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INTRODUCTION 
 

In the process of oocyte maturation in vivo or in vitro, 

oocytes in the metaphase of the second meiosis (MII) 

phase undergo time-related quality degradation if they 

are not fertilized in time [1]. In vivo, the inability to 

accurately predict the optimal fertilization time causes  

a delay in fertilization. Consequently, the oocytes can 

be retained in the oviduct after ovulation, which may 

cause oocyte aging [2]. In vitro, oocytes need to be 

cultured to maturation before micromanipulation and in 

vitro fertilization. Nevertheless, variations in individual 

oocytes result in distinct maturation durations, and 

extending the culture time is inevitable. This, in turn, 

contributes to oocyte aging [3]. 
 

Oocyte aging substantially diminishes fertilization  

rates and subsequent embryonic development potential 

[1], whilst also increasing the risk of miscarriage  

and fetal malformation [4]. Oocyte aging adversely 

affects oocyte quality mainly in terms of morphology 

and organelles as well as biochemical and molecular 

perspectives [5]. In terms of morphology and organelles, 

aging oocytes exhibit perivitelline space (PVS) increases, 

first polar body degradation [6], zona pellucida (ZP) 

hardening [7], chromosome disorder [8] and spindle 

morphological abnormalities [9]. From the biochemical 

and molecular perspectives, aging is often accompanied 

by excessive intracellular ROS accumulation [10],  

GSH levels reduction [11] and Ca2+ oscillation signal 

disorder [12]. There is much evidence revealing the close 

relationship between aging and ROS [13–15]. Excessive 

accumulation of ROS causes oxidative damage to DNA, 

proteins, and lipids, and the accumulation of oxidative 

damage is a common feature of aging [16–18]. As a 

matter of fact, aging-induced oxidative damage typically 
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results in the malfunction or deactivation of multiple 

enzymes, which in turn causes DNA damage. The 

effects of DNA damage are varied. The blockage of 

gene transcription and DNA replication can result in 

various adverse effects, including cellular dysfunction 

or apoptosis [19]. With the gradual deepening of research 

on aging, especially oocyte aging, it has been found  

that supplementation with antioxidants during in vitro 

aging period can effectively delay oocyte aging, such as 

melatonin and coenzyme Q10 [20–23]. 

 

Ferulic acid (FA; 4-hydroxy-3-methoxycinnamic acid) 

is a natural antioxidant that is widely present in the  

cell walls of monocotyledonous plants [24]. It mainly 

prevents the occurrence of oxidative stress by scavenging 

excessive intracellular ROS [25]. In addition, FA has 

been shown to have antiaging effects [26]. Since aging 

is often accompanied by oxidative stress [10], we hypo-

thesized that FA can delay oocyte aging and improve 

oocyte quality by resisting oxidative stress. 

 

Here, we investigated the effect of FA on the abnormality 

rate of aging in bovine oocytes and evaluated the anti-

oxidant capacity, mitochondrial activity and membrane 

potential (MMP), ATP levels, apoptosis and sperm 

binding capacity of in vitro-aged bovine oocytes. Our 

results will help to clarify the molecular mechanism of 

oocyte quality control and provide some data support 

and reference value for delaying oocyte aging and 

improving animal reproduction. 

 

RESULTS 
 

FA palliates aging-induced oocyte morphological 

anomalies 

 

After 20–22 h of in vitro culture, the oocytes were 

matured and categorized as the Fresh group. The culture 

time was prolonged to achieve in vitro aging for 6 h,  

12 h, 24 h and 36 h. These oocytes were used and 

categorized as the Aged group (Figure 1A). Here, we 

detected the abnormality rate of oocytes. In this study, 

oocytes with a very granular PVS, large PVS, first  

polar body degradation, or nonuniform cytoplasm were 

considered as abnormal oocytes based on the observed 

oocyte morphology (Figure 1B). As shown in Figure 1C, 

there was a positive correlation between the abnormality 

rate of oocytes and the time of in vitro culture. Compared 

with that of the Fresh group (25.78 ± 2.83%, n = 93), 

the abnormality rates of oocytes aged for 12 h and 

above were significantly increased (in vitro aging for  

12 h: 59.03 ± 1.46%, n = 109, P < 0.001; 24 h: 69.13 ± 

3.77%, n = 114, P < 0.001 and 36 h: 83.78 ± 2.30%, n = 

97, P < 0.001). In order to ensure the proper conduct  

of subsequent experiments, in vitro aging for 12 h was 

selected for further studies. 

