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INTRODUCTION 
 

Prostate cancer (PRAD) has the second highest incidence 

among all male malignant tumors [1]. According to 
estimates, there will be 34,500 PRAD deaths and roughly 

268,490 new cases of PRAD in the United States by 

2022. 1,414,259 new cases and 375,304 deaths were 

recorded worldwide in 2020 [2]. The standard treatment 

for localized PRAD embraces radical prostatectomy and 

radical radiation therapy. Although the majority of PRAD 

patients are cured, approximately 35% of patients  

with radical prostatectomy [3] and 30–50% of patients 

with radical radiotherapy [4] experience biochemical 
recurrence (BCR) within 10 years. These patients will 

ultimately develop castration-resistant PRAD [5], leading 

to death in 32–45% of patients within 15 years [6]. In 
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ABSTRACT 
 

Prostate cancer (PRAD) is one of the common malignant tumors of the urinary system. In order to predict the 
treatment results for PRAD patients, this study proposes to develop a risk profile based on endoplasmic 
reticulum stress (ERS). Based on the Memorial Sloan-Kettering Cancer Center (MSKCC) cohort and the Gene 
Expression Omnibus database (GSE70769), we verified the predictive signature. Using a random survival forest 
analysis, prognostically significant ERS-related genes were found. An ERS-related risk score (ERscore) was 
created using multivariable Cox analysis. In addition, the biological functions, genetic mutations and immune 
landscape related to ERscore are also studied to reveal the underlying mechanisms related to ERS in PRAD. We 
further explored the ERscore-related mechanisms by profiling a single-cell RNA sequencing (scRNA-seq) dataset 
(GSE137829) and explored the oncogenic role of ASNS in PRAD through in vitro experiments. The risk signature 
composed of eight ERS-related genes constructed in this study is an independent prognostic factor and 
validated in the MSKCC and GSE70769 data sets. The scRNA-seq data additionally revealed that several 
carcinogenic pathways were noticeably overactivated in the group with high ERS scores. As one of the 
prognostic genes, ASNS will significantly inhibit the proliferation, migration and invasion abilities of PRAD cells 
after its expression is interfered with. In conclusion, this study developed a novel risk-specific ERS-based clinical 
treatment strategy for patients with PRAD. 
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order to anticipate recurrence risk and adjust active 

surveillance, it is essential to ascertain early biomarkers 

of PRAD progression and BCR [7]. Nevertheless, 

emerging pathological parameters have been distin-

guished for the early prognosis of PRAD, which still 

have some limitations in clinical practice [8]. 

Consequently, recognizing prognostic biomarkers for 

PRAD progression is momentous to foresee the risk of 

recurrence. 

 

The principal location for protein folding and calcium 

storage is the endoplasmic reticulum (ER), which also 

regulates the formation of lipid membranes and 

intracellular cholesterol [9]. Contrarily, endoplasmic 

reticulum stress (ERS) is justified by interfering with 

the ER’s mechanism for folding proteins in the face of 

stressful conditions such as hypoxia, oxidative stress, 

aberrant glycosylation, and calcium homeostasis, which 

leads to the buildup of misfolded or unfolded proteins 

[10]. In addition, genetic alterations can also promote 

ERS and continuously activate unfolded protein 

response (UPR) pathways [11]. It was detected  

that excessive activation of ERS will deplete ATP in 

cells, causing autophagy and even apoptosis [12]. 

Furthermore, ERS plays an integral role in tumor 

development. It modifies the balance between tumor 

cell death, dormancy, and aggressive development in 

addition to specifically affecting how sensitive solid 

tumors are to chemotherapeutic treatments [13]. On the 

other hand, it has been shown that this situation alters 

the activity of immune systems in the tumor 

microenvironment (TME), which inhibits the growth 

and recurrence of cancer [14]. Accumulating researches 

demonstrated that ERS was associated with tumor 

development, aggressiveness, and response to 

analogous treatments in hepatocellular carcinoma [15] 

and breast cancer [16]. Furthermore, a recent study has 

displayed that the forecast of prognosis of bladder 

cancer patients was involved with ERS-related 

lncRNAs [17]. The potential function of ERS-related 

genes in PRAD has not yet been clarified. 

 

In our study, we obtained transcriptome data and related 

clinical information based on The Cancer Genome Atlas 

(TCGA) database and extracted ERS-related gene sets 

from the Molecular Signature Database (MSigDB). 

Additionally, we obtained data from the Memorial 

Sloan-Kettering Cancer Center (MSKCC) and Gene 

Expression Omnibus (GEO) database. Then, we used 

the MSKCC and GSE70769 cohorts as the validation 

set and the TCGA cohort as the training set. We 

concentrated on researching the effect of ERS-related 

genes on predicting BCR risk in PRAD patients and 

examining their possible processes on tumor 

development and progression by connecting pertinent 

genes to PRAD clinical cases. 

