The immuno-

staining antibodies are listed in Supplementary Table 

2. Slides were scanned and digitalized with a 

Panoramic MIDI (3DHISTECH, Ltd., Budapest, 

Hungary) and analyzed with a Panoramic Viewer v. 

1.15.3 and Nuclear Quant application for PV 

v.2.0.0.46136, both manufactured by 3DHISTECH. H-

Score = ∑ (pi × i) = (percentage of weak intensity ×1) 

+ (percentage of moderate intensity × 2) + (percentage 

of strong intensity ×3), where I = intensity of staining 

and pi = percentage of stained tumor cells [14]. A549 

and PC9 cells were seeded into a special dish for 

confocal laser scanning microscopy, fixed with cold 

methanol, punched with triton X-100 (0.3%), 

surrounded with BSA, incubated with antibody, re-

stained with DAPI, and detected by confocal laser 

scanning microscopy. 

 

Xenograft lung adenocarcinoma model 

 

For the xenograft lung adenocarcinoma models, nude 

BALB/c female mice aged six weeks were obtained 

from the Model Animal Research Center of Nanjing 

University (China). The A549 and PC9 cells were 

injected subcutaneously into the right inguinal area of 

nude mice (5 × 106 per mouse), respectively. After 

seven days of tumor loading (Day 0), tumor volume was 

measured every three days until mice were euthanized. 

Tumor volume was calculated using the following 

formula: Volume = (length × width2)/2, where the 

length and width are the longest and shortest axes. The 

Animal Research Protocol was approved by the Shanxi 

Provincial People’s Hospital’s Ethics Committee  

(2021-191). 

 

Statistical analysis 

 

In this work, the R (4.1.0) software was used for 

statistical analysis and drawing images. Comparative 

statistical analysis of the target genes of two subgroups 

was done using the Wilcox test. Survival analysis was 

performed between two subgroups of patients using the 

log-rank test and the Kaplan-Meier method. Spearman 

analysis was used to determine the correlation between 

the two genes. The “ggpubr”, “VennDiagram”, 

“survival”, “glmnet”, “survminer”, “timeROC”, “rms”, 

“ggpubr”, “ggExtra”, “pheatmap”, “tidyverse”, 

“ggplot2”, “reshape2”, “maftools”, “limma”, “regplot”, 

“pec”, “pRRophetic”, “car”, “ridge”, “preprocessCore”, 

“genefilter”, and “sva” packages in R were used for 

visualization. Less than 0.05 p-value was considered 

statistically significant (*, P < 0.05; **, P < 0.01; ***, P 

< 0.001). 

 

Availability of data and materials 

 

The datasets generated during and/or analyzed during 

the present study are available from the corresponding 

author on reasonable request. 
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RESULTS 
 

SFTPC downregulation is correlated with the onset 

and poor prognosis in LUAD 

 

To investigate the potential role of SFTPC in LUAD, 

we analyzed the mRNA levels of SFTPC in patients 

from the TCGA LUAD, GSE31210, GSE11072, 

GSE43458, GSE32863, and GSE46539 cohorts. SFTPC 

was significantly downregulated in carcinoma tissues 

relative to normal tissues (Figure 1A–1F). Using 

immunohistochemistry, we then determined the protein 

level of SFTPC in the carcinoma and para-carcinoma 

tissues of 52 patients from the Tangdu Hospital. 

Consistent with the mRNA level, the protein level of 

SFTPC was significantly decreased in carcinoma tissues 

(Figure 1G, 1H). The Kaplan-Meier (KM) analysis of 

patients in the LUAD, GSE72094, GSE41271, and 

GSE3141 datasets suggested that patients with SFTPC 

low expression had a shorter overall survival (OS) 

duration (Figure 2A–2D). Finally, we plotted the ROC 

curve of SFTPC gene for diagnosing lung adeno-

carcinoma; the AUC values of SFTPC in the 

TCGA_LUAD, GSE31210, GSE11072, GSE43458, 

GSE32863, and GSE46539 cohorts were 0.996, 0.903, 

0.987, 0.924, 0.960, and 0.816 respectively (Figure 2E–

2J). All of these findings indicated that SFTPC down-

regulation in LUAD was significantly associated with 

disease onset and prognosis. 