To explore the effect of FA on the abnormality rate of 

oocytes during in vitro aging, different concentrations 

of FA (0, 2.5, 5, 10 and 20 µM) were supplemented 

during in vitro aging process. As shown in Figure 1D, 

compared with the control group (72.74 ± 1.41%, n = 

179), the 2.5, 5 and 10 µM FA treatment groups had 

significantly lower abnormality rates of aging oocytes 

(2.5 µM: 63.36 ± 1.38%, n = 143, P < 0.05; 5 µM: 47.93 

± 1.30%, n = 199, P < 0.001; 10 µM: 59.08 ± 2.64%,  

n = 192, P < 0.001). Among them, the abnormality rate 

of aging oocytes in the 5 µM treatment group was the 

lowest. Therefore, a concentration of 5 µM was selected 

for subsequent studies. 

 

The ZP thickness and PVS size are important indicators 

for evaluating whether oocytes are abnormal and for 

evaluating subsequent embryonic development. Here, we 

used existing evaluation methods to calculate the above 

two indices (Supplementary Figure 1) [27]. The results 

were shown in Figure 1E–1G. Compared with those in 

the Aged group (thickness: 12.64 ± 0.81 µm, n = 25; size: 

3.83 ± 1.64 µm, n = 36), the thickness of the ZP (11.82 

± 1.22 µm, n = 20, P < 0.05) was significantly reduced, 

the size of the PVS (3.65 ± 1.00 µm, n = 26) showed no 

obvious change in the FA treatment group and higher 

than those in the Fresh group (thickness: 11.70 ± 1.36 

µm, n = 22; size: 2.42 ± 1.34 µm, n = 31). The above 

results showed that FA could effectively alleviate aging-

induced bovine oocytes morphological abnormality. 

 
FA relieves aging-induced oocyte oxidation resistance 

 
To explore the effect of FA on the antioxidant capacity 

of in vitro-aged oocytes, DCFH and CMF2HC were used 

to detect intracellular ROS and GSH levels, respectively. 

As shown in Figure 2A–2C, compared with those in 

Fresh group (ROS: 1.00 ± 0.03, n = 51; GSH: 1.00 ± 

0.02, n = 64), the ROS levels in Aged group were 

significantly increased (3.36 ± 0.21, n = 50, P < 0.001), 

and the GSH levels were significantly decreased (0.61 ± 

0.02, n = 52, P < 0.001). After FA supplementation, the 

levels of ROS in aged oocytes decreased significantly 

(1.18 ± 0.05, n = 39, P < 0.001), and the levels of GSH 

increased significantly (0.76 ± 0.03, n = 69, P < 0.001). 

To further explore the effect of FA on the antioxidant 

capacity of aging oocytes, we detected intracellular 

CAT and SOD activity. As shown in Figure 2D, 2E, the 

activity of CAT (0.29 ± 0.88, P < 0.001) and SOD (0.90 

± 0.01, P < 0.01) in the oocytes of the Aged group was 

significantly lower than that in the oocytes of the Fresh 

group (CAT: 1.00 ± 0.03; SOD: 1.00 ± 0.02), and the 

activity of the above two enzymes was significantly 

increased after FA supplementation (CAT:0.63 ± 0.13,  

P < 0.05; SOD:0.96 ± 0.02, P < 0.05). The above results 

indicated that FA could enhance the antioxidant capacity 

of aging oocytes. 
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Figure 1. FA palliates aging-induced oocyte morphological anomalies. (A) Timeline diagram of in vitro-aged bovine oocytes. (B) 

