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INTRODUCTION 
 

Primary cardiomyopathy, characterized by pathological 

changes of cardiomyocytes and cardiac structure, is a 
disease with unknown cause after excluding various 

secondary factors [1]. Primary cardiomyopathy, 

including dilated cardiomyopathy (DCM), hypertrophic 

cardiomyopathy (HCM) and arrhythmogenic right 

ventricular cardiomyopathy (ARVC), could lead to 

heart failure and arrhythmia, and is an important cause 

of sudden death and heart transplantation [2]. In the past 

few years, more and more studies have focused on the 

pathogenesis of primary cardiomyopathy, which has 

gradually deepened the understanding of the patho-
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ABSTRACT 
 

Cuproptosis is a recently reported new mode of programmed cell death which might be a potential co-
pathogenesis of three kinds of primary cardiomyopathy. However, no investigation has reported a clear 
relevance between primary cardiomyopathy and cuproptosis. In this study, the differential cuproptosis-related 
genes (CRGs) shared by three kinds of primary cardiomyopathy were identified in training sets. As a result, four 
CRGs shared by three kinds of primary cardiomyopathy were acquired and they were mainly related to 
biological processes such as cell death and immuno-inflammatory response through differential analysis, 
correlation analysis, GSEA, GSVA and immune cell infiltration analysis. Then, three key CRGs (K-CRGs) with high 
diagnostic value were identified by LASSO regression. The results of nomogram, machine learning, ROC 
analysis, calibration curve and decision curve indicated that the K-CRGs exhibited outstanding performance in 
the diagnosis of three kinds of primary cardiomyopathy. After that, in each disease, two molecular subtypes 
clusters were distinguished. There were many differences between different clusters in the biological processes 
associated with cell death and immunoinflammation and K-CRGs had excellent molecular subtype identification 
efficacy. Eventually, results from validation datasets and in vitro experiments verified the role of K-CRGs in 
diagnosis of primary cardiomyopathy, identification of primary cardiomyopathic molecular subtypes and 
pathogenesis of cuproptosis. In conclusion, this study found that cuproptosis might be the potential common 
pathogenesis of three kinds of primary cardiomyopathy and K-CRGs might be promising biomarkers for the 
diagnosis and molecular subtypes identification of primary cardiomyopathy. 
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genesis of primary cardiomyopathy. Researchers have 

begun to realize that there may be common patho-

genesis among various primary cardiomyopathy, but the 

specific molecular mechanism has not been fully 

elucidated [3–5]. In terms of diagnosis, the diagnosis of 

primary cardiomyopathy mainly relies on echo-

cardiography and cardiovascular magnetic resonance [6, 

7]. Usually, the patients diagnosed with cardiomyopathy 

by echocardiography or cardiovascular magnetic 

resonance have entered the middle or late stages of 

disease. At that time, the treatment measures mainly 

focused on improving the symptoms of heart failure and 

preventing malignant arrhythmia, which is difficult to 

achieve satisfactory efficacy [8, 9]. Early genetic 

diagnostic markers and targeted therapy methods need 

to be further developed. Thus, it can be seen, there are 

many difficulties in the pathogenesis, diagnosis and 

treatment of primary cardiomyopathy, and it is 

necessary to carry out related research. 

 

Previous studies have shown that programmed cell 

death, including apoptosis, pyroptosis and ferroptosis, is 

associated with the occurrence and development of 

primary cardiomyopathy [10]. Recently, researchers 

have identified a new pattern of programmed cell death, 

that is, cuproptosis. The occurrence of cuproptosis 

depends on mitochondrial metabolism and cellular 

respiration, and its pathological features are the 

aggregation of lipoylated proteins and lack of iron-

sulfur cluster proteins [11]. Some studies have shown 

that mitochondrial dysfunction is closely related to the 

pathogenesis of various cardiomyopathies [12, 13]. 

More importantly, significant copper transport 

dysfunction in cardiomyocytes has been observed in 

animal models of cardiomyopathy, and copper chelator 

could remedy this phenomenon and ameliorate 

cardiomyopathy-induced cardiac function decline [14]. 