 

Association between immune characteristics and 

SFTPC 

 

Patients from the TCGA LUAD cohort were divided 

evenly into two subgroups based on their SFTPC 

expression levels. To comprehend the effect of SFTPC 

on the tumor microenvironment (TME), we utilized the 

ESTIMATE algorithm to analyze the immune and 

stromal scores of patients from the TCGA LUAD 

dataset. The findings revealed that patients with low 

SFTPC expression had lower stromal and immune 

scores, as well as higher tumor purity (Supplementary 

Figure 1A, 1B). Subsequently, we analyzed that the 

expression levels of immune checkpoint genes; CD27, 

CD274, TLA4, HAVCR2, TIGIT, and TOX were 

significantly downregulated in SFTPC low expression 

subgroup (Supplementary Figure 1C). In addition, the 

infiltration ratios of immune cells such as macrophages 

M2, T cells CD4 memory resting, mast cells resting, 

dendritic cells resting, T cells follicular helper, and 

monocytes were significantly decreased, whereas 

macrophages M0, T cells CD4 memory activated, and T 

cells regulatory were significantly increased 

(Supplementary Figure 1D). Finally, we analyzed the 

effect of SFTPC on 29 functional gene expression 

signatures and found that SFTPC low expression LUAD 

was characterized by low levels of immune infiltrate 

and high levels of matrix remodeling, EMT signature, 

and proliferation rate (Supplementary Figure 1E). 

 

GSEA was performed to investigate the differences 

between the stratified subgroups of SFTPC. LUAD 

patients with SFTPC high expression demonstrated 

significant enrichment in immune related processes 

(Supplementary Table 3), including activation of 

immune response (Figure 3A), positive regulation of 

inflammatory response (Figure 3B), myeloid leukocyte 

activation (Figure 3C), and antigen processing and 

presentation of exogenous antigen (Figure 3D). In 

addition, the infiltration rate of immune-related cells 

including macrophages M0 and M2, T cells CD4 

memory resting, plasma cell, mast cell resting, and 

monocytes was significantly reduced (Supplementary 

Figure 1D). Patients with SFTPC low expression were 

enriched in processes related to cell proliferation, such 

as DNA repair (Figure 3E), meiotic cell cycle (Figure 

3F), nuclear chromosome segregation (Figure 3G), and 

DNA-dependent DNA replication (Figure 3H). Results 

indicated that in LUAD, SFTPC high expression was 

associated with tumor immunity, while SFTPC low 

expression was associated with cell proliferation. 

 

Construction and validation of SFTPC-related risk 

score 

 

To develop an SFTPC-related signature that identifies 

LUAD patients with different prognoses, we analyzed the 

DEGs between SFTPC low/high expression subgroups. 

Figure 4A demonstrates that a total of 2701 and 220 

DEGs were identified in the TCGA LUAD and 

GSE72094 datasets, respectively (logFC ≥ 1; adj-P < 

0.05). The 105 DEGs from both cohorts were 

subsequently subjected to univariate Cox analyses in the 

TCGA LUAD cohort, and 35 of them were significantly 

associated with the prognosis of patients (P < 0.01). 

Finally, the 35 DEGs were inserted into a LASSO Cox 

regression model in TCGA_LUAD as described in our 

previous works [12, 15, 16], and 13 key genes and their 

corresponding coefficients were obtained (Figure 4B, 4C, 

4G). Using the following formula, the SFTPC-related 

risk score of each patient in a cohort was determined: 

score = 0.1245*ADH1B - 0.0637*CLEC3B - 

0.0417*CYP4B1 - 0.0533*GDF10 - 0.0052*C4BPA - 

0.0213*SFTPB - 0.0176*TNNC1 - 0.0153*NAPSA - 

0.0647*HS3ST2 - 0.0419*CPA3 - 0.0609*PBK - 

0.0805*GJB2 - 0.1682*MS4A1. The TCGA_LUAD 

cohort served as the training set, with patients assigned 

equally to the low-risk and high-risk subgroups; patients 

in the low-risk group have a higher survival rate (Figure 
2D–2F). As validation datasets, the GSE72094 and 

GSE41271 cohorts were used, and based on the risk 

score, patients in both cohorts were divided into low-risk 
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Figure 1. SFTPC was downregulated in LUAD. (A–F) SFTPC mRNA levels of LUAD patients in the TCGA_LUAD (A), GSE31210 (B), 