METHODS 
 

Data collection and preprocessing 

 

We downloaded RNA profile information in TPM 

format of 501 PRAD tumors and 52 normal tissues and 

corresponding clinical data from the TCGA database 

https://portal.gdc.cancer.gov/. We downloaded RNA 

data and related clinical data of 231 PRAD patients 

from the MSKCC database http://cbio.mskcc.org/ 

cancergenomics/prostate/ [18]. In addition, we down-

loaded GSE70769 containing RNA expression data and 

corresponding clinical information of 94 PRAD patients 

from the GEO database https://www.ncbi.nlm.nih. 

gov/geo/ [19]. Next, we used the datasets IMvigor210 

and GSE91016 to predict the efficiency of 

immunotherapy [20, 21]. We collected a single-cell 

RNA sequencing (scRNA-seq) dataset (GSE137829) 

from 6 PRAD patients and used the “seurat” R 

package for quality control, cell clustering, and 

annotation. 

 

Consensus clustering analysis 

 

A total of 252 ERS-related genes were downloaded 

from MSigDB https://www.gsea-msigdb.org/gsea/ 

msigdb/index.jsp and provided in Supplementary Table 

1. PRAD samples were clustered into subgroups based 

on these genes by the Non-negative Matrix 

Factorization (NMF) approach with the “NMF” R 

package. We used the Kaplan-Meier survival curves to 

compare the subgroups’ biochemical recurrence-free 

(BCRF) survival between the subgroups. Two gene sets 

(c2.cp.kegg.v7.1.symbols.gmt and c7.all.v7.5.1.symbols. 

gmt) from the MsigDB database were extracted to 

estimate the differences in biological functions and 

immune activities between the subgroups using the 

Gene Set Variation Analysis (GSVA) with the “GSVA” 

R package. The statistically significant cutoff for GSVA 

was p.adjust < 0.05. 

 

Generation of ERS-related signature 

 

We used the TCGA cohort as a training set to create 

ERS-related risk signatures, and used MSKCC and 

GSE70769 data sets to validate the performance of the 

risk signatures. By using univariate Cox analysis and 

random survival forest (RSF) analysis, we reduced the 

number of prognostic genes. The best ERS-associated 

risk signature was then created using multivariable 

Cox regression analysis based on the respective 

coefficients (β) and gene expression levels (Exp). 

Based on the median ERscore, we then split the patient 

population into high- and low-risk groups. The 

prognostic differences between the two patient groups 

were assessed using the Kaplan-Meier method. We 
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also looked at the relationships between ERscore  

and age, PSA, TN stage, Gleason score (GS), and BCR 

among other clinical parameters. To assess the 

predictive importance of ERscore, both univariate  

and multivariate Cox analyses were performed. We 

simultaneously gathered the MSKCC and GSE70769 

validation sets to confirm the ERscore’s predictive 

ability. 

 

Functional enrichment analysis 

 

We performed a differential analysis between high-risk 

and low-risk groups. We analyzed differential genes 

between high and low risk groups by performing Gene 

Ontology (GO) enrichment and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) enrichment. We used 

genomic variation analysis (GSVA) to compare the 

oncogenic signature pathways (h.all.v7.1.symbols) 

recorded in the MSigDB database between the two 

cohorts and screen out signature pathways with 

significant differences (p.adjust < 0.01). We used gene 

set enrichment analysis (GSEA) to analyze the same 

signature pathways and compare (FDR < 0.25, NES > 1 

and p.adjust < 0.05). The predictive relevance of GSVA 

and GSEA overlapping feature paths was evaluated 

using the Kaplan-Meier method. 

 

Mutation analysis 

 

The TCGA database was used to retrieve somatic 

mutations in PRAD patients. In different risk groups, 

the “maftools” R program may investigate particular 

somatic mutational variations. Next, we investigated 

the enrichment of oncogenes, known oncogenic 

pathways, co-occurring or exclusive mutations between 

the two groups. It was determined whether the tumor 

mutation burden (TMB), which represents the overall 

mutation count for each PRAD patient, correlated with 

ERscore. 

 

Assessing the immune landscape and tumor 

treatment response 

 

Between high risk and low risk groups, we examined 

variations in immune cell abundance, immunological 

function, and immune checkpoints. Based on RNA 

expression patterns in PRAD patients, the Tumor 

Immune Dysfunction and Elimination (TIDE) algorithm 

http://tide.dfci.harvard.edu/ [22] was utilized to predict 

an immunotherapy response. ERscore and prospective 

immunotherapy effectiveness were correlated using the 

IMvigor210 and GSE91061 datasets, respectively. The 

“pRRophetic” R package predicted the IC50 value of 

the chemotherapy medication for each patient at the 

same time as we looked into how the two groups 

responded to chemotherapy. 

scRNA-seq data analysis 

 

Next, we employed the GSE137829 dataset to 

investigate the single-cell characteristics of PRAD. 

After sample preprocessing, the “harmony” and 

“copykat” R packages were utilized to adjust the batch 

effect of samples and identify malignant cells. Utilizing 

the “AUCell” R package, we determined the activity of 

genesets associated with ERscore in various types of 

single cells. We divided all of the cells into high and 

low groups based on the AUC score. The “CellChat” R 

program was used to analyze variations in signaling 

pathways across groups with high and low ERS scores 

and predict cell-cell interactions. 