In addition, other studies have found that serum copper 

levels in patients with cardiomyopathy are significantly 

increased, but the specific mechanism is not fully 

understood [15]. Hence, on the basis of the findings of 

previous research, we hypothesized that cuproptosis 

might be involved in the pathogenesis of multiple 

primary cardiomyopathies. Further studies are expected 

to elucidate the common pathogenesis of multiple 

primary cardiomyopathies, and may help to find 

diagnostic markers and therapeutic targets. 

 

Bioinformatics analysis has the advantage of multi-

dimension and multi-layer, which is of great value in 

investigating the pathogenesis, diagnosis and treatment 

of diseases. However, there was no research that 

employed this analysis technique to primary 
cardiomyopathy and cuproptosis. Therefore, through 

bioinformatics analysis and in vitro experiment, our 

investigation tried to explore the role of cuproptosis in 

the three kinds of primary cardiomyopathy, and 

determine the value of CRGs in the three kinds of 

primary cardiomyopathy for diagnosis and molecular 

subtype identification, for purpose of providing a new 

way to solve the dilemma of primary cardiomyopathy. 

The research procedure of our investigation was shown 

in the Supplementary Figure 1. 

 

MATERIALS AND METHODS 
 

Sources of data 
 

The keywords “dilated cardiomyopathy”, “hypertrophic 

cardiomyopathy” and “arrhythmogenic right ventricular 

cardiomyopathy” were employed to seek the datasets 

related to primary cardiomyopathy in the Gene 

Expression Omnibus (GEO) database. After that, we 

screened the search results based on the following 

criteria: (1) The study samples were human ventricular 

tissue. (2) The subjects were patients with primary 

cardiomyopathy or healthy people. Finally, we selected 

the two datasets with the largest sample sizes for each 

primary cardiomyopathy, and a total of six datasets 

were included in this study. The GSE141910 and 

GSE29819 datasets were appointed as training sets, 

including 166 people with DCM, 28 people with HCM, 

six people with ARVC and 172 healthy people. The 

GSE57338, GSE36961, GSE107475 and GSE107156 

datasets were appointed as validation sets, including 82 

people with DCM, 106 people with HCM, nine people 

with ARVC and 180 healthy people. The detailed 

information of the six datasets was presented in the 

Supplementary Table 1. In addition, the CRGs included 

in this research were derived from previously published 

research [16–19]. The gene symbols of the CRGs were 

shown in the Supplementary Table 2. 

 

Differential expression analysis and protein–protein 

interaction (PPI) network analysis of CRGs 
 

The data was rectified using log2 conversion prior to 

differential expression analysis. Subsequently, the 

expression data of CRGs was acquired from training sets 

and the “limma” package was employed to find 

differentially expressed CRGs between patients with 

three kinds of primary cardiomyopathy and healthy 

people, thereby obtaining differential CRGs for DCM, 

HCM and ARVC, respectively. The criterion of 

differential CRGs was P-value less than 0.05. After that, 

we employed the “pheatmap” package and “pheatmap” 

package to generate differential CRGs heatmaps and 

boxplots. Then, the intersection of differential CRGs of 

the three diseases was employed to obtain differential 
CRGs shared by three kinds of primary cardiomyopathy. 

Finally, the PPI network analysis of the CRGs shared by 

three kinds of primary cardiomyopathy was conducted 



www.aging-us.com 14212 AGING 

by using STRING database to explore whether there was 

any interaction between these CRGs. In addition, the 

“RCircos” package was employed to exhibit the 

chromosomal location of CRGs. 

 

Unsupervised clustering for three kinds of primary 

cardiomyopathy patients 

 

The unsupervised clustering analysis of three kinds of 

primary cardiomyopathy groups was conducted by 

employing the R package “ConsensusClusterPlus”. The 

molecular subtype clusters were distinguished according 

to the expression level of CRGs. The optimum amounts 

of clusters for each primary cardiomyopathy were 

assessed on the basis of consensus clustering matrix, 

cumulative distribution function (CDF) curves, CDF 

delta area curves and consensus clustering score. 

