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INTRODUCTION 
 

As a malignant tumor of the digestive system, 

pancreatic cancer (PC) poses a serious challenge to 

human health with an extremely low five-year survival 

rate. In the past 30 years, the incidence of pancreatic 

cancer has steadily increased worldwide [1]. In 

addition, it is the fourth leading cause of cancer death 
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ABSTRACT 
 

Pancreatic cancer (PC) is a digestive malignancy with worse overall survival. Tumor immune environment (TIME) 
alters the progression and proliferation of various solid tumors. Hence, we aimed to detect the TIME-related 
classifier to facilitate the personalized treatment of PC. Based on the 1612 immune-related genes (IRGs), we 
classified patients into Immune_rich and Immune_desert subgroups via consensus clustering. Patients in distinct 
subtypes exhibited a difference in sensitivity to immune checkpoint blockers (ICB). Next, the immune-related 
signature (IRS) model was established based on 8 IRGs (SYT12, TNNT1, TRIM46, SMPD3, ANLN, AFF3, CXCL9 and 
RP1L1) and validated its predictive efficiency in multiple cohorts. RT-qPCR experiments demonstrated the 
differential expression of 8 IRGs between tumor and normal cell lines. Patients who gained lower IRS score tended 
to be more sensitive to chemotherapy and immunotherapy, and obtained better overall survival compared to 
those with higher IRS scores. Moreover, scRNA-seq analysis revealed that fibroblast and ductal cells might affect 
malignant tumor cells via MIF-(CD74+CD44) and SPP1-CD44 axis. Eventually, we identified eight therapeutic targets 
and one agent for IRS high patients. Our study screened out the specific regulation pattern of TIME in PC, and shed 
light on the precise treatment of PC. 
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among men and women of all ages in the United States 

[2]. Among the traditional treatment modalities 

including surgical resection and radiotherapy, early 

surgical resection of pancreatic cancer is considered to 

be the only possible cure for the malignancy [3]. 

Noteworthy, only 20% of patients diagnosed with 

pancreatic cancer can be treated surgically, and even 

after surgery, most patients will recur and eventually 

have a seriously poor prognosis. Unfortunately, radio-

therapy and chemotherapy for PC also provide 

limited benefits to patients [4]. Interestingly, advances 

in immunotherapies, especially immune checkpoint 

blockade (ICB), have broadened therapy strategies for 

some historically chemotherapy-refractory malignancies 

and brought new hope to oncology patients [5]. 

However, in terms of PC, it has been significantly 

refractory to ICB therapy. In single-agent ICB and dual-

agent ICB studies with anti-PD-1 and anti-cytotoxic t 

lymphocyte-4 antibodies, overall response rates (ORLs) 

were 0% and 3%, respectively [6, 7]. These 

disappointing results (in contrast to the remarkable 

efficacy of ICBs in other solid tumors) have driven the 

identification and development of novel immune-related 

markers in PC that may be key to unlocking 

immunotherapy as a viable treatment option for 

pancreatic cancer. Therefore, exploring novel 

prognostic signatures and drug screening based on the 

immune level is urgently necessary for delaying the 

occurrence and development of PC. 

 

Tumor immune microenvironment (TIME) is an 

indispensable part of tumor progression by providing 

sufficient nutrients for tumor cell growth and 

development. The in-depth study of the nature of TIME 

in the complex evolution of cancer led to a shift from a 

tumor cell-centered view of cancer development to the 

concept of a complex tumor ecosystem that supports 

tumor growth and metastatic spread [8, 9]. The 

composition of heterogeneous TIME is extremely 

complex and contains a variety of immunosuppressive 

cells, including tumor cells, cancer-associated fibro-

blasts (CAFs), vascular endothelial cells, inhibitory 

myeloid cells, regulatory T cells (Tregs), and regulatory 

B cells [10]. These cells and cancer cells can secrete 

extracellular components, such as extracellular matrix 

(ECM), matrix metalloproteinase (MMP), growth 

factors, and transforming growth factor-β (TGFβ), to 

maintain or disrupt the dynamic equilibrium of the 

microenvironment and ultimately affect tumor 

progression [11]. It has been known that these tumor-

associated immune cells may possess tumor-

antagonizing or tumor-promoting functions. Numerous 

studies have indicated that the microenvironment plays 
a vital role in PC progression [12]. Two major features 

of the pancreatic cancer microenvironment, dense 

desmoplasia and extensive immunosuppression, 

facilitated PC cell proliferation and mediated the 

immune escape via inhibiting the anti-tumor immunity 

or induction of the proliferation of immunosuppressive 

cells. Given the temporal heterogeneity, the application 

of ICB may not be sufficient to maximize the benefit of 

immunotherapy in PC, and the use of tumor biomarkers 

involved in maintaining the immunosuppressive 

microenvironment should also be considered for better 

outcomes and safety. Hence, it’s necessary for us to 

explore distinct TIME-related features to guide clinical 

practice. 
 

In this study, we aimed to explore the immune 

characteristics of TIME in order to inform the 

personalized and precise treatment of PC. We 

identified the immune-related dysregulated genes and 

constructed the TIME subtype. Additionally, we 

utilized multiple machine learning algorithms to 

construct an immune-related signature (IRS) to 

characterize the relationship between infiltration of 

immune cells and TIME subtypes and to validate the 

predictive efficacy of IRS on PC survival outcomes in 

different cohorts. In fact, we evaluated the sensitivity 

of chemotherapy and immunotherapy between 

IRS_high and _low subgroups, and explored the 

underlying mechanism of how IRS contributes to 

TIME in PC was also explored based on the results of 

single-cell sequencing analysis. Eventually, 

pharmacogenomic datasets are employed to identify 

potential drug targets and agents and inform immune 

personalized therapy for pancreatic cancer. 

 

RESULTS 
 

Immune-related differential expression genes in 

pancreatic cancer 
 

PC is known as the “immune desert” due to its unique 

TIME characteristics. The abundant bone marrow-derived 

cells and Treg cells in PC can mediate tumor immune 

escape and cause different levels of immunotherapy 

resistance through different mechanisms. To further 

explore the characteristics of TIME in PC, based on meta-

cohort, Estimation of STromal and Immune cells in 

MAlignant Tumours using Expression data (ESTIMATE) 

algorithm was conducted to calculate the immune and 

stromal scores of each PC patient (Figure 1A), and the 

result revealed a high level of infiltrating stromal cells in 

PC. Subsequently, Differential gene expression analysis in 

the immune high/low group, stromal high/low group and 

tumor/normal group suggested (Figure 1B) that 1238 up-

regulated and 1824 down-regulated genes were screened 

compared to the immune low group (Supplementary 
Table 1). Meanwhile, there were 1919 upregulated and 

2324 downregulated genes compared to the stromal-low 

group (Supplementary Table 2). Additionally, we detected 
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3731 upregulated and 3463 downregulated genes between 

pancreatic cancer samples and normal pancreatic samples 

(Supplementary Table 3). After converging all these three 

types of differential expression genes (DEGs), 1612 

immune-related genes (IRGs) were identified for the 

following study (Supplementary Table 4). Functional 

enrichment analysis suggested the function of IRG with 

potential tumor regulatory mechanisms, and the results 

suggested IRGs mainly enriched in adaptive immune 

response and regulation of T cell activation of Gene 

Ontology (GO) terms (Figure 1C), immune cell receptor 

signaling and antigen binding pathways of Kyoto 

Encyclopedia of Genes and Genomes (KEGG) terms 

(Figure 1D). All these results suggest that PC progression 

may be related to immune response in the tumor 

microenvironment to varying degrees. 

Generation of TIME subtype 

 

Emerging evidence demonstrates that specific 

expression patterns of TIME could influence the clinical 

treatment strategies for PC. Hence, we separated PC 

patients into two clusters (Figure 2A and 

Supplementary Figure 1A), namely Cluster_1 (n=145, 

51.06%) and Cluster_2 (n=139, 48.94%), by an 

unsupervised consensus clustering algorithm and 

according to the expression level of 1612 IRGs (optimal 

cutoff k=2). Interestingly, PCA analysis showed that 

there are significant differences between these two 

clusters (Supplementary Figure 1B). 