 

Cell culture and transfection 

 

PRAD cells (PC-3 and DU145) and normal prostate 

epithelial cells (RWPE-1) were acquired from the 

American Type Culture Collection (ATCC, Manassas, 

VA, USA). PC-3 cells were cultured in RPMI-1640 

medium; DU-145 cells were incubated in DMEM 

medium; RWPE-1 cells were cultured in Keratinocyte 

Serum Free medium. Fetal bovine serum (10% FBS) 

was added to all the cells, which were then grown at 

37°C in a 5% CO2 environment. We applied siRNA to 

knock down ASNS. ASNS siRNA (sense: 

CCAAAUGGCAAAGUUGCAUTT, antisense: AUG 

CAACUUUGCCAUUUGGCT) was obtained and 

transfected into PC-3 cells. 

 

RNA extraction and qRT-PCR 

 

Total RNA was isolated using TRIzol reagent (MRC, 

Cincinnati, OH, USA). Then, M-MLV Reverse 

Transcriptase (Promega, Madison, WI, USA) was 

utilized to perform reverse transcription. Subsequently, 

qRT-PCR was performed by the HGoTaq® qPCR 

Master Mix (Promega, Madison, WI, USA). The 

following PCR primers were used: ACTB forward: 5′-

CTCCATCCTGGCCTCGCTGT-3′; reverse: 5′-ACTA 

AGTCATAGTCCGCCTAGA-3′. ASNS forward: 5′-

TGAGGAAGGCATTCAGGCT-3′; reverse: 5′-CACG 

CTATCTGTGTTCTTCCG-3′. 

 

Western blot analysis 

 

The total protein of cells was obtained using RIPA lysis 

buffer (Servicebio, Wuhan, China). Equal amounts of 

different protein samples were separated by SDS-PAGE 

gel and then transferred to PVDF membrane. 

Membranes were blocked with 5% nonfat milk for 1 h 

and incubated with primary antibodies against ASNS 
(Biorbyt Ltd., #orb340938) or GAPDH (Aksomics, 

#KC-5G5) overnight at 4°C. Anti-rabbit IgG 

(SouthernBiotech, #4050-05) served as the secondary 

http://tide.dfci.harvard.edu/
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antibody. Blots were visualized using V370 Flatbed 

Photo Scanner (EPSON, Singapore). 

 

Cell counting Kit-8 (CCK-8) assays 

 

Cell viability of PC-3 cells was monitored through 

CCK-8 (APExBio, Houston, TX, USA). PC-3 cells 

were seeded in the 96-well plates. The Optical Density 

(OD450) was evaluated on days 1–5. 

 

5-Ethynyl-2′-deoxyuridine (EdU) assays 

 

EdU assays were performed with the EdU DNA Cell 

Proliferation Kit (Beyotime, Shanghai, China). PC-3 

cells were seeded into 96-well plates and incubated for 

2 days. The EdU and the Hoechst 33342 staining were 

conducted based on the manufacturer’s protocol. The 

images were obtained using the inverted fluorescence 

microscope (Olympus, Singapore), and the percentage 

of EdU-positive cells was computed. 

 

Transwell assay 

 

To evaluate the invasive ability of PRAD cells, a 

transwell chamber (Corning, NY, USA) was coated 

with Matrigel (Corning, NY, USA). The upper 

chambers were seeded with PC-3 cells in an FBS-free 

medium. Media consisting of 10% serum were added to 

the lower chamber. Cells were cultured at 37°C for 24 

h, and the remaining cells were swept using a cotton 

swab. The cells that had infiltrated the chamber’s 

bottom were then fixed with 4% methanol at 37°C for 

10 min, followed by 15 min of staining with a 0.1% 

crystal violet solution in the same environment. A 

microscope was used to count the invading cells in three 

randomly selected fields. 

 

Wound-healing assay 

 

The wound-healing assay was performed to assess the 

targeted cells’ migration capacity. PC-3 cells were 

seeded into 6-well plates and cultured until the cells 

surface reached a 95% confluence. The cell surface was 

scratched slowly and evenly to create a blank area, and 

the medium was changed to an FBS-free medium. The 

cell migration was photographed at 0 and 24 h under the 

inverted microscope. The relative migration rate was 

calculated. 

 

Statistical analysis 

 

In this work, RStudio (version 4.0.2) and GraphPad 

Prism 8.0 were used to perform all statistical analyses. 
To evaluate differences between continuous variables, 

the unpaired Student’s t-test was applied. To investigate 

the association between categorical parameters, the 

chi-square test was applied. For the majority of studies, 

statistical significance was experimentally fixed at a 

two-tailed p < 0.05. 

 

Data availability statement 

 

The datasets in our research are publicly available, 

which can be found in TCGA and GEO databases. 

 

RESULTS 
 

The consensus clustering of ERS-related genes 

 

The flow chart of this study is shown in Figure 1. Based 

on the expression profile of ERS-related genes, PRAD 

patients were divided into two categories (Figure 2A, 

Supplementary Figure 1). Cluster 2 exhibited a 

considerably greater BCRF survival than cluster 1, 

according to the Kaplan-Meier analysis. (Figure 2B). 

GSVA enrichment analysis discovered that cluster 1 

was mainly correlated with mutation-relevant pathways 

such as homologous recombination, base excision 

repair, RNA replication, and mismatch repair. On the 

contrary, cluster 2 was significantly enriched in glucose 

and amino acid metabolism including glycan 

biosynthesis and degradation, glycosaminoglycan 

degradation, propanoate metabolism, beta-alanine 

metabolism, and tryptophan metabolism (Figure 2C). 