GSE10072 (C), GSE43458 (D), GSE32863 (E), and GSE46539 (F) cohorts. (G, H) SFTPC protein levels in LUAD patients in Tangdu Hospital cohort 
(G), and representative IHC staining of SFTPC in carcinoma and para-carcinoma tissues (H). 
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and high-risk subgroups, respectively. Patients in the 

low-risk groups had a significantly longer OS in both 

the training and validation sets compared to those in the 

high-risk groups (Figure 4A–4C). The area under curves 

(AUC) values of SFTPC-related risk score in the 

TCGA_LUAD dataset were 0.716 for one year, 0.666 

for two years, and 0.69 for three years; 0.684 for one 

year, 0.678 for two years, and 0.664 for three years in 

the GSE72094 dataset; were 0.563 for one year, 0.664 

for two years, and 0.641 for three years in the 

GSE41271 dataset (Figure 5D–5F). Figure 5G–5I 

displays the 1-, 2-, and 3-year calibration curves of the 

SFTPC-related risk score for the TCGA LUAD, 

GSE72094, and GSE41271 cohorts. All of the 

aforementioned findings suggested that the SFTPC-

related risk score could accurately predict the prognosis 

of LUAD patients. 

 

Tumor microenvironment landscape of SFTPC-

based classification 

 

Lung adenocarcinoma’s biological progression and 

prognosis are correlated with the tumor micro-

environment (TME) [17, 18]. Patients from the TCGA 

LUAD, GSE72094, and GSE41271 were divided into 

low-risk (L-risk) and high-risk (H-risk) subgroups in 

order to examine the influence of SFTPC-related risk 

score on TME. In the H-risk groups of the three cohorts, 

the infiltration ratios of immune cells such as aDCs, 

DCs, iDCs, mast cells, and neutrophils decreased 

 

 
 

Figure 2. Correlation analysis between SFTPC and the incidence and prognosis of lung adenocarcinoma. (A–D) Kaplan-Meier 
curves of the OS of LUAD patients in the TCGA_LUAD, GSE72094, GSE41271, and GSE3141 cohorts. (E–J) SFTPC-dependent ROC analyses of 
the pathogenic status in TCGA_LUAD (E), GSE31210 (F), GSE10072 (G), GSE43458 (H), GSE32863 (I), and GSE46539 cohorts. 
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significantly (Supplementary Figure 2A, 2C, 2E). 

Moreover, in H-risk groups, the functions of HLC and 

type II IFN response were also downregulated, whereas 

the function of MHC class I was upregulated 

(Supplementary Figure 2B, 2D, 2F). In the TCGA 

LUAD dataset, we discovered that the infiltration ratios 

of immune cells including T cells memory resting/ 

activated, monocytes, mast cells resting, macrophages 

M0/M1, dendritic cells resting, and B cells memory 

were significantly associated with the expression of 13 

essential genes (Supplementary Figure 3). Additionally, 

we observed that patients in the H-risk group have 

lower stromal and immune scores, as well as higher 

tumor purity (Figure 6A, 6B).  

 

To investigate the effect of tumor purity on the 

prognosis of LUAD, patients in the TCGA_LUAD, 

GSE72094, and GSE41271 cohorts were divided 

equally into low tumor purity (L-TP) and high tumor 

purity (H-TP) subgroups respectively. In the three 

aforementioned datasets, KM analysis indicated that L-

TP patients had a longer OS (Figure 6C, 6E, 6G). In 

addition, we conducted a comprehensive analysis of the 

effect of SFTPC-related risk score and tumor purity on 

patient prognosis and discovered that, across the three 

datasets, patients in the L-TP and L-risk group had the 

best prognosis (Figure 6D, 6F, 6H). All of these 

findings suggested that the SFTPC-related risk score 

was highly correlated with tumor purity and patient 

prognosis. 