 

To further identify the correlation between the 

regulation of immune cells and clusters, Tumor Immune

 

 
 

Figure 1. Identification of immune-related genes in PC. (A) The results of ESTIMATE on the meta-cohort. (B) Venn plot exhibited the 

converged IRGs. GO (C) and KEGG (D) analysis of IRGs.  
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Estimation Resource (TIMER) algorithm was applied to 

evaluate the abundance of immune cells. As illustrated 

in Figure 2B, Cluster_2 displayed significantly higher 

infiltration of immune cells (B cell, CD4+ T cell, CD8+ 

T cell, neutrophil and myeloid dendritic cell) compared 

with Cluster_1. Moreover, we performed Tumor 

Immune Dysfunction and Exclusion (TIDE) algorithm 

to predict the sensitivity of response to immune 

checkpoint blockade, including anti-PD1 and anti-

CTLA4. Patients in Cluster_2 tend to obtain lower 

TIDE scores, which means patients in Cluster_2 were 

sensitive to anti-ICB therapy (Figure 2C). Similarly, we 

also accessed the diversity in the expression of ICB 

between Cluster_1 and Cluster_2. Results showed that 

the expression level of ICB (PDCD1, CD274, 

HAVCR2, LAG3, TIGIT and GTLA4) in Cluster_2 was 

obviously upregulated compared to Cluster_1, 

suggesting that patients in Cluster_2 were more likely to 

be targeted (Figure 2D). Therefore, regarding the 

characteristics between those two clusters mentioned 

above, we manually defined the Cluster_1 as 

Immune_desert subtype, and Cluster_2 as Immune_rich 

subtype. ssGSEA analysis also confirmed that the 

Immune_rich subtype possessed a significant level of 

innate and adaptive immune cells, including natural 

killer cells, immature B cells and T cells (all p < 0.0001, 

Figure 2E). Of note, tumor-suppressing Th1 cells were 

considerably enriched in the Immune_rich subtype  

(p = 2.96e-32) compared to tumor-promoting Th2 cells  

(p = 0.256). 

 

 
 

Figure 2. Exploration of the relationships between the regulation of immune cells and clusters. (A) Unsupervised consensus 
clustering based on 1612 IRGs. (B) The fractions of immune cells between Cluster_1 and Cluster_2. (C) The TIDE score between Cluster_1 and 
Cluster_2. (D) The differences in expression of common ICBs among distinct clusters. (E) ssGSEA analysis was utilized to estimate the 
abundance of immune cells. (F) The alluvial plot displayed the relationship between the TIME subtype and other molecular classifications.  
(G) Heatmap of Cramer’s V statistic reflected the corrections between seven PC molecular classifications. 
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Then, we compared the identified TIME subtype with 

classical molecular classifications in PC. The marker of 

Bailey’s classification, Collisson’s classification, 

Moffitt’s tumor classification, Moffitt’s stromal 

classification and Li’s classification were utilized to 

cluster PC patients in the meta-cohort (Supplementary 

Figure 2A–2E and Supplementary Table 5), and Puleo’s 

classification was predicted followed the pipeline in 

Materials and Methods (Supplementary Table 5). 

Results illustrated that there was no significant 

difference between Moffitt’s tumor classification and 

TIME subtype (p = 0.70, Supplementary Table 6), while 

Bailey’s classification (p < 0.0001), Collisson’s 

classification (p = 0.0006), Moffitt’s stromal 

classification (p = 0.0101), Puleo’s classification (p < 

0.0001) and Li’s classification (p < 0.0001) obtained 

significant similarity (Supplementary Table 6). For the 

comparison of Bailey’s classification, results showed 

that the proportion of immunogenic subtype was higher 

and the percentage of progenitor subtypes was lower in 

Immune_rich subtype versus Immune_desert subtype 

(35.25% vs 3.45%, 1.44% vs 40.69%, p < 0.0001, 

Supplementary Table 6). Interestingly, Collisson’s 

classification, we observed that Immune_rich subtype 

was composed of a more exocrine-like subtype and a 

less classical subtype compared to Immune_desert 

subtype (56.12% vs 41.38%, 14.39% vs 33.79%, p < 

0.01, Supplementary Table 6) of Puleo’s classification. 

For Moffitt’s stromal classification, results 

demonstrated that Immune_rich subtype possessed a 

more normal subtype and less activated subtype than 

Immune_desert subtype (51.80% vs 35.17%, 36.69% vs 

44.14%, p < 0.05, Supplementary Table 6). With 

respect to Puleo’s classification, the frequency of 

desmoplastic and immune classical was higher within 

Immune_rich subtype (30.94% vs 0.69%, 23.74% vs 

2.76%, p < 0.0001, Supplementary Table 6). On the 

contrary, we also found a lower frequency of pure 

basal-like and pure classical subtypes in Immune_rich 

subtype versus Immune_desert subtype (7.19% vs 

18.62%, 10.79% vs 52.41%, p < 0.0001, Supplementary 

Table 6). In terms of the integration of Li’s 

classification, we observed that Immune_rich subtype 

had a positive tendency to enrich in immune class and a 

negative correlation with nonimmune class, compared 

to Immune_desert subtype (68.35% vs 33.1%, 31.65% 

vs 66.90%, p < 0.0001, Supplementary Table 6). 

Moreover, the correlation between TIME subtype and 

other published molecular subtypes was quantified by 

Cramer’s V (Figure 2F, 2G). Results revealed that 

TIME subtype had the highest correlation with Puleo’s 

classification (Cramer’s V value = 0.63) and the lowest 

relationship with Moffitt’s tumor classification 
(Cramer’s V value = 0.03), probably owing to the 

deconvolution algorithm applied on tumor cells by 

Moffitt et al. Additionally, after integrating the TIME 

subtype and Puleo’s classification, we found that 

patients with Immune_rich and immune classical 

subtypes obtained the best survival, while the patients 

with Immune_desert and pure basal-like subtype  

had the worst survival (only one patient with 

Immune_desert and desmoplastic subtype was 

excluded) (p < 0.0001, Supplementary Figure 3), 

implying that combination of TIME subtype and 

Puleo’s classification may guide the prognostic 

prediction of PC. 

 

Recognization of key IRGs and construction of IRS 

for the prognostic prediction of PC 

 

In order to quantize the distinct characteristics among 

Immune_rich and Immune_desert subtypes, we applied 

multiple machine-learning algorithms to construct the 

prognostic signature based on 1612 IRGs. Before 

proceeding, a filtering procedure was applied to remove 

genes with low variability and the mean and variance of 

each gene were standardized to zero and one, 

respectively. A total of 284 patients in meta-cohort were 

divided into training set (n=200) and testing set (n=84) 

at the ratio of 7:3. Robust prognostic IRGs in PC 

samples were identified using multi-step processes. 

First, preliminary screening was performed to include 

337 prognosis-related IRGs in meta-cohort via 

univariate Cox regression analysis. Next, bootstrapping 

method was used to test the genes which passed initial 

filtering for robustness. We extracted 70% of samples 

randomly from the training set and performed univariate 

Cox regression analysis on these samples to assess the 

correlation between the gene expression and prognosis. 

This procedure was repeated 1000 times and the 52 

IRGs that were incorporated in 90% of resample runs 

(achieved P < 0.05 in robustness testing) were kept for 

next step analysis. Then, the random survival forest 

(RSF) analysis was independently repeated 1000 times, 

and 8 IRGs with the largest concordance index (C-

index) were considered IRS, namely SYT12, TNNT1, 

TRIM46, SMPD3, ANLN, AFF3, CXCL9 and RP1L1 

(Figure 3A, 3B). A risk prediction score model was then 

developed by these 8 genes using multivariate Cox 

regression, and the IRS score for each patient was 

determined by taking the sum of the regression 

coefficient for each gene multiplied by its 

corresponding expression value. The IRS score was 

then normalized from 0 to 1. According to the optimal 

cutoff value, PC patients were divided into IRS_high 

and IRS_low subgroups. 