Representative images of oocyte morphological anomalies (a very granular PVS, large PVS, first polar body degradation, and nonuniform 
cytoplasm). (C) The abnormality rates of in vitro aging for 6 h, 12 h, 24 h and 36 h groups. R = 4. (D) The abnormality rates of oocytes in vitro 
aged 12 h treated with different concentrations of FA (0, 2.5, 5, 10, or 20 µM). R = 7. (E) Representative images of PVS morphology in the 
Fresh, Aged, and Aged + FA groups. Scale bars: 100 µm. (F, G) Thickness of ZP and size of PVS of Fresh, Aged, Aged + FA groups. *P < 0.05, 
**P < 0.01, and ***P < 0.001 indicate significant differences. 
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FA alleviates aging-induced oocyte mitochondrial 

dysfunction 

 

We used MitoTracker Red CMXRos and JC-1 dyes  

to stain oocytes to detect mitochondrial activity and 

MMP levels in oocytes, respectively. It is known to all 

that JC-1 monomers accumulate in mitochondria and  

form red fluorescent “J-aggregates” at a high MMP. At 

mitochondrial transmembrane potentials depolarised at 

low MMP, JC-1 exists as a green fluorescent monomer 

 

 
 

Figure 2. FA relieves aging-induced oocyte oxidation resistance. (A) Oocytes were stained with DCFH and CMF2HC to detect the 

intracellular ROS and GSH levels. Scale bar: 100 µm. R = 3. (B, C) Relative intracellular levels of ROS and GSH in bovine oocytes of the three 
groups (Fresh, Aged and Aged + FA group). (D, E) Relative intracellular activity of CAT and SOD in bovine oocytes from the three groups 
(Fresh, Aged, and Aged + FA). R = 4. *P < 0.05, **P < 0.01, and ***P < 0.001 indicate significant differences. 
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(Figure 3A). As shown in Figure 3A–3C, compared 

with those in the Fresh group (mitochondrial activity: 

1.00 ± 0.03, n = 40; MMP: 1.03 ± 0.03, n = 52), the 

mitochondrial activity and MMP levels of oocytes in the 

aged group were significantly decreased (mitochondrial 

activity: 0.63 ± 0.03, n = 44, P < 0.001; MMP: 0.39 ± 

0.02, n = 43, P < 0.001). After FA supplementation,  

the mitochondrial activity and MMP levels of aging 

oocytes were significantly increased (mitochondrial 

activity: 0.83 ± 0.03, n = 45, P < 0.001; MMP: 0.60 ± 

0.01, n = 42, P < 0.001). 

 

A decrease in MMP is often accompanied by changes 

in mitochondrial function, so we analyzed the intra-

cellular ATP levels. As shown in Figure 3D, compared 

with those in the Fresh group (1.00 ± 0.01, n = 300), 

the ATP levels of oocytes in the Aged group were 

significantly decreased (0.73 ± 0.02, n = 300, P < 

0.001). After FA supplementation, the ATP levels of 

aging oocytes were significantly increased (0.92 ± 

0.04, n = 300, P < 0.001). 

FA mitigates aging-induced cellular senescence and 

DNA damage 

 

To explore the effect of FA on the cellular senescence 

of aging oocytes, we detected SA-β-Gal activity in 

oocytes. As shown in Figure 4A, 4B, the SA-β-Gal 

activity of oocytes in the Aged group was significantly 

higher than that of fresh oocytes (Aged group: 8.05 ± 

0.26, n = 48; Fresh group: 1.00 ± 0.02, n = 50, P < 

0.001). After FA supplementation, the activity of SA- 

β-Gal in aging oocytes was significantly decreased 

(2.76 ± 0.09, n = 47, P < 0.001). 