 

TMB of SFTPC-related classification 

 

Mounting evidence suggested that TMB was an 

essential biomarker for LUAD prognosis [19, 20]. To 

investigate the effect of SFTPC-related risk score on 

TMB, we subdivided TCGA LUAD patients into low-

risk (L-risk) and high-risk (H-risk) subgroups. As 

 

 
 

Figure 3. Biological features of LUAD patients in the stratified SFTPC subgroups. (A–H) Examples of GSEA results of LUAD patients 

with high (A–D) and low (E–H) expression of SFTPC. 
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depicted in Figure 7A, 7B, patients in the L-risk and H-

risk subgroups displayed distinct mutation charac-

teristics, with the L-risk group exhibiting a lower TMB 

(Figure 7C). In the L-risk group, the top five genes with 

the highest mutant frequency were TP53 (37%), TTN 

(36%), MUC36 (39%), RYR2 (30%), and CSMD3 

(29%); in the H-risk group, the top five genes with the 

highest mutant frequency were TP53 (59%), 

 

 
 

Figure 4. Development of SFTPC-related risk score using TCGA_LUAD dataset. (A) Venn diagram of DEGs between patients in SFTPC 

low/high expression subgroups in the TCGA_LUAD and GSE72094 datasets (logFC ≥ 1; adj-P < 0.05). (B, C) LASSO Cox regression model was 
constructed from 35 DEGs with significant prognostic p-value < 0.01. The 13 essential genes were generated by the optimal profile. (D) 
Distribution and cutoff value of SFTPC-related risk score. (E, F) OS and survival status of LUAD patients in subgroups with low and high risk. 
(G) Expression heatmap of the 13 essential genes of patients in TCGA_LUAD cohort. 



www.aging-us.com 12459 AGING 

TTN (59%), CSMD3 (50%), MUC16 (44%) and RYR2 

(42%) (Figure 7A, 7B). Results of KM analysis 

indicated that patients in the H-TMB group had a longer 

OS (Figure 7D). In addition, we analyzed the influence 

of SFTPC-related risk score and TMN on LUAD 

prognosis and found that patients in the H-TMB and  

L-risk subgroup had the most favorable prognosis  

(Figure 7E).  

 

 
 

Figure 5. Evaluation of the SFTPC-related risk score in LUAD. (A–C) Kaplan-Meier curves of the OS of LUAD patients in the TCGA_LUAD 
(A), GSE72094 (B), and GSE41271 (C) cohorts. (D–F) Time-dependent ROC analyses of risk score regarding the patients’ 1-, 2-, and 3-years 
survival status in the TCGA_LUAD (D), GSE72094 (E), and GSE41271 (F) cohorts. (G–I) Calibration curves of SFTPC-related risk score between 
predicted and observed 1-, 2-, and 3-years survival status in the TCGA_LUAD (G), GSE72094 (H), and GSE41271 (I) cohorts. 
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Guidance of SFTPC-related risk score in LUAD 

therapy 

 

Evidence suggests that immune checkpoint blockade 

immunotherapies targeting programmed cell death 1 

(PD-1) or cytotoxic T-lymphocyte associated protein 

4 (CTLA-4) are emerging as a new treatment option 

for lung cancer patients [21–23]. However, patient 

response rates to PD-1 and CTLA-4 inhibitors vary 

widely [24]. How to effectively evaluate the patient’s 

response to immunosuppressants is a pressing issue in 

LUAD clinical treatment. We retrieved the clinical 

data of LUAD patients treated with CTLA-4 or/and 

PD-1 from The Cancer Immunome Atlas (TCIA) 

database and observed that high-risk patients may 

benefit more from immunotherapy (Figure 8A–8D). 

We then conducted a correlation analysis between the 

SFTPC-related risk score and the sensitivity of 165 

drugs. The risk score was negatively correlated with 

RO-3306, cisplatin, pyrimethamine, and epothilone B 

et al. (R ≤ -0.59; p < 0.001), and patients in the low-

risk group could benefit more from 158 drugs, while 

those in the high-risk group were more sensitive to 7 

drugs (Supplementary Table 4, Figure 8E–8L). 

 

 
 

Figure 6. Tumor purity combined with SFTPC-related risk score to evaluate the prognosis of LUAD patients. (A) The immune 

and stromal scores of LUAD patients in the TCGA_LUAD cohort, grouping based on the risk score. (B) The tumor purity of LUAD patients in the 
TCGA_LUAD cohort, grouping based on the risk score. (C–H) Kaplan-Meier curves of the OS of LUAD patients in different subgroups from 
TCGA_LUAD (C, D), GSE72094 (E, F), and GSE41271 (G, H) cohorts. 
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The aforementioned findings suggested that the SFTPC-

related risk score could guide LUAD treatment. 