 

To validate the prognostic efficiency of IRS, the 

survival analysis was performed on the training set, 
testing set, meta-cohort, International Cancer Genome 

Consortium (ICGC), Gene Expression Omnibus (GEO) 

and The Cancer Genome Atlas (TCGA) datasets, 
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respectively. In the 6 internal and external datasets, 

Kaplan–Meier (KM) curves revealed that the IRS 

performed well in distinguishing patients with different 

prognostic statuses (Figure 3C–3H). Also, the univariate 

Cox analysis showed that SYT12, TNNT1, ANLN, 

CXCL9 and RP1L1 were risk factors with HR > 1, 

while TRIM46, SMPD3 and AFF3 were protective 

factors with HR < 1 (Supplementary Figure 4A), 

meanwhile, the survival analysis also demonstrated 

this result (Supplementary Figure 4B–4I). In addition, 

the receiver operating characteristic (ROC) curve was 

utilized to verify the prediction ability of the IRS. As 

shown in Figure 3I, 3J, the IRS model was confirmed 

effective in predicting the survival of PC patients in 1 

year (training set, AUC = 0.832; testing set, AUC = 

0.617), 2 years (training set, AUC = 0.804; testing set, 

 

 
 

Figure 3. Construction of the IRS. The alteration of C index (A) and OOB rate (B) during 1000-times iteration. The survival analysis was 
performed based on the training set (C), testing set (D), meta-cohort (E), ICGC (F), GEO (G) and TCGA (H) datasets, respectively. The predictive 
efficiency of IRS was validated in training set (I), testing set (J). AUC value was used for the comparison of IRS with other five signatures in the 
training (K) and testing set (L). The distribution of PAMG score (M) and PurIST score (N) between IRS_high and IRS_low group. (O) Sankey plot 
illustrated the distribution of IRS and PurIST classification. (P) Distribution of PurIST classification was compared between IRS_high and 
IRS_low group. 
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AUC = 0.697) and 3 years (training set, AUC = 0.865; 

testing set, AUC = 0.834).  

 

Previous studies have established several prognostic 

signatures for PC patients, including Wang’s signature, 

Tao’s signature, Dai’s signature, pancreatic adeno-

carcinoma molecular gradient (PAMG) signature and 

PurIST signature. ROC analysis was performed to 

confirm whether IRS possessed superior survival 

prediction ability in PC compared to the five signatures 

mentioned above. The AUC of the IRS were higher 

than those of the other three prognostic models in the 

training set (Figure 3K). Notably, in the testing set, the 

predictive efficiency was far from satisfactory in 3-year 

survival, possibly due to the limited number of patients 

(Figure 3L). To further compare IRS with PAMG and 

PurIST classification, the PAMG score and PurIST 

were computed. Results illustrated that the IRS_high 

subgroup possessed a lower PAMG score and higher 

PurIST score than the IRS_low subgroup (Figure 3M, 

3N). Coincidentally, the Sankey diagram (Figure 3O) 

and distribution plot (Figure 3P) revealed that the 

percentage of the Basal-like subtype was significantly 

lower, and the proportion of Classical subtype was 

higher within IRS_low subgroup versus IRS_high 

subgroup (8.44% vs 37.69%, 91.56% vs 62.31%, p < 

0.001). The above results fully verified the robustness 

and predictive effectiveness of our IRS. 

 

Analysis and validation of differential expression for 

IRS 

 

As mentioned above, a total of eight genes were 

selected to construct the IRS based on machine-learning 

algorithm. Then, we distinguished the aberrant 

expression of these IRGs in PC and normal pancreatic 

samples. As illustrated in Figure 4A, all of these IRGs 

were upregulated in PC samples. qRT-PCR was also 

 

 
 

Figure 4. Validation of the expression of IRGs. (A) The expression of 8 IRGs genes in PC and normal pancreatic tissues. (B) RT-qPCR was 
conducted to validate the expression of 8 IRGs. 
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performed to validate the differential expression 

patterns of IRGs between normal pancreatic cell line 

(hTERT-HPNE) and 4 PC cell lines (AsPC-1, BxPC-3, 

PANC-1 and PaTu 8988t) (Figure 4B), results 

suggested that the expression of these eight genes was 

higher in all four types of pancreatic cancer cells than 

in normal pancreatic cells. Owing to the significant 

upregulation of these hub genes, they may serve as 

potential targets of PC which suggested further 

research. 

 

Exploration of IRS-based chemotherapy prediction 

and potential immunotherapeutic response 

 

As the IRS was established based on prognostic IRGs, 

we first analyzed the relationship between the IRS score 

and the infiltration of immune cells. The IRS score was 

positively correlated with neutrophils, myeloid-derived 

suppressor cells (MDSCs) and M2 macrophages. On the 

contrary, CD8+ T cells and CD4+ T cells displayed a 

negative relationship with the IRS score (Figure 5A, 

5B). Moreover, we suggested that the IRS may predict 

the sensitivity of chemotherapy by comparing the IC50 

of multiple chemical compounds between IRS_high and 

_low groups. As shown in Figure 5C, patients who 

gained a lower IRS score tended to be more sensitive to 

chemotherapy. In terms of the prediction value of IRS 

in the treatment of ICB, we calculated the 

immunophenoscore (IPS), IPS-CTLA4, IPS-PD1 and 

IPS-PD1-CTLA4 scores, which are quantitative indexes 

to access the treatment of ICBs, were higher in the 

IRS_high group (Figure 5D). Furthermore, we 

compared the distribution of Tumor microenvironment 

(TME) and tumor mutation burden (TMB) scores in 

IRS_high and _low subgroups to evaluate whether the 

IRS could predict the clinical response to ICB therapy. 

Results exhibited that the TME and TMB scores were 

higher in the IRS_high subgroup and both had a 

positive correlation with the IRS score (Figure 5E, 5F). 

Since the IRS had a remarkable correlation with the 

TIME of PC mentioned above, we further determined 

whether the IRS could predict immunotherapeutic 

response in PC via SubMap analysis. We evaluated the 

similarity of the expression module of immune-related 

gene expression profiles between our cohorts and a 

cohort of 32 melanoma patients receiving ICB therapy 

 

 
 

Figure 5. Prediction of chemotherapy and immunotherapy. (A, B) The relationship between the IRS score and the infiltration of 
immune cells. (C) Estimated IC50 of common chemical compounds between IRS_high and _low groups. (D) IPS scores between IRS_high and 
_low groups. (E, F) The correlation between IRS score and TME/TMB score. (G) Contingency table between immunotherapy responses (anti-
PD-1 and anti-CTLA-4) and IRS groups based on SubMap analysis. 



www.aging-us.com 14117 AGING 

[13]. Results illustrated the similarity between 

patients in the IRS_low group and patients who 

responded to anti-PD-1 and anti-CTLA4 immuno-

therapy (Figure 5G). All these results implied that the 

IRS_low group may have better feedback in 

immunotherapy compared to IRS_high group, which 

needs to be further validated in immunotherapy 

cohorts of PC. 