Further results of GSVA also revealed remarkable 

differences in immunological functions between the two 

clusters (Figure 2D). Taking together, our findings 

uncovered that the two ERS-related subgroups were 

well separated and distinct in prognostic outcomes and 

biological functions. 

 

Construction of ERS-based model 

 

We firstly identified 47 genes associated with 

prognosis in the TCGA cohort. (Figure 3A). Fourteen 

candidates were further selected through RSF for 

model development using minimum depth techniques 

(Figure 3B, 3C). Using multivariate Cox regression, the 

last eight relevant genes were selected to create an 

ERscore, namely ASNS, FCGR2B, UFM1, SHC1, 

ATP6V0D1, PPP2R5B, MBTPS1, and EIF2B5. The 

formula was: 

 

 
8

1
ERscore ( )i ii

Exp 
=

=   

 
(Table 1, Figure 3D). We classified patients into high- 

and low-risk groups based on the median ERscore. The 

high-risk group’s BCRF survival was considerably 

lower than that of the low-risk group’s (Figure 3E). 

Figure 3F displayed the ERscore distribution, survival 

status, and ERscore profile for these individuals. For 1-, 
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3- and 5-year BCRF survival, the AUCs of the ERscore 

were 0.722, 0.740, and 0.754, respectively (Figure 3G). 

We conducted further investigation and discovered that 

a greater ERscore was linked to a poorer TN stage, a 

higher GS, and a higher likelihood of BCR (Figure 4A). 

Moreover, high-risk patients were more likely to come 

from cluster 1 with a poorer prognosis (Figure 4B). 

Furthermore, in univariate Cox regression, it was found 

that ERscore and clinical traits were significantly 

related to BCRF survival. ERscore was revealed to be 

an independent predictive predictor (Figure 4C). The 

accuracy of ERscore’s prediction was also supported by 

ROC analysis (AUC = 0.696, Figure 4D). The 

prognostic value of ERscore was also confirmed 

 

 
 

Figure 1. This study’s design and flowchart. 
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through the validation set (MSKCC and GSE70769) 

(Figures 3H–3M and 4E, 4F). These results suggest that 

ERscore has the potential to guide clinical treatment. 

 

Functional enrichment analysis 

 

We performed GO and KEGG enrichment analyses in 

order to investigate the underlying mechanism of 

ERscore. The PI3K-Akt signaling pathway, the p53 

signaling pathway, mitotic spindle assembly, chromo-

somal segregation, immunoglobulin receptor binding, 

and B cell receptor signaling pathways were all 

demonstrated to be associated with ERscore (Figure 5A, 

5B). According to the above GO and KEGG items, 

ERscore may be related to immunological processes, 

tumor mutations, and carcinogenic pathways. Following 

the inclusion of 50 oncogenic signature pathways in 

GSVA, results revealed that 7 signature pathways 

considerably increased in high-risk patients whereas 11 

pathways dramatically reduced in low-risk patients 

(Figure 5C). Seven genes were highly elevated in the 

high-risk group, according to GSEA analysis, whereas 

six genes were downregulated in the low-risk group 

(Figure 5D). Using the Kaplan-Meier approach to 

analyze the intersection-derived pathways, different 

BCRF survival probabilities for a number of well-

known oncogenic pathways were found such as 

E2F_TARGETS, MYC_TARGETS_V1, G2M_CHECK-

POINT, and ANDROGEN_RESPONSE (Figure 5E). 

This suggests that ERscore has a role in a variety of 

biological processes, particularly carcinogenic pathways 

in PRAD. 

 

Somatic mutation analysis 

 

Waterfall plots were used to illustrate the genetic 

mutation landscape between high- and low-risk 

populations (Figure 6A, 6B). TP53, SPOP, TTN,  

 

 

 
Figure 2. The consensus clustering of ERS-related genes predicted the BCRF survival of PRAD patients. (A) The consensus 

matrix (k = 2) was acquired using the NMF method. (B) Kaplan-Meier analysis demonstrated that cluster 2 had a significantly better BCRF 
survival. (C, D) GSVA analysis for pathways enrichment and immunological functions. 
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FOXA1, and ATM were the top five most often mutant 

genes in the high-risk group, while TTN, SPOP, TP53, 

KMT2D, and MUC16 were the top five most frequently 

mutated genes in the low-risk group. Furthermore, we 

analyzed co-occurring or exclusive mutations in the top 

25 mutated genes between the two cohorts, but no 

 

 
 

Figure 3. The establishment of ERscore and verification of its prognostic efficiency. (A) Univariate Cox regression analysis 
recognized 47 prognosis-associated genes. (B) Correlations between error rate and classification trees. (C) The relative importance of 
prognosis-associated genes. (D) The corresponding coefficients of ERscore-constructed genes. (E) The Kaplan-Meier method unveiled a 
significantly worse BCRF survival of the high-risk cohort compared to the low-risk cohort. (F) The illustrations of all patient’s survival 
condition, risk variations, and ERscore distributions. (G) ROC approach validated that ERscore was a promising prognostic indicator. (H–M) 
The outcomes of MSKCC and GSE70769 cohorts also validated ERscore’s prognostic value. 
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Table 1. The prognostic significance of the 8-genes signature. 