 

Establishment of a nomogram based on SFTPC-

related risk score and clinical characters 

 

A nomogram was developed using SFTPC-related risk 

score and clinical characteristics to assess patient 

prognosis. Initially, univariate and multivariate 

regression analyses were performed on the 

TCGA_LUAD cohort, and T stage, M stage, and risk 

score were identified as independent prognostic factors 

for LUAD (Figure 9A, 9B). Subsequently, we plotted 

Receiver Operating Characteristic Curve (ROC) curves 

for one, three, and five years and discovered that the 

risk score and clinical group always had the greatest 

area under the curve (AUC) value (Figure 9C–9E). 

Then, using age, tumor purity, gender, TMB, T stage, M 

stage, N stage, and risk, we drew the nomogram (Figure 

9G). The C-index curves revealed that nomorisk had the 

greatest value, indicating that it had the maximum 

prognostic accuracy for LUAD prognosis (Figure 9F). 

The AUC values of the nomogram in the TCGA_LUAD 

dataset were 0.748 for one year, 0.746 for two years, 

and 0.734 for three years, and the calibration curves of 

patients at one, three, and five years confirmed the 

accuracy of the nomogram (Figure 9H, 9I). These 

findings confirmed that the nomogram was a superior 

 

 
 

Figure 7. Mutation signatures of LUAD patients. (A, B) Waterfall plots of mutation genes in patients from the TCGA_LUAD cohort, low-
risk (A) and high-risk (B) subgroups. (C) In the TCGA_LUAD cohort, patients in the high-risk subgroup had a higher TMB. (D) Kaplan-Meier 
curves of the OS of LUAD patients in the L-TMB and H-TMB subgroups from the TCGA_LUAD cohort. (E) Kaplan-Meier curves of the OS of 
LUAD patients in the H-TMB and H-risk, H-TMB and L-risk, L-TMB and H-risk, and L-TMB and L-risk subgroups from TCGA_LUAD cohort. L-
TMB: low tumor mutation burden; H-TMB: high tumor mutation burden; L-risk: low-risk; H-risk: high-risk. 
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model for LUAD prognosis prediction than individual 

risk factors. 

 

SFTPC inhibited the proliferation of LUAD in vitro 

and in vivo 

 

To investigate the function of SFTPC in LUAD, we used 

lentivirus to knock down and overexpress SFTPC in A549 

and PC9 cells respectively. After conducting the CCK-8 

assay, we discovered that knocking down SFTPC 

significantly increased the proliferation ability of A549 

and PC9 cells, whereas over expressing SFTPC 

significantly decreased their proliferation ability (Figure 

10A–10D). Subsequently, we conducted the EdU 

experiment, which suggested that knocking down SFTPC 

significantly increased the proliferation ability of A549 

and PC9 cells, whereas over expressing SFTPC 

dramatically decreased their proliferation ability (Figure 

10E). The results of the plate cloning assay indicated that 

knocking down SFTPC significantly increased the cloning 

ability of A549 and PC9 cells, whereas overexpressing 

SFTPC significantly decreased their cloning ability 

(Figure 10F). These findings demonstrated that SFTPC 

inhibits the proliferation of LUAD cells in vitro. To 

further confirm the antitumor effect of SFTPC, we 

generated xenograft LUAD models by injecting A549 and 

PC9 cells subcutaneously into nude mice. We measured 

tumor volumes every three days until the mice were 

euthanized and drew growth curves for the tumors. We 

observed that knockdown of SFTPC significantly 

promoted the proliferation of A549 and PC9 cells in vivo, 

while overexpression of SFTPC significantly inhibited 

their proliferation (Figure 11A–11H). After euthanizing 

mice, tumors were collected and weighed. 