 

Single-cell sequencing reveals potential mechanism 

of TIME regulation by IRS 

 

To further recognize the TIME personalized features of 

pancreatic cancer, scRNA-seq data from 24 PC samples 

were utilized to reveal the potential mechanism of IRS-

promoted PC progression. 22910 cells were screened 

after quality checks according to the aforementioned 

research methods.  According to the marker genes 

extracted from the literature, 9 clusters were determined 

and then annotated to 9 cell types (Figure 6A–6C):

malignant, fibroblast, stellate cell, T cell, endothelial 

cell, macrophage, ductal, B cell and endocrine cell. To 

unveil the mechanism of the IRS, we evaluated the 

distribution of IRS scores in 9 cell types. As illustrated 

in Figure 6D, higher IRS scores were mainly 

congregated in malignant cells, which could explain the 

poor prognosis of high IRS PCs. We also checked the 

expression of IRS in 9 cell clusters. SMPD3 and 

TNNT1 were significantly expressed by malignant 

cells, while AFF3 and ANLN were mainly expressed by 

B cells (Figure 6E). Therefore, we suggested that 

malignant cells may contribute to the specific TIME in 

IRS. Cell-cell communication demonstrated that 

fibroblast had a significant influence on malignant cells 

via MIF-(CD74+/CD44) interactions, and ductal cells 

affected malignant cells through SPP1-CD44 

interactions (Figure 6F). Meyer-Siegler KL [14] found 

that blocking MIF-CD74 interactions may provide new 

targeted specific therapies for androgen-independent 

prostate cancer. SPP1-CD44 axis was reported to 

 

 
 

Figure 6. The underlying mechanism of IRS via scRNA-seq analsysis. (A) The distribution of cells after quality check. (B) UMAP plot 

showing the cells were clustered into 9 types. (C) The expression of marker genes in 9 types of cells. (D) The distribution of IRS score among 9 
types of cells. (E) The expression of 8 IRGs in 9 types of cells. Cell-cell communication analysis were implemented via “CellChat” (F) and 
“iTALK” (G–I) algorithms. 
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promote the interplay between CAF and enrichment of 

stemness population in PC [15]. These results 

demonstrated that fibroblast cells and ductal cells might 

promote the progression of cancer via MIF-CD74 and 

SPP1-CD44 axis, respectively. In addition, CTGF-

LRP1 interactions between fibroblast cells and 

malignant cells could also cause the development of 

cancer (Figure 6G, 6H). In fact, the expression of 

HAVCR2 and ITGB2 was higher in macrophage and B 

cells, while the expression of LGALS9 was upregulated 

in fibroblast cells and malignant cells (Figure 6I). These 

results revealed that fibroblast cells might prohibit the 

activation of immune cells, leading to the “immune 

dessert” status of PC. Hence, IRS may promote the 

progression of tumor and suppress the immune system 

in TIME. 

 

Identification of IRS-related biological processes and 

drug targets 

 

In order to investigate which biological process plays a 

critical role in poor prognostic of PC patients who 

gained high IRS scores, Pathifier and Gene set 

enrichment analysis (GSEA) analyses were performed 

to elucidate the potential mechanisms involved in the 

regulation of PC progression by IRS. Based on gene 

expression data from both pancreatic cancer and normal 

pancreatic samples, pathway deregulation score (PDS) 

was computed via “Pathifier” R package. The 

correlation between PDS scores and IRS scores helps to 

evaluate whether a pathway (biological process) may be 

responsible for the poor prognosis of patients with high 

IRS scores. “Apoptosis”, “TNFA signaling via NFKB”, 

“G2M checkpoint” and “DNA repair” pathways ranked 

top, which means these three pathways may contribute 

to the malignant phenotype in patients with high PPS 

scores (Figure 7A). Next, we performed GSEA analysis 

to validate the above conclusion. Enrichment score of 

each gene set was calculated and adjusted P-value less 

than 0.05 was considered significantly enriched. As 

expected, genes with positive correlation coefficients 

were also enriched in those four pathways (Figure 7B). 

Taken together, the dysregulation of apoptosis and cell 

cycle-related process might play a vital role in the poor 

prognosis of high IRS patients. 

 

In high IRS patients, Genes significantly positively 

correlated with IRS may be potential targets for 

pancreatic cancer precision therapy. To identify 

targetable proteins (genes) with potential therapeutic 

implications in high IRS score PC patients, we 

conducted Spearman correlation analysis between the 

protein abundance of targetable genes and PPS. A 
protein with a correlation coefficient more than 0.3 

(with P < 0.05) was considered as a poor prognosis-

related drug target. Next, we calculated the IRS score 

for each PC cell line from the Cancer Cell Line 

Encyclopedia (CCLE) project, and performed the 

correlation analysis between the CERES score and PPS 

score based on these cell lines. A lower CERES score of 

a gene indicates a higher likelihood that this gene is 

dependent on a given cancer cell line (CCL). Therefore, 

we considered a gene with a correlation coefficient less 

than -0.3 (with P < 0.05) as a poor prognosis-dependent 

drug target. Potential therapeutic drug targets in high 

IRS score PCs were then considered as targets identified 

by both analyses above. Finally, 8 potential targets 

(CCNA2, EPHB4, INCENP, NCF2, PLOD1, PLK1, 

PANX1 and CCNB1) were screened out (Figure 7C, 

7D) and the correlated target drugs were also identified 

(Figure 7E), which meant that targeting these genes 

may facilitate the treatment of high IRS PCs. 

 

Identification of potential agents for high IRS score 

PCs 

 

In the past decade, high-throughput sequencing analysis 

of large samples has greatly advanced the molecular 

biology of PC. Hence, we try to detect the potential 

small molecular compounds for high IRS PCs. The 

information on compounds in the Cancer Therapeutics 

Response Portal (CTRP) and Profiling Relative 

Inhibition Simultaneously in Mixtures (PRISM) 

database were selected for subsequent analysis after 

removing the duplicated compound information in the 

two databases (excluding hematopoietic and lymphoid 

tissue-derived CCLs) (Figure 8A). 

 

For drug response prediction, many machine learning 

(ML) methods have been reported, ranging from 

multivariate linear regression and support vector 

machine (SVM) to RF and k-nearest neighbours (KNN). 

Among ML methods, linear regression methods, such as 

ridge regression and elastic net, tend to exhibit good and 

robust performance in different settings [16]. Therefore, 

ridge regression model located in the “oncoPredict” 

package, which has been applied to multiple studies and 

proven to be reliable, was applied to estimate drug 

response of clinical samples in this study [17]. Before 

selecting the compounds, we further validated the 

predicted drug sensitivity (AUC) in our cohort. 

Selumetinib, a PI3K pathway inhibitor, was reported to 

improve the prognosis in the treatment of KRAS-mutant 

patients compared to those without KRAS mutations 

[18]. Thus, we classified PC patients into KRAS altered 

and KRAS unaltered subgroups. The AUC of PC 

patients in the KRAS altered group was significantly 

decreased (Figure 8B, P = 2.4e-05), which was 

consistent with the clinical findings of Simertinib 
above. Finally, 1 compound from the CTRP database 

(Canertinib) and 6 compounds from the PRISM 

database (PP-1, YM-976, CHIR-98014, GW-788388, 
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Figure 7. Identification of IRS-related biological processes and drug targets. (A) Pathifier analysis showing the IRS-related biological 
processes. (B) Top 4 pathways were validated in GSEA analysis. Potential drug targets were screened out form CTRP (C) and PRISM  
(D) datasets. (E) The corresponding relationship between drug targets and potential targeted drugs. 
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Brigatinib and Vincamine) were obtained following the 

protocol described in Materials and Methods (Figure 8C). 

 

Although these 7 compounds had lower predictive AUC 

values in the samples with higher PPS scores and their 

predictive AUC values were significantly negatively 

correlated with IRS scores, the above analysis alone 

could not support the conclusion that these compounds 

had therapeutic effects on PCs. Hence, CMap analysis 

was utilized to find the most reliable com-

pounds. Among the 7 candidate compounds identified 

before, Canertinib and PP-1 showed relatively low 

 

 
 

Figure 8. Identification of potential agents for high IRS score PCs. (A) Data availability of drug sensitive data in CTRP and PRISM 
datasets. (B) Validation of the predicted drug sensitive data based on literature. (C) Potential agents for high IRS patients were identified from 
CTRP and PRISM datasets. (D) The CMap score of four candidate compounds. (E) The IRS score between Capan-2 and Panc 08.13 cell lines.  
(F) The AUC value of four candidate compounds in Capan-2 and Panc 08.13 cell lines. 
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CMap scores (Canertinib, -80.94; PP-1, -64.5), 

indicating its therapeutic potential (Figure 8D and 

Supplementary Table 7). To further test the efficiency 

of these candidates, two PC cell lines (Capan-2 and 

Panc 08.13) in CTRP and PRISM have been extracted 

for the following analysis. We first calculated the IRS 

score of these two cell lines, and the Capan-2 possessed 

a relatively higher IRS score than Panc 08.13 (Figure 

8E and Supplementary Table 8). Secondly, the AUC 

value of these candidates between Capan-2 and Panc 

08.13 were compared. The results indicated that only 

the AUC value of Canertinib was significantly lower in 

the Capan-2 compared to Panc 08.13, implying that 

Canertinib might be the promising potential treatment 

compound targeted high IRS score PCs (Figure 8F and 

Supplementary Table 8). 