 

As aging occurs, DNA damage accumulates. This will 

reduce the stability of DNA double strands, which will 

lead to the decrease of oocyte quality. Therefore, we 

examined the expression of the DNA double-strand 

damage repair marker γ-H2AX among the three groups 

(Figure 4C). As shown in Figure 4D, compared with 

that in the Fresh group (41.66 ± 1.61%, n = 39), the 

proportion of γ-H2AX-positive oocytes in the Aged 

 

 
 

Figure 3. FA alleviates aging-induced oocyte mitochondrial dysfunction. (A) Oocytes were stained with MitoTracker Red CMXRos 

and JC-1 dyes to detect intracellular mitochondrial activity and MMP levels. Scale bar: 100 µm. R = 3. (B, C) Relative intracellular levels of 
active mitochondria and MMP in bovine oocytes from the three groups (Fresh, Aged, and Aged + FA group). (D) Relative intracellular ATP 
levels in bovine oocytes from the three groups (Fresh, Aged, and Aged + FA group). R = 6. *P < 0.05, **P < 0.01, and ***P < 0.001 indicate 
significant differences. 
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group was significantly higher (84.16 ± 1.40%, n = 52, 

P < 0.001), while the positive proportion decreased to 

61.22 ± 5.98% after FA supplementation (n = 54, P < 

0.01). 

 
The above results indicated that FA reduced in  

vitro aging-induced DNA damage and breakage and 

maintained DNA stability. 

 
FA inhibits aging-induced oocyte apoptosis 

 

Persistent DNA damage is a trigger for apoptosis. To 

evaluate whether FA inhibited the apoptosis of aging 

oocytes, we detected the protein expression levels of 

cleaved caspase-3, Bax and Bcl2 (Figure 5). Western 

blot analysis showed that the expression levels of 

cleaved caspase-3 (1.42 ± 0.07, P < 0.01) and 

BAX/Bcl2 (1.54 ± 0.13, P < 0.01) in aged oocytes were 

significantly higher than those in fresh oocytes, while 

the expression levels of cleaved caspase-3 (1.14 ± 0.08, 

P < 0.05) and BAX/Bcl2 (1.19 ± 0.10, P < 0.05) in  

aged oocytes were significantly decreased after FA 

supplementation. The above results indicated that FA 

supplementation could inhibit the apoptosis of aging 

oocytes. 

FA improves the sperm-binding ability of aged 

oocytes 

 

To explore the effect of FA on the fertilization ability of 

aging oocytes, we detected the number of sperm bound 

to oocytes by sperm-oocyte binding analysis (Figure 6). 

The results showed that compared with that of the Fresh 

group (256.44 ± 14, n =27), the number of sperm bound 

to the ZP of oocytes in the aged group was significantly 

reduced (100.76 ± 6.26, n = 34, P < 0.001). After FA 

supplementation, the number of ZP-bound sperm in 

aged oocytes increased significantly (187.70 ± 14.26, n 

= 23, P < 0.01). The above results showed that FA 

supplementation could improve the fertilization ability 

of bovine oocytes. 

 

DISCUSSION 
 

IVM is a significant part of assisted reproductive 

technology (ART), and oocyte quality exerts an 

important effect on IVM efficiency [28]. When the in 
vitro culture time is prolonged, the oocyte quality 

decreases in a time-dependent manner [29]. Many 

studies have shown that the optimal culture time of 

bovine oocytes are 20–22 h [30–32]. Here, we extended 

 

 

 
Figure 4. FA mitigates aging-induced cellular senescence and DNA damage. (A) Representative fluorescence images of 
intracellular SA-β-Gal activity in the three groups (Fresh, Aged, and Aged + FA). Scale bar: 100 µm. R = 3. (B) Relative intracellular levels of 
SA-β-Gal in bovine oocytes from the three groups (Fresh, Aged, and Aged + FA group). (C) Representative fluorescence images of positive 
and negative γ-H2AX staining. Scale bar: 100 µm. R = 3. (D) The γ-H2AX positivity rate in bovine oocytes from the three groups (Fresh, Aged, 
and Aged + FA group). *P < 0.05, **P < 0.01, and ***P < 0.001 indicate significant differences. 
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the culture time to set up an in vitro aging model, which 

demonstrated the positive effect of FA on in vitro-aged 

bovine oocytes. 

 

Extensive results have shown that morphological 

abnormalities occur during IVM, especially after ex-

tended IVM period. These include a rise in the size  

of the PVS, an increase in debris within the PVS  

[6], fragmentation of the first polar body [33] and 

thickening of the ZP [34]. In this study, we observed the 

morphology of aged bovine oocytes at different culture 

time and treatment concentrations. In line with previous 

studies, our results suggest that the abnormality rate  

of oocytes increases in a time-dependent manner [29].