 

Single-gene gene set enrichment analysis (GSEA) 

 

We identified biological functions correlated to the 

individual CRG in this study by single-gene GSEA. In 

the first step, we calculated the relevance between all 

other genes in the whole gene set and the shared 

differential CRGs, and sorted the gene set based on the 

relevance. We then employed the Gene Ontology (GO) 

and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) data files as references to assess the degree of 

enrichment of each gene set on different biological 

functions to find the biological functions most strongly 

associated with individual CRGs. Finally, the enrichment 

results of each single gene were visualized separately. 

These analysis processes and visualization processes 

were carried out with the support of packages “limma”, 

“org.Hs.eg.db”, “clusterProfiler” and “enrichplot”. 

 

Gene set variation analysis (GSVA) 

 

We identified biological functions correlated to the three 

kinds of primary cardiomyopathy or different molecular 

subtypes clusters in this study by GSVA. In common 

with GESA, GSVA also references GO and KEGG data 

files. With the support of the R software package 

“reshape2”, “limma”, “GSEABase” and “GSVA”, 

GSVA analysis was performed to identify the 

differential biological functions between the three kinds 

of primary cardiomyopathy groups and the control group 

or between clusters of different molecular subtypes. 

Differential biological functions were determined by 

absolute t value of GSVA score greater than 2. 

 

Immune cell infiltration analysis 

 
With the support of R package “preprocessCore”, we 

calculated the abundance and proportion of immune cell 

infiltration in each sample based on CIBERSORT 

algorithm and gene expression profile of each sample, 

thus finding the differences of immune infiltration 

between patients with three kinds of primary cardio-

myopathy and healthy people, as well as the differences 

of immune infiltration between different molecular 

subtype clusters in each kind of primary cardio-

myopathy. A total of 22 of the most common types of 

immune cells were included in the CIBERSORT 

algorithm analysis. 

 

Establishment and estimation of diagnostic model 

and molecular subtype identification model 
 

The least absolute shrinkage and selection operator 

(LASSO) regression was carried out by employing 

“glmnet” package to estimate the value of differential 

CRGs shared by three kinds of primary cardiomyopathy 

in the disease diagnosis, thereby obtaining the key CRGs 

(K-CRGs) with high diagnostic value. After that, R 

packages “caret” was employed to build three machine 

learning models on the basis of K-CRGs, including 

random forest model (RF), support vector machine model 

(SVM) and generalized linear model (GLM). Finally, the 

diagnosis and molecular subtype identification performed 

by these models was estimated via cumulative residual 

distribution curves, residual boxplots and receiver 

operating characteristic (ROC) curves. 

 

Establishment of the nomogram 

 

We employed “rms” package to produce the K-CRGs-

based nomograms for the diagnosis of three kinds of 

primary cardiomyopathy. In the nomogram, each K-

CRGs was assigned a different score depending on its 

expression level, and the sum of all K-CRGs scores 

could predict the risk of three kinds of primary 

cardiomyopathy. Finally, we performed calibration 

curve and decision curve analysis (DCA) to estimate the 

accuracy of these nomograms in diagnosing three kinds 

of primary cardiomyopathy. 

 

Construction of ceRNA network 

 

The miRNA that may regulate the K-CRGs was 

forecasted according to the miRanda, miRDB and 

TargetScan databases. At the same time, lncRNA that 

may regulate the miRNA was forecasted according to 

the lncBase and mircode databases. The ceRNA 

network of mRNA-miRNA-lncRNA interaction was 

built by employing the Cytoscape tool. 

 

Prediction of targeted drugs 

 
We searched the DSigDB database for drugs of 

regulating K-CRGs and visualized the result by 

employing the Cytoscape tool. 
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Molecular docking 

 

First, we employed the PubChem database to obtain the 

2D structures of targeted drugs. Then, we employed the 

Chem3D tool to transform drug 2D structure into 3D. 