 

DISCUSSION 
 

As the most common malignant tumor among solid 

tumors, the complex crosstalk in the microenvironment 

of pancreatic cancer poses a serious challenge for 

personalized treatment of patients [19]. With the 

development of high-throughput sequencing analysis, 

subtyping cancers on the basis of molecular similarities 

and clinical characteristics could improve the existing 

morphological and imaging methods for personalized 

treatment and risk stratification [20]. Up to now, PC can 

be divided into multiple molecular subtypes (MS), 

including Bailey’s classification, Collisson’s 

classification, Moffitt’s tumor classification, Moffitt’s 

stromal classification, Puleo’s classification and Li’s 

classification. Bailey’s classification includes 

Squamous, Pancreatic progenitor, Immunogenic, and 

Aberrantly Differentiated Endocrine Exocrine (ADEX). 

Among them, the Squamous subtype enriched for 

inflammation, metabolic reprogramming, cell pro-

liferation and epigenetic downregulation of endodermal 

genes, which possessed the worst prognosis [21]. 

Collisson’s classification includes Classical subtype 

related to adhesion and epithelialization, Exocrine-like 

subtype related to mesenchymal transition, and QM-

PDA related to tumor-derived digestive enzymes [22]. 

Moffitt’s tumor classification includes the Classical 

subtype and Basal-like subtype, and the latter is 

associated with poor survival of PC [23]. Moffitt’s 

stromal classification contains Absent, Activated and 

Normal subtypes [23]. Puleo’s classification includes 

Desmoplastic, Immune classical, Pure basal-like, Pure 

classical and Stroma Activated subtypes [24]. Li’s 

classification defines the TIME of PC as Immune 

Class and Nonimmune Class [25]. However, the 

molecular typing of PC is in its infancy. Hence, novel 

molecular signatures are still necessary to provide 

opportunities to advance the therapeutic development 

of PC. 

It is reported that the interactions between cancer cells 

and proximal immune cells can ultimately lead to an 

environment that promotes the growth and metastasis of 

PC [26]. Furthermore, a deeper understanding of IRGs 

involved in the TIME could help illustrate their 

regulatory mechanisms in TIME and develop novel 

treatment strategies. Numerous types of research have 

demonstrated that immune and stromal cells are two 

major components of TIME [27–29]. Hence, we 

identified the TIME-related differentially expressed 

IRGs particularly from PC samples by evaluating 

tumor-infiltrating immune cells and stromal cells via the 

ESTIMATE algorithm. Additionally, identifying IRGs 

that are differentially expressed in tumor and normal 

tissues could be conducive to selecting dysregulated 

genes in PC. Therefore, we extracted IRGs with 

differential expression in the TIME and PC samples 

that may effectively reflect the characteristics of 

TIME in PC. We further confirmed their functions in 

the immune system via pathway enrichment analysis. 

Unsupervised consensus clustering algorithm was 

implemented to classify PC patients into two TIME 

subtypes. TIMER analysis exhibited that the 

Immune_rich subtype possessed higher infiltration of 

CD8+ T cells. Currently, according to the specific 

tumor environment and immune contexture, three main 

subtypes of tumor; the immune hot, altered and cold 

tumors were determined [30]. The terms “hot” and 

“cold” are defined by T cell-infiltrated, inflamed but 

non-infiltrated, and non-inflamed tumors [31]. Hence, 

the Immune_rich subtype was correlated to the “hot” 

tumor and the TIDE algorithm exhibited that the “hot” 

tumor tended to gain lower TIDE scores, implying their 

sensitivity to ICB treatment was higher. Moreover, the 

immune signatures of T cells (TH1, IFNγ, GNLY, 

PRF1, GZMs) were associated with prolonged survival 

and more sensitive to anti-PD1 treatment [32–35]. 

Although the abundance of T cells was higher in 

Immune_rich subtype, most of them were in a 

dysfunctional state, leading to a lower TIDE score. 

Therefore, the risk stratification merely based on the 

infiltration of T cells is too limited to guide the clinical 

strategies of immunotherapy, and our novel classifica-

tion may pose new directions in the future. 
 

Despite the rapid development of diagnostic methods 

and therapeutic strategies for PC, the high degree of 

heterogeneity in PC still makes its prognosis prediction 

and treatment efficacy face great challenges. In the past 

decade, many researchers have done a lot of work to 

develop immune-related prognostic prediction models. 

However, the construction method of those prognostic 

markers is relatively single and only applies to the 
whole PC population, without individualized clinical 

management analysis for high-risk groups, which is not 

enough for accurate risk stratification of PC patients. In 
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fact, with the rapid development of artificial intelligence 

in the biomedical field, machine learning, as an 

important branch of artificial intelligence, has been 

widely used in bulk transcriptomics, single-cell 

transcriptomics, spatial transcriptomics, radionics and 

other fields. Chen P [36] and his team showed that 

through deep learning models (belonging to the branch 

of machine learning), they developed a model named 

DeepMACT, which can systematically analyze the size, 

shape, spatial distribution and other characteristics of 

tumors, as well as the degree of targeted metastasis by 

therapeutic monoclonal antibodies. It is an important 

discovery of the target antibody in the preclinical stage. 

Boris V J et al. [37] summarized the important role of 

image-based machine learning algorithms in predicting 

the clinical outcome of PDAC patients. Among 25 

studies based on machine learning algorithms published 

from 2019 to 2020, 9 models effectively predicted the 

clinical outcome (AUC: 0.78-0.95, C-index: 0.65-0.76). 

Therefore, in order to develop a quantified signature to 

stratify PC patients, we selected machine learning 

algorithms to construct the IRS model to determine 

immune-related risk classification in PC patients. 

Among the 8 genes in the IRS model, SYT12 is 

reported to play a vital role in oral squamous cell 

carcinoma (OSCC) progression via CAMK2N1 and 

could be a new target for OSCC patients [38]. TNNT1 

is regulated by miR-873 and confirmed as an oncogene 

of colorectal cancer (CRC) [39]. TRIM46, which is 

affiliated in the tripartite motif (TRIM) protein family, 

acts as an E3 ligase that targets HDAC1 and promotes 

carcinogenesis and chemoresistance in breast cancer 

[40]. Similarly, an integrative genomic analysis 

revealed that SMPD3 is a tumor suppressor gene that 

could influence the aggressiveness of the hepatocellular 

carcinoma (HCC) [41]. ANLN promotes the 

progression of PC via EZH2/miR-218-5p/LASP1 axis, 

suggesting that ANLN could be served as a potential 

therapeutic target in PC [42]. CXCL9 was listed as a 

conserved 4-chemokine signature marks resectable and 

metastatic PC tumors with an active antitumor 

phenotype [43]. 

 

Meanwhile, we also explored the relationships between 

IRS and TIME. The IRS score was positively correlated 

with neutrophils, MDSCs and M2 macrophages, while 

negatively related to CD8+ T cells and CD4+ T cells. 

Neutrophils, accounting for 70% of circulating 

leukocytes, exhibit an N1 (tumor-suppressive) or N2 

(tumor-promoting) phenotype in the context of cancer 

[44]. We suggested that N1 type of neutrophils were 

abundant in high IRS patients according to the results 

mentioned above. MDSCs could lead to immuno-
suppression, including T cell suppression and innate 

immune regulation via multiple mechanisms in TIME 

[45]. Most importantly, MDSCs strengthened cell 

stemness and promoted the metastatic process by 

promoting EMT through IL-6 secretion in tumors [46]. 