 

 
 

Figure 5. FA inhibits aging-induced oocyte apoptosis. (A, B) Representative Western blot images and relative expression levels of 

cleaved caspase-3 and BAX/Bcl2 in the three groups (Fresh, Aged, and Aged + FA group). R = 4. *P < 0.05, **P < 0.01, and ***P < 0.001 
indicate significant differences. 

 

 
 

Figure 6. FA improves the sperm binding ability of aged oocytes. (A) Representative fluorescence images of sperm binding to the 
surface of the zona pellucida surrounding oocytes stained with Hoechst 33342 from the three groups (Fresh, Aged, and Aged + FA group). 
Scale bar: 100 µm. R = 3. (B) Number of sperm binding to the surface of the zona pellucida surrounding oocytes from the three groups 
(Fresh, Aged, and Aged + FA group). *P < 0.05, **P < 0.01, and ***P < 0.001 indicate significant differences. 
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Moreover, FA supplementation has the potential to 

ameliorate the morphological abnormalities of aged 

oocytes. 

 

The balance between ROS and GSH is essential  

for maintaining normal cell function [35]. ROS are 

widely involved in biological processes such as folli-

cular development, meiosis, ovulation and embryonic 

development [36]. However, prolonged in vitro culture 

time can lead to excessive accumulation of ROS in 

unfertilized oocytes [37], resulting in oxidative stress 

that compromises oocyte quality [38, 39]. As a non-

enzymatic antioxidant, GSH is responsible for cleaning 

up the excessive ROS to maintain cellular redox balance 

to alleviate intracellular oxidative stress [40] and improve 

the antioxidant capacity of aged oocytes [3, 41, 42]. In 

this study, we found that FA supplementation alleviated 

the increase in intracellular ROS and the decrease  

in GSH caused by oocyte aging. In addition, studies 

have shown that, as important members of antioxidative 

defense, the activity of CAT and SOD will decrease 

with the aging process [41, 43]. Meanwhile, FA can 

reduce intracellular ROS levels by increasing the activity 

of the above two antioxidant enzymes, thereby alleviating 

oxidative stress in oocytes [44, 45]. As expected, the 

activity of CAT and SOD in aged oocytes was increased 

after FA supplementation. The results of the experiment 

provide clear support for the statement that FA improves 

in vitro-aged bovine oocyte quality by resisting oxidative 

stress. 

 

Mitochondria are the power sources of oocyte.  

They enable diverse physiological activities of cells by 

synthesizing ATP and have a fundamental role in 

oocyte maturation, fertilization and subsequent embryo-

nic development [46–48]. There is mounting evidence 

indicating that mitochondrial dysfunction, as a cause or 

consequence of oxidative stress, is intrinsically linked  

to the process of aging [49]. Studies have shown that 

significant reductions in mitochondrial activity, MMP 

level and ATP production in aging oocytes can severely 

affect oocyte quality, which in turn leads to a decrease 

in oocyte development potential [50–52]. Our results 

showed that FA alleviated the decrease in MMP  

and partially restored mitochondrial function in aged 

oocytes. These results provide evidence that exogenous 

antioxidant supplementation can improve mitochondrial 

function in aged oocytes and thus promote oocyte 

developmental potential [42, 53, 54]. 

 

Aging-induced oocyte mitochondrial dysfunction can 

easily cause DNA damage in cells [55]. γH2AX, a 

biomarker of DNA double-strand breaks, recruits DNA 

repair proteins at the end of broken chromosomes to 

 

 
 

Figure 7. Schematic diagram of the protective action of FA on in vitro-aged bovine oocytes. After FA supplementation, 

intracellular ROS, SA-β-Gal, and DNA damage were decreased, while intracellular GSH, activity of CAT and SOD as well as mitochondria 
activity and function (MMP, ATP production) were increased in aged oocyte. These may help oocyte delay aging process and improve 
oocyte quality. 
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repair DNA damage [56, 57]. Previous studies have 

shown that aging can lead to a significant increase  

in the amount of γH2AX in cells [58, 59], which is 

consistent with our results. After FA supplementation, 

we observed a significant decrease in the γH2AX 

positive proportion. This suggests that FA has the 

potential to alleviate DNA double-strand breaks 

induced by aging and maintain the stability of DNA 

double-strands. 