ERS-related gene Coef 

ASNS 2.220676006 

FCGR2B 1.489245428 

UFM1 −0.971498354 

SHC1 0.808327395 

ATP6V0D1 −0.469498761 

PPP2R5B 0.642209931 

MBTPS1 −0.541691574 

EIF2B5 1.627293875 

 

 
 

Figure 4. The prognostic value of ERscore and clinical variables. (A) Relationship between ERscore and clinical features. (B) 

Correlations between consensus clustering and ERscore of PRAD patients. (C) Univariate and multivariate Cox regression analyses of 
ERscore and clinical features in TCGA, MSKCC, and GSE91061 cohorts. (D–F) ROC method revealed the prognostic significance of ERscore in 
TCGA, MSKCC, and GSE70769 cohorts, respectively. 
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significant differences were observed (Figure 6C). The 

MYC, NRF, and PI3K signaling pathways were greatly 

enhanced while the TGF-Beta signaling pathway was 

dramatically decreased in the high-risk group, according 

to mutation enrichment of carcinogenic pathways 

(Figure 6D). In contrast to PIK3CA and FOXA1, which 

were exclusively enriched in the high-risk group, SPOP 

was shown to be enriched in both high- and low-risk 

populations in our research of carcinogenic genes 

(Figure 6E, 6F). This shows that PIK3CA and FOXA1 

 

 
 

Figure 5. Investigation of underlying mechanism regarding ERscore. (A) GO enrichment analysis of ERscore. (B) KEGG pathway 

analysis of ERscore. (C) Determination of oncogenic hallmark pathways in terms of the ERscore risk cohorts utilizing GSVA. (D) The GSEA 
outcomes for the hallmark pathways between the high- and low-risk patients. (E) Kaplan-Meier curve uncovered the BCRF survival in 
overlapping hallmark pathways between GSVA and GSEA. 
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have a significant role in the development of ERS-related 

tumors. The relationship between ERscore and TMB is 

also favorable (Figure 6G, 6H). Survival analysis 

also showed that patients with high TMB and high risk 

scores were associated with poor prognosis (Figure 6I). 

Immune landscape and treatment response 

 

By examining the immune environment of the tumor, 

we found that the high-risk group had more immune 

cells, including T cells, B cells, NK cells, and 

 

 
 

Figure 6. Genetic mutations landscape in terms of the ERscore risk cohorts. (A, B) Waterfall plots of genetic mutations in high- and 

low-risk groups, respectively. (C) The co-occurring or exclusive mutations across the top 25 mutated genes between the two cohorts. (D) The 
results of mutation enrichment of remarkable oncogenic pathways. (E, F) The investigation of tumorigenic genes in high- and low-risk groups, 
respectively. (G) The relationship of ERscore and TMB. (H, I) Kaplan-Meier curve revealed the BCRF survival in distinct TMB and ERscore groups. 
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macrophages infiltrating than the low-risk group (Figure 

7A). Furthermore, most immune-related pathways were 

significantly elevated in the high-risk group, including 

immune checkpoints, cytolytic activity, HLA function, 

and T cell costimulation (Figure 7B). In addition, we 

found that immunosuppressive receptor expression was 

higher in patients at higher risk (PD-1, CTLA4, BTLA, 

and LAG3) as well as immunosuppressive ligands 

(LGALS9 and TNFSF14) (Figure 7C). Patients in high-

 and low-risk groups did not significantly differ in their 

responses to immunotherapy, according to the TIDE 

algorithm (Figure 7D). The anticipated outcomes from 

the GSE91061 cohort did not reveal this difference, 

despite the fact that patients with higher ERscores in the 

IMvigor210 cohort had a stronger anti-PD-1 response 

than patients with lower ERscores (Figure 7E, 7F). 

 

 
 

Figure 7. Immune landscape and treatment response prediction. (A) Estimation of immune cell infiltration in high- and low-risk 

teams. (B) Explorations of immunological responses in terms of the ERscore risk groups. (C) Correlations between ERscore and immune 
checkpoints. (D) TIDE algorithm identified the difference in immunotherapy response between high- and low-risk groups. (E, F) The 
prediction of immunotherapy response using IMvigor210 and GSE70769 cohorts. (G) The prediction of chemotherapy response of PRAD 
patients with different ERscores. *p < 0.05, **p < 0.01, ***p < 0.001. Abbreviation: ns: not significant. 
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We assessed the chemotherapeutic response of PRAD 

patients with various ERscores in considering the fact 

that PRAD has poor response to immunotherapy. Our 

results demonstrate that various chemotherapeutic 

agents, including 5-fluorouracil, cyclopamine, imatinib, 

and salubrinal, have much lower IC50 values in high-

risk individuals (Figure 7G). 

scRNA-seq data analysis 

 

After sample preprocessing, the cells were clustered and 

annotated into 10 major clusters fibroblasts, epithelial 

cells, malignant cells, myofibroblasts, plasma cells, 

myeloid cells, T cells, endothelial cells, B cells, and 

mast cells (Figure 8A, Supplementary Figure 2). 