Macrophages can be polarized into inflammatory M1 

(classically activated) or immune-suppressive M2 

(alternatively activated). Based on the secretion of IL-4, 

TIME enhanced the immune suppressive M2 which in 

turn enables tumor growth and progression [47]. CD8+ 

T cells along with CD4+ T cells are contributed to 

adaptive immunity and anti-tumor immunity [48]. 

scRNA-seq was also applied to further explore the 

underlying mechanism of how IRS leads to the diversity 

of TIME. The malignant cells tended to possess higher 

IRS score and may contribute to the specific TIME in 

IRS. Additionally, Cell-cell communications illustrated 

that fibroblast and ductal cells could contribute to the 

development of tumor cells by targeting the SPP1-

CD44 and MIF-CD74 axis. In general, our IRS 

performed well in predicting prognosis and the 

sensitivity of immunotherapy in PC patients. However, 

the ultimate goal of clarifying risk stratification is to 

achieve individualized and personalized treatment, so 

the screening of drug targets and potential agents has 

become the main breakthrough. 

 

With the development of next-generation sequencing 

genomics, researchers can rapidly identify genetic 

differences between tumor cells and normal cells, 

genomic mutations, and changes in downstream 

pathways, which provides convenience for the 

development of drug targets. Currently, many types of 

malignant tumors (e.g., breast and ovarian cancer) 

benefit from “precision medicine” with targeted drugs. 

However, few targeted drugs have been approved for 

PC, and it only marginally prolongs patient survival 

[49]. Hence, based on pharmacogenomic databases, we 

identified 8 drug targets and 1 potential agents for high 

IRS patients in PC.  

 

In terms of 8 targets screened from Drug Repurposing 

Hub and CCLE datasets, it is reported that the high 

expression of CCNA2 is associated with a worse 

prognosis in PC and is correlated with advanced tumor 

stage [50]. Inhibition of EPHB4 combined with 

radiation can modulate the microenvironment response 

post-radiation, contributing to increased tumor control 

in PC [51]. PLOD genes or PLOD family genes also 

could be served as potential prognostic biomarkers for 

PC [52]. PLKT1 suppresses PC progression and inhibits 

NF-κB activity, and targeting PLKT1 can alleviate the 

sensitivity of immunotherapy in PC [53]. The up-

regulation of PANX1 was correlated with poor out-

comes and immune infiltration in PC [54]. CCNB1 

silencing suppresses cell proliferation and promotes cell 
senescence by activating the p53 signalling pathway in 

PC [55]. Although INCENP and NCF2 haven’t been 

reported in PC, it needs further exploration could 
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concentrate on these two novel targets. Moreover, we 

identified Canertinib as the most reliable agent targeting 

high IRS score PCs based on CTRP and PRISM 

datasets. Canertinib, an EGFR inhibitor, has been 

demonstrated effective in pNETs according to available 

genetic atlas data [56]. But unfortunately, its clinical 

efficiency in PC has been insofar moderate. Current 

work provides new insights into improving the 

therapeutic effect of PC, offering new directions for the 

precision treatment of PC. 
 

Importantly, our study differed from previous studies 

in the following aspects: (1) Our established TIME 

subtype tightly correlated with the classical six 

classifications, which confirmed the reliability of our 

classification and shed light on a novel strategy for the 

treatment of PC. (2) Via multiple machine-learning 

algorithms, the IRS was constructed and achieved 

better performance in risk stratification than previous 

prognostic signatures. (3) Recently, numerous studies 

have merely focused on subtyping PC at an 

immunogenic level. However, they failed to deliver 

precision medicine for PC patients based on their 

classifications. Apart from being informative regarding 

TIME and prognosis, IRS can also be implemented for 

precise oncology, and our results have the potential to 

refine the status quo of population-based therapies and 

guide personalized treatment in PC. However, this 

study has several limitations. For instance, our 

research merely focused on public retrospective 

datasets, and the predictive efficiency of the IRS in 

immunotherapy response requires further validation in 

immunotherapy cohorts of PC. Furthermore, the 

results of drug targets and agents prediction cannot be 

verified against each other, which reduces the power 

of the conclusions. 
 

In conclusion, we classified two TIME subtypes with 

specific tumor microenvironments and accessed the 

differences in potential response among these two 

subtypes. Additionally, we developed a novel immune-

related prognostic signature—IRS, and validated it in 

various cohorts and experiments. Finally, based on 

multiple drug susceptibility and target databases, we 

have identified seven potential therapeutic targets and 

two compounds, which shed new light on the 

application of precision medicine in PC.  

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 

 

The expression profile of pancreatic cancer patients was 
downloaded from TCGA dataset (https://portal.gdc. 

cancer.gov/) in the form of Fragments Per Kilobase 

Million (FPKM) and transformed into log2(TPM+1) 

format data. The corresponding clinical data from the 

TCGA dataset was downloaded from UCSC Xena 

(https://xenabrowser.net/datapages/). A total of 149 cases 

in TCGA with corresponding PC tissues and complete 

clinical data were enrolled in the study [57]. The RNA-

Seq data of the CELL cohort (CPTAC3-Discovery 

project, n = 135) was employed in this study to construct 

the prognostic signature, which was obtained from 

Proteomic Data Commons (PDC, https://pdc.cancer.gov/ 

pdc/) and LinkedOmics (http://www.linkedomics.org/ 

data_download/CPTAC-PDAC/). TCGA and CELL 

cohorts were combined as a meta-cohort (n = 284) to 

facilitate the model training and the “sva” R package was 

used to remove the batch effect between two independent 

datasets (Supplementary Figure 5). Genotype-Tissue 

Expression (GTEx, https://www.gtexportal.org/) dataset 

containing the expression data of normal pancreatic was 

also included (n = 167). Meanwhile, ICGC (https://dcc. 

icgc.org/, n = 81) and GEO (http://www.ncbi.nlm.nih. 

gov/geo) datasets (GSE62452, https://www.ncbi.nlm.nih. 

gov/geo/query/acc.cgi?acc=GSE62452, n = 65) were 

extracted to validate the efficiency of an established 

model. The single-cell dataset of PDAC (CRA001160) 

was extracted from the TISCH database (http://tisch. 

comp-genomics.org/home/), which contained 24 

pancreatic tumor tissues and 11 normal tissues. In terms 

of studies in personalized treatment, the expression profile 

of pancreatic CCLs was screened from the Broad Institute 

CCLE project (https://portals.broadinstitute.org/ccle/, n = 

44). Drug sensitivity data of CCLs were achieved from 

the CTRP v.2.0 (https://portals.broadinstitute.org/ctrp), 

containing the sensitivity data for 481 compounds over 

835 CCLs) and PRISM Repurposing dataset (19Q4, 

released December 2019, https://depmap.org/portal/ 

prism/, containing the sensitivity data for 1448 

compounds over 482 CCLs). 

 

Screening for immune-related genes 

 

ESTIMATE algorithm was applied to calculate the 

immune scores and stromal scores based on the 

expression profile of meta-cohort [58]. Then, according 

to the median value, PC patients were divided into high- 

and low-immune/stromal score subgroups. Differential 

expression analysis was performed to screen out the 

dysregulatory genes among immune score subgroup, 

stromal score subgroup, and between tumor and normal 

pancreatic samples via “DESeq2” R package with the 

criteria of |log2Fold change| >1 and p<0.05 [59]. 

Importantly, the converged DEGs among three 

subgroups were defined as IRGs. 

 

Unsupervised clustering analysis 

 

In order to determine the specific patterns of IRGs, the 

unsupervised consensus clustering algorithm was 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://xenabrowser.net/datapages/
https://pdc.cancer.gov/pdc/
https://pdc.cancer.gov/pdc/
http://www.linkedomics.org/data_download/CPTAC-PDAC/
http://www.linkedomics.org/data_download/CPTAC-PDAC/
https://www.gtexportal.org/
https://dcc.icgc.org/
https://dcc.icgc.org/
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62452
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62452
http://tisch.comp-genomics.org/home/
http://tisch.comp-genomics.org/home/
https://portals.broadinstitute.org/ccle/
https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism/
https://depmap.org/portal/prism/
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implemented via “ConsensusClusterPlus” R package 

[60]. In addition, principal component analysis (PCA) 

analysis was also conducted to validate the difference 

between subtypes. 