 

One of the prevalent cell responses to DNA damage is 

programmed cell death, or apoptosis [60, 61]. Caspase-

3 is a crucial zymogen during cellular apoptosis, and  

is activated by cleavage during this process [62].  

The antiapoptotic protein Bcl2 and the proapoptotic 

protein BAX induce apoptosis by permeabilizing  

the mitochondrial outer membrane (OMM) and then 

initiating the caspase cascade [63]. Our study found 

that the levels of cleaved caspase-3 and BAX/Bcl2  

in aged oocytes were significantly increased, which 

was consistent with the findings of previous studies 

[64, 65]. After FA supplementation, the levels of the 

above apoptosis-related proteins were significantly 

reduced. These results clearly support our hypothesis 

that FA can protect oocytes against in vitro aging-

induced apoptosis. 

 

Sperm binding ability is one of the indicators used to 

evaluate the quality of oocytes. Since the complex 

process of fertilization begins with the binding of 

sperm to the ZP [66], we evaluated the sperm binding 

ability of oocytes via a sperm-oocyte binding assay. 

Here, we found that FA can increase the number of 

sperm bound to aging oocytes. Studies have shown that 

oocyte aging is usually accompanied by changes in the 

ZP [4]. It has been confirmed in mouse oocytes that 

postovulatory aging can lead to abnormal distribution 

of cortical granules and ovastacin in oocytes, resulting 

in premature cleavage of ZP2 before fertilization,  

thus hindering the normal binding of sperm to oocytes 

[67]. Therefore, we speculated that FA might improve 

the binding ability of sperm by alleviating premature 

exocytosis of aged oocytes. 

 

In summary, this study revealed that bovine oocytes  

in vitro aged may lead to a series of molecular events 

in oocytes, including oocyte morphological abnor-

malities, oxidative damage, mitochondrial dysfunction, 

increasing apoptosis and decreasing sperm-oocyte 

binding ability. FA supplementation could effectively 

improve the quality of in vitro-aged bovine oocytes  

by improving the antioxidant capacity, ameliorating 

mitochondrial function and inhibiting apoptosis. The 
above results indicate that FA may be useful for 

delaying oocyte aging in other mammals and provide 

new ideas for improving oocyte quality (Figure 7). 

MATERIALS AND METHODS 

 
Chemicals and reagents 

 
Unless otherwise specified, all chemicals and 

reagents were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). FA (CymitQuimica, Spain, CAS: 

537-98-4) was diluted with DMSO to working 

concentrations of 2.5 µM, 5 µM, 10 µM and 20 µM. 

The control group was treated with the same 

concentration of DMSO. 

 
In vitro maturation and aging of bovine oocytes 

 
Bovine ovaries were collected from the local 

slaughterhouse and transported to the laboratory within 

2 hours at 37.5°C in normal saline supplemented with 

1% penicillin G (75 mg/L) and streptomycin sulfate  

(50 mg/L). Cumulus oocyte complexes (COCs) were 

extracted from follicles with a diameter of 2–8 mm 

using 10 mL disposable syringes with an 18-gauge 

needle. Under a stereomicroscope (Zeiss, Stemi 305), 

oocytes wrapped in three or more intact cumulus  

layers were selected, washed three times in HEPES, 

placed in in vitro maturation (IVM) medium (tissue 

culture medium 199 supplemented with 100 mM Na 

pyruvate, 10 ng/mL EGF, 10% fetal bovine serum,  

10 IU/mL follicle-stimulating hormone, 10 IU/mL 

luteinizing hormone and 2 µg/mL β-Estradiol), covered 

with mineral oil (Sage, ART-4008-5P) and placed  

in an environment under 38.5°C and 5% CO2 until 

maturation. For subsequent experiments, all experiments 

were performed on the basis of using 0.2% hyaluronidase 

to remove the cumulus cells of naked oocytes. 