 

 
 

Figure 8. Screening of potential drugs for LUAD patients. (A–D) Patients at low risk will benefit more from CTLA4 and/or PD1 

antibodies in the TCGA LUAD cohort. (E–H) Analysis of the correlation between sensitivity of patients to RO-3306, cisplatin, pyrimethamine, 
and epothilone B and risk score in the TCGA LUAD cohort. (I–L) Patients in the low-risk subgroup of the TCGA LUAD cohort were more 
sensitive to RO-3306, cisplatin, pyrimethamine, and epothilone B. 
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Figure 9. Development and verification of nomogram in LUAD. (A, B) Univariate (A) and multivariate (B) regression analysis related to 

OS of patients in TCGA_LUAD cohort. (C–E) In the TCGA LUAD cohort, time-dependent ROC analyses of the patients’ 1- (C), 3- (D), and 5-year 
(E) survival status based on their risk score and/or clinical characteristics. (F) The C-index curves of risk score and clinical features. (G) The 
nomogram is based on gender, age, tumor purity, T stage, N stage, M stage, TMB, and risk. (H) Time-dependent ROC analyses of the patients’ 
1-, 3-, and 5-year survival status based on the nomogram. (I) The calibration curves of the nomogram between predicted and observed 1-, 3- 
and 5-year OS in the TCGA_LUAD cohort. 
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Figure 10. SFTPC can inhibit the proliferation of LUAD in vitro. (A–D) CCK-8 assay for A549 and PC9 cells stably overexpressing (A, C) 
or inhibiting SFTPC expression (B, D). (E) Immunofluorescence analysis of A549 and PC9 cells stably overexpressing or knocking down SFTPC. 
(F) Colony formation assays for A549 and PC9 cells stably overexpressing or knocking down SFTPC. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Compared to the control group, the weights of tumors in 

the SFTPC knockdown group were significantly higher, 

while those in the SFTPC overexpression group were 

significantly lower (Figure 11I–11L). All of these 

findings suggested that SFTPC could inhibit the 

proliferation of LUAD cells in vitro and in vivo. 

 

SFTPC inhibits PI3K/AKT/mTOR pathway activity 

in LUAD 

 

To determine the molecular mechanism by which 

SFTPC inhibits LUAD proliferation, a Western blotting 

assay was performed initially. Overexpression of 

SFTPC in A549 and PC9 cells significantly reduced the 

phosphorylation of PI3K, AKT, mTOR, and RPS6KB1 

(Figure 12A–12C). Additionally, we observed that 

knocking down SFTPC in A549 and PC9 significantly 

increased the phosphorylation levels of PI3K, AKT, 

mTOR, and RPS6KB1 (Figure 12B, 12D). 

Subsequently, we also conducted immunocytochemical 

assays on A549 and PC9 cells, and the outcomes were 

consistent with the WB experiments (Figure 12E, 12F). 

Using immunohistochemistry, we determined the 

protein levels of SFTPC, PI3K, p-PI3K, AKT, p-AKT, 

 

 
 

Figure 11. SFTPC can inhibit the proliferation of LUAD in vivo. (A–D) Xenograft models and the tumor growth curves of LUAD tumor 

derived from A549 cells: overexpression of SFTPC significantly inhibited the proliferation of A549 cells in vivo (A, B), while knockdown of 
SFTPC significantly promoted their proliferation (C, D). (E–H) Xenograft models and the tumor growth curves of LUAD tumor derived from 
PC9 cells: overexpression of SFTPC significantly inhibited the proliferation of PC9 cells in vivo (E, F), while knockdown of SFTPC significantly 
promoted their proliferation (G, H). The volume of the tumor was measured every three days until the mice were euthanized, after which the 
tumor growth curves were drawn. (I–L) The weights of tumors were significantly decreased in the SFTPC overexpression groups (I–K), 
whereas they significantly increased in the SFTPC knockdown groups (J). After euthanizing the mice tumors were collected and weighed. 
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mTOR, p-mTOR, RPS6KB1, and p-RPS6KB1 in 

LUAD carcinoma and para-carcinoma tissues. SFTPC 

protein levels were downregulated in tumor tissues, 

whereas PI3K, p-PI3K, AKT, p-AKT, mTOR, p-

mTOR, RPS6KB1, and p-RPS6KB1 protein levels were 

upregulated (Figure 1G, 1H and Supplementary Figure 

4A–4P). All of the aforementioned results suggested 

that SFTPC inhibits the PI3K/AKT/mTOR pathway in 

LUAD. 