 

Enrichment analysis and immune landscape of 

immune subtypes 

 

GSEA, GO and KEGG annotation were adopted for 

determining the statistical significance of molecular 

pathways as well as the consistent heterogeneities 

between among different groups via “clusterProfiler” R 

package [61]. A pathway with FDR q < 0.25 and P < 

0.05 was defined as statistically significant. single 

sample Gene Set Enrichment Analysis (ssGSEA) [62] 

and TIMER [63] algorithm was utilized to evaluate the 

tumor-infiltrating immune cells among different TIME 

subtypes. The previously published signatures of 

immune- and stroma- cells were selected to calculate 

the abundance of tumor-infiltrating immune cells 

through ssGSEA [62]. TIDE algorithm was used to 

predict responsiveness to ICBs between different 

groups, and lower TIDE scores implied better immuno-

therapeutic efficacy [64]. 

 

Published PC classifications prediction and 

comparison 

 

The relationship between our TIME subtype and 

reported PC molecular classifications was also 

explored. Six classical PC classifications have been 

analyzed, including Bailey’s classification [21], 

Collisson’s classification [22], Moffitt’s tumor 

classification [23], Moffitt’s stromal classification [23], 

Puleo’s classification [24] and Li’s classification [25]. 

Based on published signature genes and algorithms, 

unsupervised consensus clustering was applied for 

identifying the subtyping schemas of Bailey’s 

classification, Collisson’s classification, Moffitt’s tumor 

classification, Moffitt’s stromal classification and  

Li’s classification on meta-cohort using the 

“ConsensusClusterPlus” package in R. For the pre-

diction of Puleo’s classification, we followed the 

pipeline defined by Puleo [24]. For each sample in 

meta-cohort, the expression of genes in the centroids 

was selected, and Spearman rank correlation analysis 

was conducted between selected genes and 5 centroids. 

The subtype centroid with the highest correlation is the 

predicted class of the tested sample. The comparison 

between the distribution of six predicted classifications 

and our TIME subtype was measured by Fisher’s exact 

test. R package “ggalluvial” was utilized to plot the 

Sankey diagram [65]. Cramer’s V served as an effect 
size measurement for the association between TIME 

subtypes and the other six classifications. It ranges from 

0 to 1 where, 0 indicates no association between the two 

variables, and 1 indicates a perfect association between 

them. 

 

Screening, construction and validation of the IRS 

 

PC patients in meta-cohort were categorized into the 

training set and testing set at the ratio of 7:3. Then, in 

order to screen the prognostic DEGs, the Bootstrapping 

univariate Cox analysis was conducted by the 

“survival” R package. Furthermore, RSF analysis was 

applied to dimension reduction. The highest C-index of 

out-of-bag samples was used as the best model and the 

underlying gene set was observed, and this gene set was 

defined as IRS. Finally, The IRS scoring model was 

constructed with the correlation coefficients obtained 

from multivariate Cox regression, and the formula was 

as follows: 

 

1

n

i i

i

IRS score Coef x

=

=   

 

Where Coefi is the multivariate Cox regression 

coefficient, and xi is the expression value according to 

the optimal IRS score, patients were divided into 

IRS_high and IRS_low group. The area under the curve 

(AUC) value was used as the criteria to evaluate the 

effectiveness of the IRS model. 

 

Otherwise, three conventional published signatures 

(Wang’s signature [66], Tao’s signature [67] and Dai’s 

signature [68]) and two classical prognostic signatures 

(PAMG [69] and PurIST [70] signature) in PC were 

collected to compare the predictive accuracy of the IRS 

and these signatures. For three conventional signatures, 

we calculated the risk scores based on the genes and 

coefficients provided by the articles (Supplementary 

Table 9). The PAMG score was calculated via the 

“pdacmolgrad” R package. PurIST score and classifica-

tion were obtained following the protocol in the original 

publication [70]. Afterwards, we comprehensively 

assessed their predictive performance based on AUC 

values. 

 

IRS-based chemotherapy sensitivity and ICB 

sensitivity analysis 

 

To predict potential therapeutic effects in different 

subgroups, “oncoPredict” R package [17] was applied 

to predict the drug response of PC patients. Moreover, 

several predicted scores were conducted to evaluate the 

immunotherapeutic response to IRS, namely, ICB 

expression, TMB, TME score and IPS. TMB score was 

computed based on the somatic mutation data from the 

TCGA dataset, and confirmed as a predictor of 

immunotherapy. IPS score was downloaded from the 
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cancer immunome group atlas (TCIA, https://tcia.at/ 

home) after uploading the expression profile of patients 

[62]. TME score was calculated by “TMEscore” R 

package [71], revealing the patients’ response to ICB. 

To further validate the role of IRS in the prediction of 

immunotherapy, we implemented the Subclass mapping 

(SubMap) to evaluate the expression similarity between 

IRS_high/IRS_low patients and patients who 

responded/non-responded to anti-PD-1 and anti-CTLA4 

immunotherapy [72]. 

 

Single-cell RNA sequencing analysis 

 

The dataset CRA001160 was utilized for scRNA 

sequencing analysis. UMI count matrices were 

generated for each sample, and imported into the 

“Seurat” R package. Low quality cells (<200 genes/cell 

or >20% mitochondrial genes) were excluded. “Seurat” 

package was applied for normalization and scaling of 

the expression matrix, using default settings [73]. 

Mitochondrial contamination was regressed out by 

setting “vars.to.regress” parameter. The doublets were 

cleared out by the “DoubletFinder” R package (version 

2.0.3) [74]. To reduce the dimensionality of the 

expression matrix, PCA analysis was performed based 

on 2,000 highly variable genes. JackStraw analysis was 

utilized to identify significant principal components 

(PC), and PC 1~10 was used for graph-based clustering 

(res = 0.8) to determine distinct groups of cells. Via 

previously computed PC 1~10, these groups were 

projected onto the t-SNE analysis. Subsequently, we 

used the Seurat FindMarker function to find marker 

genes of each cell cluster, and defined cell types based 

on previous datasets and literature [75–78]. 

 

Cell–cell interaction analysis 

 

To analyze the cell-cell interactions, R package 

“CellChat” [79] was employed to predict the major 

incoming and outgoing intercellular communication 

networks. In our work, cell-cell interactions were 

analyzed following the default pipeline. Normalized 

scRNA-seq counts data were used to create CellChat 

object with the recommended preprocessing functions. 

CellChatDB.human was utilized as the database for 

inferring cell–cell communication with default 

parameters. “ECM-Receptor” in the database was 

applied in the analysis. Communications including less 

than 10 cells were excluded. “iTALK” R package [80] 

was also used to estimate cell-cell communication. The 

top 50% of highly expressed genes in each cluster were 

projected to ligand-receptor pairs in the “iTALK” 

package. Four categories, including checkpoint protein, 
cytokine, growth factor, and “other” protein, were 

employed in our study. The top 30 ligand-receptor pairs 

for each type were extracted for visualization. 

Exploring the biological process of IRS from gene-

level to pathway-level 

 

Pathifier analysis was implemented to dig into the 

differences between IRS_high and _low subgroups via 

“Pathifier” R package [81]. The Pathifier analysis 

method is used to identify specific signaling pathways 

at specific stages of cancer, and can be used in the 

personalized treatment of cancer. By means of 

correlation, variance stability and principal component 

analysis, Pathway Deregulation Score (PDS) was 

calculated for each PC sample, and then used to 

estimate the degree to which the activity of a pathway in 

PC samples deviates from normal samples. 