 
In vitro aging treatment 

 
Oocytes were cultured to maturity (in vitro culture 

for 20 h), and the culture time was extended to 26, 

32, 44 and 56 h to observe the abnormality rates. 

Subsequent experiments were carried out on naked 

oocytes. 

 
Intracellular ROS and GSH level assay 

 
To determine intracellular ROS and GSH levels, oocytes 

were treated with 2.5 µg/L 2′,7′-dichlorodihydrofluo-

rescein diacetate (DCFH; S0033, Beyotime, China) or 

10 µM 4-chloromethyl-6,8-difluoro-7-hydroxycoumarin 

(CMF2HC; C12881, Invitrogen, USA) and incubated in 

PBS-PVA medium at 37°C for 30 min. After washing 
the oocytes in PBS-PVA three times, the fluorescence 

intensity of each group of oocytes was captured by 

using a fluorescence microscope (Nikon, S22-LGB) and 
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photographed. The fluorescence intensity was analyzed 

using ImageJ software (NIH, Stapleton, NY, USA). 

 
Superoxide dismutase and catalase activity assay 

 
The superoxide dismutase (SOD) activity and catalase 

(CAT) activity were measured using a WST-8 total 

superoxide dismutase detection kit (Beyotime, S101S) 

and a catalase detection kit (BC0205, Solarbio, China). 

After preparing the standard reaction solution and 

curve, 40 oocytes were dissolved in the relevant lysis 

buffer and incubated with the reaction buffer for 30 

min. Finally, the absorbance values were measured  

by a microplate reader (SpectraMax i3× Multi-Mode 

Detection Platform, Molecular devices, China), and 

the activity of SOD and CAT was calculated based on 

the absorbance values and standard curves. 

 
Mitochondrial activity assay 

 
To assess mitochondrial activity, oocytes were 

incubated in the IVM medium accompanying 

MitoTracker Red CMXRos (Invitrogen, M7512) at 

37°C for 30 min. After washing three times in PBS-

PVA, the fluorescence intensity of each group of 

oocytes was captured by fluorescence microscope and 

photographed, and the fluorescence intensity was 

analyzed by ImageJ software. 

 
MMP assay 

 
To determine the level of MMP, oocytes were incubated 

in PBS-PVA containing 2 µM 5,5′,6,6′-tetrachloro-

1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide 

dye (JC-1; Beyotime, C2006) at 37°C for 30 min. After 

washing the oocytes in PBS-PVA three times, images 

were captured by using a fluorescence microscope, and 

the fluorescence intensity was analyzed by using ImageJ 

software. The average MMP of oocytes was calculated 

as the ratio of red fluorescence intensity (corresponding 

to activated mitochondria) to green fluorescence 

intensity (corresponding to inactive mitochondria). 

 
Intracellular ATP levels assay 

 
Intracellular ATP levels were measured using an ATP 

assay kit (Beyotime, S0027). Briefly, 50 oocytes were 

collected from each group into a 1.5 ml centrifuge tube 

containing 45 µL of lysis buffer. The cells were lysed 

by ultrasound and centrifuged at 12,000 rpm for 5 min 

at 4°C. The supernatant was taken for subsequent 

determination. Then, 100 µL of ATP working solution 

and 20 µL of supernatant were added to a 96-well 

opaque plate, and the mixtures were measured by a 

microplate reader. The intracellular ATP levels were 

calculated according to the measured value and the 

standard curve. 

 

Intracellular senescence-associated β-galactosidase 

(SA-β-gal) activity assay 
 

Intracellular SA-β-gal activity was measured by  

using a Cellular Senescence Detection Kit - SPiDER-

βGal (SG03, Dojindo, Japan). Briefly, oocytes were 

cultured in an environment under 38.5°C and 5%  

CO2 for 1 h after adding 1 mL of Bafilomycin A1 

working solution. Subsequently, 1 mL of SPiDER-

βGal working solution was added, and the oocytes 

were cultured in an environment under 38.5°C and  

5% CO2 for 30 min. After washing three times in 

PBS-PVA, the fluorescence intensity of each group  

of oocytes was captured by fluorescence microscope 

and photographed, and the fluorescence intensity was 

analyzed by ImageJ software. 