 

 
 

Figure 8. The association of ERS-based signature with the scRNA-seq characteristics. (A) UMAP plot revealed the composition of 

10 main clusters derived from PRAD scRNA seq data. (B) The AUC score (activity) of ERS-based signature in 10 main clusters. (C) Circos plots 
showed inferred ligand-receptor interactions of the high and low ERS score groups. (D) Differences in intercellular interactions (number and 
strength) of all cells between the high and low score groups. (E–H) Circos plots displayed the differences in EGF, VEGF, PDGF, and IGF 
signaling pathways between the high and low score groups. 
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Subsequently, we divided all cells into high and low 

groups based on ERS-related AUC scores (Figure 8B). 

The high ERS score group showed enhanced 

intercellular interactions in number and strength based 

on ligand-receptor signaling (Figure 8C, 8D). 

Particularly, the high ERS score group exhibited 

elevated EGF, VEGF, PDGF, and IGF signaling path-

ways in comparison to the low ERS score group 

(Figure 8E–8H). Patients in the high ERS score group 

and the low ERS score group displayed different 

intercellular communication patterns, and the high ERS 

score group had considerably overexpressed carcino-

genic pathways. 

 

In vitro experiments for ASNS 

 

Among the essential genes that make up the ERscore, 

ASNS was strongly associated with PRAD prognosis 

(Coef = 2.22). Therefore, we chose ASNS for further 

analysis. Firstly, TCGA investigation revealed that 

PRAD had much more ASNS expression than normal 

tissue, and that ASNS was linked to worse BCRF 

survival in PRAD patients (Figure 9A, 9B). Data from 

Human Protein Atlas https://www.proteinatlas.org/ 

revealed that ASNS protein expression was relatively 

higher in PRAD (Figure 9C). Subsequently, our in vitro 

experiments confirmed that the expression levels of 

ASNS in PC-3 and DU145 cells were significantly 

higher than those in RWPE-1 cells by qRT-PCR and 

Western blotting. (Figure 9D, 9E). To validate our 

predicted tumor-promoting role of ASNS in PRAD, we 

knocked down ASNS expression in PC-3 cells using 

siRNA and overexpressed ASNS in DU145 with the ov-

ASNS vector (Supplementary Figure 3). The qRT-PCR 

tested the knockdown efficiency of si-ASNS, and the 

results prompted us to select si-ASNS sequence 2 for 

further experiments. Through the application of the 

CCK-8 and EdU assays, we discovered that suppressing 

ASNS expression can drastically slow PC-3 cells’ 

ability to divide and proliferate (Figure 9F, 9G). 

Additionally, we discovered that inhibiting ASNS 

dramatically reduced PC-3 cells’ capacity for migration 

and invasion using Transwell and invasion assays 

(Figure 9H, 9I). These findings suggest that ASNS may 

become a new target for patients with PRAD. 

 

DISCUSSION 
 

PRAD is one of the most common malignancies of the 

genitourinary system and the most common cancer in 

men [23]. Therefore, investigating novel markers for 

tumor development, especially BCR, can facilitate early 

stratification and appropriate treatment for PRAD 

patients. A recent study has shown that ERS was closely 

linked to tumor growth and progression and may serve 

as a crucial target for cancer therapy [24]. It was 

reported that ERS can promote the apoptosis of glioma 

cells and may be used as a therapeutic target for glioma 

[25]. In addition, Yang et al. [26] recognized 8 ERS-

related genes and validated the prognostic value of these 

genes in lung adenocarcinoma patients. In the study, we 

obtained ERscore by screening the ERS-related genes 

and confirmed that ERscore can be used as a prognostic 

indicator for PRAD. A previous study has demonstrated 

that the prognostic model constructed by miRNA can 

predict the prognosis of PRAD, but its predictive power 

(AUC = 0.711) was lower than our study (AUC = 

0.754) [27]. The findings of a single database are also 

unconvincing, despite the fact that earlier research has 

identified novel traits for predicting the prognosis of 

PRAD patients based on the TCGA database [28, 29]. 

In this work, we combined numerous datasets to 

produce ERscore and used a variety of approaches to 

investigate ERscore’s biological roles. We anticipate 

that ERscore will aid clinical treatment plans for PRAD 

patients. 

 

Furthermore, GO and KEGG analysis showed that 

ERscore may be closely related to oncogenic pathways, 

tumor mutations, and immune function. According to 

the results of the enrichment analysis, ERscore may 

control the biological activity of tumors by taking part 

in a number of oncogenic hallmark pathways. Signaling 

pathways such as E2F_TARGETS, MYC_TARGETS 

V1, G2M_CHECKPOINT, ANDROGEN_RESPONSE 

are closely related to patient prognosis. Upregulation of 

E2F signaling has been reported to promote PRAD 

proliferation and progression [30]. Aberrant activation 

of the MYC pathway can switch PRAD cells to a 

“dormant mode” to escape attack from the immune 

system and antitumor therapy [31]. Activation of the 

ANDROGEN_RESPONSE pathway can independently 

promote PRAD progression, and its therapeutic 

targeting is a well-known treatment for PRAD [32]. 

 

Later, we explored the genetic mutations between the 

high- and low-risk groups. Mutant tp53 was found to 

activate UPR regulator ATF6 and suppress 

proapoptotic factors JNK and CHOP, thereby 

enhancing tumor cell resistance to ERS [33, 34]. We 

speculated that upregulated TP53 mutations in the 

high-risk group might suppress ERS in PRAD, 

resulting in worse prognostic outcomes. Further 

analysis uncovered increased mutations of MYC, 

NRF, and PI3K pathways in the high-risk group. 