 

DISCUSSION 
 

The SFTPC gene is located on the short arm of human 

chromosome 8 and encodes a transmembrane peptide 

 

 

 

Figure 12. SFTPC can inhibit PI3K/AKT/mTOR signal transduction. (A–C) A549 cells overexpressing or knocking down SFTPC were 
subjected to Western blot (A, B) and immunofluorescence (C) assay. (D–F) A549 cells were subjected to Western blot (D, E) and 
immunofluorescence (F) assays while overexpressing or knocking down SFTPC. 
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with a molecular weight of 21 kDa and 197 amino acids 

[25]. The ProSFTPC protein comprises four domains: a 

cytosolic domain on the N-terminus, a transmembrane 

helix, an unstructured linker domain, and a BRICHOS 

domain on the C-terminus. Prior to secretion, 

proSFTPC is moved from multivesicles to AT2-specific 

lamellar bodies. Cleavage of the C- and N-termini 

sequentially generates mature SFTPC [26]. SFTPC, the 

smallest surfactant-associated protein, plays a crucial 

role in stabilizing the surfactant film and recycling 

surfactant by facilitating lipid movement between sheets 

and vesicles [27]. Consistent with Zhang et al. [28], this 

study confirmed that SFTPC was abnormally 

downregulated in LUAD and was closely associated 

with a patient’s poor prognosis. However, the molecular 

mechanisms by which SFTPC is downregulated in 

LUAD and how it inhibits LUAD’s biological 

progression remain unknown. This study found that 

SFTPC was closely associated with LUAD’s TME and 

TMB (Figures 5A, 5B, 6A–6C). 

 

TME is closely associated with the occurrence, 

progression, and therapeutic efficacy of tumors [29, 30]. 

TME [31] is composed of immune and stromal cells. 

Immune infiltration plays an essential role in LUAD 

prognosis and therapeutic response [32]. Accumulating 

evidence suggests that immune checkpoint inhibitors 

(ICI) are extraordinarily beneficial for NSCLC patients. 

Nevertheless, according to certain clinical trials, lung 

cancer patients have a low overall response rate to ICI 

[33, 34]. High expression of PD-1 and/or CTLA-4 can 

downregulate T-cell activity, thereby reducing the 

efficacy of immunotherapy and facilitating the immune 

evasion of tumor cells [35, 36]. Predicting the efficacy 

of PD-1 and CTLA-4 antibodies in the clinical 

treatment of LUAD has become an urgent matter. Our 

study found that low-risk patients had a lower tumor 

purity and benefited more from PD-1 and CTLA-4 

antibodies, providing a theoretical foundation for the 

clinical application of ICI (Figures 5A, 5B, 8A–8D). In 

addition, we discovered that low-risk LUAD patients 

were more sensitive to RO-3306, cisplatin, pyri-

methamine, and epothilone et al., thereby expanding 

clinical treatment options (Figure 8E–8L). Furthermore, 

risk score could serve as an independent prognostic 

factor for LUAD patients, and its C-index was higher 

than that of clinical features, demonstrating a distinct 

advantage in predicting the prognosis of patients 

(Figure 9). 

 

Previous research has demonstrated that TMB can serve 

as an indicator of immunotherapeutic sensitivity in 

numerous carcinomas [37]. The greater the TMB, the 
greater the number of new antigens that T cells can 

recognize as non-self, making tumors more immuno-

genic. In LUAD, elevated TMB may augment immune 

infiltration and enhance the therapeutic efficacy of PD-

L1 antibodies [38]. However, this study demonstrated 

that patients in the low-risk subgroup had a lower TMB, 

and derived greater benefits from PD-1 and CTLA-4 

antibodies, possibly due to the greater proportion of 

immune cell infiltration in the low-risk subgroup 

(Figures 6A, 7A–7C, 8A–8D). The C-index curves 

demonstrated that the prognostic value of TMB for 

LUAD was inferior to that of risk score, M stage, T 

stage, and tumor purity (Figure 9F). Our findings 

indicated that in LUAD, the risk score was not only 

closely related to TMB but also possessed greater 

prognostic ability. 

 

To determine the function of SFTPC in LUAD, in vitro 

and in vivo experiments were conducted; the results 

revealed that SFTPC acted as a tumor suppressor 

(Figures 10, 11). GSEA results indicated that patients 

with low SFTPC expression were enriched in functions 

associated with cell proliferation, such as DNA repair, 

meiotic cell cycle, and DNA replication (Figure 3). 