 

RT-qPCR analysis  

 

All cells in the experiments, including AsPC-1 (RRID: 

CVCL_0152), BxPC-3 (RRID: CVCL_0186), PANC-1 

(RRID: CVCL_0480), PaTu 8988t (RRID: 

CVCL_1847), and hTERT-HPNE (RRID: 

CVCL_C466) cells, were purchased from the Cell Bank 

of the Chinese Academy of Sciences (Shanghai, China) 

and used for RT-qPCR. All human cell lines have been 

authenticated using STR profiling within the last three 

years and that all experiments were performed with 

mycoplasma-free cells. RNA was reverse transcribed 

into cDNA using a reverse transcription kit. Gently 

vortex and then put into the quantitative PCR 

instrument for amplification. Three technical replicates 

of each PCR reaction were conducted to ensure the 

credibility of the experiment. The forward and reverse 

primers were listed in Supplementary Table 10.  

 

Statistical analysis 

 

Student’s t-test was applied in the normal distribution 

data; Wilcox test was applied for non-normal 

distribution data between independent groups. 

Spearman analysis was applied to estimate the 

correlations between two variables that are not linearly 

related. The Kaplan–Meier test was utilized to validate 

the fraction of PC patients living for a certain survival 

time via the survival package. The log-rank test was 

conducted to compare the significance of the difference. 

A two-tailed p-value of less than 0.05 was deemed 

statistically significant unless specifically stated. See 

Supplementary File 1 for more information. 

 

Abbreviations 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 

 
 

Supplementary Figure 1. Identification of TIME-related subtypes. (A) The CDF plot of consensus clustering. (B) The PCA plot 

demonstrated the differences between the two clusters. 
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Supplementary Figure 2. Published PC subtypes prediction. Heatmap showed that we defined Bailey's classification (A), Collisson's 

classification (B), Moffitt's tumor classification (C), Moffitt's stromal classification (D) and Li's classification (E) based on the published 
classifier exemplar genes. 
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Supplementary Figure 3. Kaplan-Meier curves of overall survival were plotted according to the TIME subtype and Puleo's 
classification. 
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Supplementary Figure 4. Validation of IRS. (A) Forest plot of univariate cox analysis based on the training set. (B–I) The survival analysis 
is based on the expression of IRS genes. 
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Supplementary Figure 5. Evaluation of the results of batch effect correction. The principal component analysis (PCA) before (A) and 
after (B) batch effect correction on Meta-cohort. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–5. 

 

Supplementary Table 1. Differential genes between immune_high and immune_low samples. 

 

Supplementary Table 2. Differential genes between stromal_high and stromal_low samples. 

 

Supplementary Table 3. Differential genes between pancreatic cancer and normal pancreatic samples. 

 

Supplementary Table 4. The 1612 IRG signature. 

 

Supplementary Table 5. Published PC classifications prediction. 

 

Supplementary Table 6. Comparison of the TIME subtype with other pancreatic molecular classifications. 

Classifications 
Overall Immune_desert Immune_rich 

P-value 
284 145 139 

TIME subtype (%) 
Immune_desert 145 (51.06) 145 (100.00) 0 (0.00) 

<0.0001 
Immune_rich 139 (48.94) 0 (0.00) 139 (100.00) 

Bailey’s classification (%) 

ADEX 85 (29.93) 55 (37.93) 30 (21.58) 

<0.0001 
Immunogenic 54 (19.01) 5 (3.45) 49 (35.25) 

Progenitor 61 (21.48) 59 (40.69) 2 (1.44) 

Squamous 84 (29.58) 26 (17.93) 58 (41.73) 

Collisson’s classification (%) 

Classical 69 (24.30) 49 (33.79) 20 (14.39) 

0.0006 Exocrine_like 138 (48.59) 60 (41.38) 78 (56.12) 

QM_PDA 77 (27.11) 36 (24.83) 41 (29.50) 

Moffitt’s tumor classification (%) 
Basel_like 133 (46.83) 70 (48.28) 63 (45.32) 

0.7044 
Classical 151 (53.17) 75 (51.72) 76 (54.68) 

Moffitt’s stromal classification 

(%) 

Absent 46 (16.20) 30 (20.69) 16 (11.51) 

0.0101 Activated 115 (40.49) 64 (44.14) 51 (36.69) 

Normal 123 (43.31) 51 (35.17) 72 (51.80) 

Puleo’s classification (%) 

Desmoplastic 44 (15.49) 1 (0.69) 43 (30.94) 

<0.0001 

Immune classical 37 (13.03) 4 (2.76) 33 (23.74) 

Pure basal-like 37 (13.03) 27 (18.62) 10 (7.19) 

Pure classical 91 (32.04) 76 (52.41) 15 (10.79) 

Stroma Activated 75 (26.41) 37 (25.52) 38 (27.34) 

Li’s classification (%) 
Immune Class 143 (50.35) 48 (33.10) 95 (68.35) 

<0.0001 
Nonimmune Class 141 (49.65) 97 (66.90) 44 (31.65) 

 

  



www.aging-us.com 14138 AGING 

Supplementary Table 7. CMap 
score of candidate potential 
agents. 

Compounds CMap score 

Canertinib -80.94 

PP-1 -64.5 

YM-976 -0.74 

CHIR-98014 NA 

GW-788388 NA 

Brigatinib  NA 

Vincamine -21.27 

 

Supplementary Table 8. AUC values of two PC cell lines. 

DepMap_ID Cell line RRID IRS score Group Canertinib PP-1 YM-976 Vincamine 

ACH-000417 Capan-2 CVCL_0026 2.96757 IRS_high 0.77602 1.3768761 1.216856 0.8804061 

ACH-000107 Panc 08.13 CVCL_1638 2.546593 IRS_low 0.96352 0.9137654 1.246992 0.9541501 

 

Supplementary Table 9. Details of 3 published signatures in PC. 

Model PMID Type Author Coef Gene 

Model-1 35953822 mRNA Wang C 0.0893 ALB 

Model-1 35953822 mRNA Wang C 0.1935 CXCL10 

Model-1 35953822 mRNA Wang C 0.0635 IAPP 

Model-1 35953822 mRNA Wang C -0.2633 LIFR 

Model-1 35953822 mRNA Wang C -0.2338 LYZ 

Model-1 35953822 mRNA Wang C 0.2893 MET 

Model-1 35953822 mRNA Wang C 0.2177 S100A14 

Model-2 36118860 mRNA Tao S 0.2302 GSDMC 

Model-2 36118860 mRNA Tao S -0.4664 ELANE 

Model-2 36118860 mRNA Tao S 0.3341 IL18 

Model-2 36118860 mRNA Tao S -0.4324 NLRP1 

Model-2 36118860 mRNA Tao S 0.1297 NLRP2 

Model-3 35831362 mRNA Dai L 0.132 S100P 

Model-3 35831362 mRNA Dai L 0.098 S100A2 

Model-3 35831362 mRNA Dai L 0.095 MMP12 
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Supplementary Table 10. The forward and reverse 
primers of hub genes. 

Name Primer(5'to3') 

Homo-SYT12-F CAGAATACCATCTGAGCGTCATC 

Homo-SYT12-R TAGTCGTAATTGGGGAACGGA 

Homo-TNNT1-F TGATCCCGCCAAAGATCCC 

Homo-TNNT1-R TCTTCCGCTGCTCGAAATGTA 

Homo-TRIM46-F TTCCGACCCAAGGGCCTTAT 

Homo-TRIM46-R AGAGTTGACATACCAGGCGTT 

Homo-SMPD3-F GCTGCCCTTTGCGTTTCTC 

Homo-SMPD3-R TCCAGCCGTGAATAGATGTAGG 

Homo-ANLN-F TGCCAGGCGAGAGAATCTTC 

Homo-ANLN-R CGCTTAGCATGAGTCATAGACCT 

Homo-AFF3-F GCCCTACAAGACTAACAAGGGG 

Homo-AFF3-R ACTCCAACGAGATGACTCTGAT 

Homo-CXCL9-F CCAGTAGTGAGAAAGGGTCGC 

Homo-CXCL9-R AGGGCTTGGGGCAAATTGTT 

Homo-RP1L1-F TCCCGGAAGAGTCTTAAAACCC 

Homo-RP1L1-R GCGGCCAGGTTCCTAGTATTC 
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Supplementary File 
 

Please browse Full Text version to see the data of Supplementary File 1. 