Notably, N-Myc was reported to promote the malignant 

progression of PRAD by regulating FSCN1 [35].  

In addition, N-Myc differentially modulated miR-

421/ATM complex to motivate androgen deprivation 
therapy and Enzalutamide resistance in PRAD [36]. 

Combined with the results of GSVA and GSEA,  

we believed that ERscore was closely related to the 

https://www.proteinatlas.org/
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mutation and abnormal activation of the MYC pathway. 

Moreover, the PI3K signaling cascade is one of the 

most frequently upregulated pathways in PRAD. It can 

promote tumor growth and therapeutic resistance to 

current treatment options by enhancing multiple 

downstream signaling events [37]. In addition, we  

 

 
 

Figure 9. In vitro experiments for ASNS. (A) Relative expression of ASNS in PRAD and normal tissues in TCGA cohort. (B) ASNS was 

associated with worse BCRF survival of PRAD patients in TCGA cohort. (C) Human Protein Atlas revealed that ASNS protein expression was 
relatively higher in PRAD. (D, E) The expression levels of ASNS in PC-3 and DU145 cells were relatively higher than in RWPE-1 cells using 
qRT-PCR and western blot. (F) The CCK-8 assays demonstrated the correlations between ASNS and proliferation activity. (G) The EdU assays 
showed the correlations between ASNS and proliferation activity. (H) The transwell assays demonstrated the correlations between ASNS 
and migration capacity. (I) The invasion assays showed the correlations between ASNS and invasive competence. *p < 0.05, **p < 0.01, ***p < 
0.001. Abbreviation: ns: no significance. 
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found that ERscore and TMB were positively 

correlated, and the combination of ERscore and TMB 

can better predict the patient prognosis. Since TMB 

reflects a mutagenesis process induced by environ-

mental and intracellular factors, it has become a useful 

biomarker in certain cancer types to identify patients 

who will benefit from immunotherapy [38, 39]. Our 

results suggest that various mutational anomalies in 

tumor genes and pathways that control PRAD 

development and progression may be caused by 

ERscore. 

 

We found that patients in the high-risk group had 

higher levels of immune cell infiltration and expression 

of immunosuppressive receptors and immuno-

suppressive ligands. Therefore, we supposed that these 

genes may accelerate immune tolerance in PRAD, 

thereby compromising the patient’s BCRF survival. No 

significant differences were found in predicting 

response to immunotherapy among patients in the high- 

and low-risk groups. Given that immunotherapy is not 

effective in PRAD, chemotherapy response was 

examined in PRAD patients with various ERscores. 

The results showed that 5 Fluorouracil, Cyclopamine, 

Imatinib, and Salubrinal had a better effect in the high-

risk group. It was reported that 5 Fluorouracil 

combined with radiation therapy can be used to treat 

locally advanced PRAD [40]. In addition, Cyclopamine 

was demonstrated to block the hedgehog signaling 

pathway, leading to long-term regression of PRAD 

without recurrence [41, 42]. Interestingly, the 

combined administration of Salubrinal and Bortezomib 

inhibited the ER-related protein degradation pathway 

and may serve as a therapeutic option for PRAD with 

serine protease overexpression [43]. Our study 

highlighted the involvement of ERscore in multiple 

immune responses and found that chemotherapy may 

be more effective than immunotherapy in high-risk 

patients. 

 

There are extensive interconnections between 

malignant and stromal cells in TME, including early 

tumor recruitment and activation of a primitive 

precancerous stroma composed of stromal cells. 

Stromal cells, in turn, promote phenotypic changes in 

nearby tumor cells, which in turn signal stromal cells to 

continue their reprogramming [44]. Therefore, we 

investigated the cell-to-cell communications in the 

PRAD TME with the scRNA-seq data. Increased 

communication was found in the high ERS score 

group, suggesting the ERS-based signature played an 

important role in intercellular communication. Further 

analysis revealed that EGF, VEGF, PDGF, and IGF 
signaling pathways were strengthened in the high ERS 

score group compared to the low ERS score group. 

Notably, the EGF signaling was reported to be a vital 

upstream of AKT/δ-catenin/p21 for motivating PADR 

proliferation and metastasis [45]. In addition, it was 

demonstrated that the VEGF pathway can be activated 

by androgen and thereby promote PRAD angiogenesis 

and progression [46]. Generally, patients in the high 

and low ERS score groups showed differences in 

intercellular communication, and ERS-based signature 

may be involved in various oncogenic pathways to 

regulate PRAD growth and development. 
 

Among the vital genes that make up the ERscore, ASNS 

was strongly associated with PRAD prognosis. It was 

reported that the activation of ASNS transcription and 

translation can deprotect cell survival to promote 

tumorigenesis [47, 48]. Meanwhile, the downregulation 

of ASNS can inhibit gastric cancer cell proliferation and 

reduce the colony formation ability of tumor cells [49]. 

In melanoma and breast cancer cells, downregulation of 

ASNS induced cell cycle arrest, which significantly 

inhibited the growth of cancer cells [50, 51]. In our 

research, in vitro experiments demonstrated that the 

knockdown of ASNS significantly inhibited the 

proliferation, migration and invasion of PRAD cells. 