Interestingly, these events are closely related to the 

PI3K/AKT/mTOR pathway, suggesting that SFTPC 

may affect the proliferation of LUAD cells by 

regulating the PI3K/AKT/mTOR signaling pathway.  

 

Subsequently, lentivirus was used to overexpress and 

knockdown SFTPC expression in A549 and PC9 cells, 

and Western blotting, and immunofluorescence assays 

confirmed that SFTPC inhibited PI3K/AKT/mTOR 

pathway activity (Figure 12 and Supplementary Figure 

4). Numerous cellular biological processes, such as cell 

proliferation, metastasis, and metabolism, are dependent 

on PI3K/Akt/mTOR pathway [39]. Therefore, small 

molecule inhibitors targeting the PI3K/AKT/mTOR 

pathway have garnered considerable interest and have 

been developed and evaluated in preclinical models and 

clinical trials [39, 40]. However, targeting a single 

kinase component within PI3K/AKT/mTOR signaling 

pathway typically results in tumor growth arrest as 

opposed to apoptosis, which may be caused by 

abnormal activation of other compensatory pathways. 

Hence, developing new targets or combining drugs may 

be effective strategies for enhancing the anti-tumor 

effect. Cumulatively, SFTPC is not only closely 

associated with the onset and prognosis of LUAD, but 

also has the ability to inhibit the PI3K/AKT/mTOR 

pathway, making it a potential therapeutic target for 

LUAD.  
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Tumor microenvironment landscape of SFTPC-based classification. (A) The immune and stromal scores 

based on SFTPC classification in the TCGA_LUAD cohort. (B) The tumor purity based on SFTPC classification in the TCGA_LUAD cohort.  
(C) Expression of immune checkpoint genes based on SFTPC classification in the TCGA_LUAD cohort. (D) Distribution of infiltrating immune 
cells based on SFTPC classification in the TCGA_LUAD cohort. (E) Heatmap showed the 29 Fges based on SFTPC classification in the 
TCGA_LUAD cohort.  
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Supplementary Figure 2. Boxplot of immune cell score and immune function score based on PRRS. (A–E) Boxplot of immune cell 
score and immune function score based on risk score classification in TCGA_LUAD (A, B), GSE72094 (C, D), and GSE41271 (E, F) cohorts.  
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Supplementary Figure 3. Heatmap of correlation between immune cells and the 13 crucial genes. 
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Supplementary Figure 4. Immunohistochemical detection of target gene in Tangdu Hospital cohort. (A–P) Protein levels of 
target genes in patients in Tangdu Hospital cohort, and representative IHC staining of indicated proteins in carcinoma and para-carcinoma 
tissues: PI3K (A, B), p-PI3K (C, D), AKT (E, F), p-AKT (G, H), mTOR (I, J), p-mTOR (K, L), RPS6KB1 (M, N), and p-RPS6KB1 (O, P). 
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Supplementary Tables 
 

Please browse the Full Text version to see the data of Supplementary Tables 3, 4. 

 

Supplementary Table 1. Sequences of SFTPC-RNAi. 

gene RNAi sequence 

shSFTPC#1 GCTGCTACATCATGAAGATAG 

shSFTPC#2 GGTGTATGACTACCAGCAGCT 

 

Supplementary Table 2. Antibody information. 

SFTPC (DF6647, Affinity)  

PI3K (AF6241, Affinity)  

phospho-PI3K (AF3242, Affinity)  

AKT (AF6261, Affinity)  

phospho-AKT (AF0016, Affinity)  

mTOR (AF6308, Affinity)  

phospho-mTOR (AF3309, Affinity)  

RPS6KB1 (AF6226, Affinity)  

phospho-RPS6KB1 (AF3228, Affinity)  

GAPDH (T0004, Affinity)  

Goat Anti-Rabbit IgG (H+L) HRP (S0001, Affinity) 

Goat Anti-Mouse IgG (H+L) HRP (S0002, Affinity) 

 

Supplementary Table 3. GSEA results of the stratified subgroups of SFTPC. 

 

Supplementary Table 4. Correlation analyses between the SFTPC-related risk score and the sensitivity of 165 
drugs. 

 

 