 

Sperm binding assay 

 

Straw frozen semen was removed from liquid 

nitrogen and thawed. The purified sperm were 

obtained by density gradient centrifugation on  

Percoll and resuspended so that the sperm density 

was 1 × 106/mL. Oocytes and resuspended sperm 

were co-incubated in IVF drops in an environment 

under 38.5°C and 5% CO2 for 1 h. Then, they were 

fixed in PBS-PVA containing 4% paraformaldehyde 

for 30 min. After fixation, PBS-PVA was used to 

wash three times, after which the samples were 

transferred to 10 µg/mL Hoechst 33343 to label the 

spermatid nuclei. Afterward, the stained sperm-oocyte 

complexes were mounted onto glass slides, examined 

and photographed by a microscope under fluorescent 

light. The sperm number was analyzed by ImageJ 

software. 
 

Immunofluorescence staining 
 

Oocytes were fixed in PBS-PVA containing 4% 

paraformaldehyde for 30 min and permeabilized in 

0.3% Triton X-100 at room temperature for 15 min. The 

oocytes were then blocked in PBS-PVA containing 3% 

BSA at room temperature for 2 hours. Next, the oocytes 

were incubated with a primary anti-H2AX antibody 

(9718S; CST, USA) at 4°C overnight. After first 

antibody incubation, the oocytes were washed three 

times in PBS-PVA, and the oocytes were incubated 

with goat anti-rabbit IgG (CST; 4413S for H2AX 

staining) at room temperature for 2 hours. Afterward, 

the oocytes were transferred to 10 µg/mL Hoechst 

33343 at room temperature for 15 min. Fluorescence 

microscopy was used to determine the positivity and 

negativity of γ-H2AX. 
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Western blot 

 

For Western blotting, 70 oocytes were collected  

and lysed in SDS lysis buffer (40% ddH2O, 20% 

glycerol, 20% SDS, 12.5% 0.5 M Tris-HCl, 20 mM  

β-mercaptoethanol and trace bromophenol blue) and 

incubated in a 95°C metal bath for 10 min. Next, the 

total protein was separated by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) and 

transferred to a polyvinylidene fluoride membrane 

(Millipore, Billerica, MA, USA). Blocking buffer 

(WLA066a, Wanleibio, China) was used to block  

the transferred membrane, and the membrane was 

incubated overnight with first antibodies against β-

actin (CST, 4970T), Bcl2 (Proteintech, 12789-1-AP), 

BAX (Proteintech, 50599-2-Ig) and Caspase-3 (CST, 

9662S) at 4°C. After washing in TBST 3 times for  

10 min each time, the membrane was incubated with 

goat anti-rabbit IgG (CST, 7074S) at room temperature 

for 1 hour. The images were analyzed with a Tanon 

5200 image analyzer (Tanon, China), and ImageJ 

software was used for visualization and analysis. 

 

Statistical analysis 

 

All the above experiments were repeated at least three 

times. The statistical results are expressed as the mean ± 

standard error of the mean (SEM). The total number  

of oocytes used in each experiment (n) is shown by the 

bar. The number of independent repetitions (R) is shown 

in the diagram annotation. Statistical analysis was per-

formed by one-way analysis of variance (ANOVA). All 

statistical analyses were performed using SPSS version 

22.0 (IBM, Chicago, IL, USA) software. Significant 

differences are expressed as (*P < 0.05), (**P < 0.01) 

and (***P < 0.001). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Calculation method for the size of each part of the oocyte. Diameter of cytoplasm (A) = (A1 + A2)/2. 

Inner diameter of zona pellucida (B) = (B1 + B2)/2. Outer diameter of zona pellucida (C) = (C1 + C2)/2. Thickness of zona pellucida = (C − 
B)/2. Size of perivitelline space = (B − A)/2. Abbreviations: ZP: Zona pellucida; PVS: perivitelline space; PB: first polar body. 

 

 