The above findings suggested an oncogenic role of 

ASNS in PRAD, and knockdown of ASNS may be a 

potential therapeutic option. 
 

This study comprehensively analyzed high-throughput 

sequencing data from multiple databases, constructed 

the ERscore, and validated it by independent cohorts. 

Our study also has certain limitations. Because this 

study is retrospective, data on the effects of treatment 

and relapse in PRAD patients are needed to validate our 

conjectures. Even if experimental validation is 

performed in ASNS, further in vivo or in vitro tests will 

be collected to investigate the gene’s specific processes 

in greater depth. 

 

CONCLUSIONS 
 

A novel ERS-related signature constructed in this study 

can effectively predict the BCRF survival probability of 

PRAD patients. In addition, this study provides new 

insights into the mechanisms of PRAD development 

and provides potential therapeutic markers for PRAD 

patients. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The plots of cophenetic correlation coefficient reflected the stability of the cluster generated from 
NMF. 
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Supplementary Figure 2. Sample preprocessing of the scRNA-seq. (A) Markers of the main clusters. (B) The “copykat” R package 

was utilized to identify malignant cells. (C) UMAP plot revealed the composition of 10 main clusters from 6 patients. 

 

 

 
 

Supplementary Figure 3. Relative RNA expression for knockdown of ASNS. ****p < 0.0001. 
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Supplementary Table 
 

Supplementary Table 1. Summary of ERS-related genes. 

ERS-related gene 

ACADVL DNAJB14 MBTPS1 SSR1 

ADD1 DNAJB2 MBTPS2 STC2 

AGR2 DNAJB9 NCK1 STT3B 

AIFM1 DNAJC10 NCK2 STUB1 

ALOX15 DNAJC18 NFE2L1 SULT1A3 

AMFR DNAJC3 NFE2L2 SVIP 

ANKS4B EDEM1 NPLOC4 SYVN1 

ANKZF1 EDEM2 NRBF2 TARDBP 

APAF1 EDEM3 OPA1 TATDN2 

ARFGAP1 EEF2 OS9 TBL2 

ASNS EIF2AK2 P4HB THBS1 

ATF3 EIF2AK3 PARK7 THBS4 

ATF4 EIF2AK4 PARP16 TLN1 

ATF6 EIF2B5 PDIA2 TMBIM6 

ATF6B EIF2S1 PDIA3 TMCO1 

ATG10 EP300 PDIA4 TMEM117 

ATP2A1 ERLEC1 PDIA5 TMEM129 

ATP2A2 ERLIN1 PDIA6 TMEM33 

ATP6V0D1 ERLIN2 PDX1 TMEM67 

ATXN3 ERN1 PIK3R1 TMTC3 

AUP1 ERN2 PIK3R2 TMUB1 

BAK1 ERP27 PLA2G6 TMUB2 

BAX ERP29 PMAIP1 TMX1 

BBC3 ERP44 PML TNFRSF10B 

BCAP31 EXTL1 POMT2 TOR1A 

BCL2 EXTL2 PPP1R15A TP53 

BCL2L1 EXTL3 PPP1R15B TPP1 

BCL2L11 FAF2 PPP2CB TRAF2 

BFAR FBXO2 PPP2R5B TRIB3 

BHLHA15 FBXO6 PREB TRIM13 

BOK FCGR2B PSMC6 TRIM25 

BRSK2 FGF21 PTPN1 TSPYL2 

CALR FICD PTPN2 TTC23L 

CASP4 FKBP14 RASGRF1 TXNDC12 

CAV1 FLOT1 RASGRF2 UBA5 

CCDC47 FOXRED2 RCN3 UBAC2 

CCL2 GET4 RHBDD1 UBE2G2 

CCND1 GFPT1 RNF103 UBE2J1 
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CDK5RAP3 GORASP2 RNF121 UBE2J2 

CEBPB GOSR2 RNF139 UBE2K 

CFTR GRINA RNF175 UBE4A 

CHAC1 GSK3A RNF183 UBE4B 

CLU GSK3B RNF185 UBQLN1 

COPS5 HDGF RNF186 UBQLN2 

CREB3 HERPUD1 RNF5 UBXN1 

CREB3L1 HM13 RNFT1 UBXN4 

CREB3L2 HSP90B1 SCAMP5 UBXN6 

CREB3L3 HSPA13 SDF2 UBXN8 

CREB3L4 HSPA1A SDF2L1 UFC1 

CTDSP2 HSPA5 SEC16A UFM1 

CTH HYOU1 SEC31A UGGT1 

CUL7 IGFBP1 SEC61B UGGT2 

CXXC1 ITPR1 SEL1L USP13 

DAB2IP JKAMP SERINC3 USP14 

DCTN1 JUN SERP1 USP19 

DDIT3 KDELR3 SERP2 USP25 

DDRGK1 KLHDC3 SESN2 VAPB 

DDX11 LMNA SGTA VCP 

DERL1 LRRK2 SGTB WFS1 

DERL2 MAGEA3 SHC1 WIPI1 

DERL3 MAN1B1 SIRT1 YIF1A 

DNAJB11 MANF SRPRB YOD1 

DNAJB12 MAP3K5 SRPX ZBTB17 

 

 