After that, we employed the PDB database and UniProt 

database to obtain the 3D structure of K-CRGs. 

Subsequently, we employed the Autodock Tool to 

position active pocket of K-CRGs. In the end, we used 

the Autodock Vina tool to conduct molecular docking, 

thereby forecasting the binding sites and binding 

strength between K-CRGs and drugs. 

 

Materials and reagents 

 

The antibodies of FDX1 (12592-1-AP), SLC31A1 

(67221-1-Ig), LIAS (11577-1-AP), POLD1 (15646-1-

AP) and HSP70 (10995-1-AP) were purchased from 

Proteintech Group, USA. The antibody of MAP2K1 

(4694) was purchased from Cell Signaling Technology, 

USA. The copper chloride (CuCl2) (C3279) and 

glutathione (GSH) (G6013) were obtained from Sigma 

Aldrich, USA. The Dulbecco’s Modified Eagle’s 

Medium (DMEM) (21331046), fetal bovine serum 

(FBS) (10100147C), and penicillin-streptomycin 

(15140122) were obtained from Gibco, USA. The 

siRNAs of FDX1 (107318), SLC31A1 (10548) and 

MAP2K1 (142322) were bought from Ambion, USA. 

The transfection reagent Lipofectamine RNAiMAX 

(13778075) was purchased from Invitrogen, USA. The 

reverse transcription reagents (11141ES60) and 

amplification reagents (11202ES08) for real time 

quantitative polymerase chain reaction (RT-qPCR) were 

purchased from Yeasen Biotechnology, China. 

 

Cell culture and model establishment 

 

The AC16 cell is a myocardial cell line derived from 

human ventricular tissue and has the ability of 

proliferation in vitro [20]. AC16 cells have the same 

nuclear DNA and mitochondrial DNA as ventricular 

tissue derived primary cardiomyocytes, and retain the 

mitochondrial respiratory function of primary 

cardiomyocytes [21]. Previous literature has shown that 

AC16 cells are suitable for in vitro experimental studies 

of a variety of primary cardiomyopathy in humans, 

especially for studying the pathogenesis of primary 

cardiomyopathy related to mitochondrial function [22, 

23]. The data in the bioinformatics analysis part of our 

study were derived from human ventricular tissue 

samples, and cuproptosis was closely related to mito-

chondrial function. Therefore, the in vitro experimental 

part of our study selected AC16 cell lines as tool cells to 
verify the role and expression level changes of K-CRGs 

in cuproptosis of cardiomyocytes. The AC16 cells were 

provided by Merck-Millipore, USA. The AC16 cells 

were cultured in DMEM supplemented with 12.5% FBS 

and 1% penicillin-streptomycin. The incubator 

conditions are set to: 37°C and 5% CO2. The method of 

establishing cell cuproptosis model in this study was 

referred to previous research [24]: AC16 cells were 

treated with different concentrations of CuCl2 for 24 

hours and CCK-8 assay was performed. The 

concentration of CuCl2, which could significantly 

reduce cells viability, was selected as the intervention 

concentration for subsequent experiments. The GSH is a 

common copper chelator that binds intracellular copper 

and could be employed as the cuproptosis inhibitor. 

 

Transfection of siRNA 

 

We diluted the siRNA and transfection reagents by 

employing serum-reducing medium at the suggested 

concentrations in the specification. After that, the 

diluted siRNA solution and the transfection reagent 

solution were mixed. The AC16 cells were then 

cultured in the mixture for 48 hours. Finally, the RT-

qPCR experiment was employed to verify whether the 

gene was successfully knocked down. 

 

CCK-8 cell proliferation assay 

 

AC16 cells were cultured in 96-well plates to a density 

of approximately 80 percent. The CuCl2 was then added 

to each well and cultured for 24 h according to the 

following concentration gradients: 5 μM, 10 μM, 25 

μM, 50 μM, 75 μM, and 100 μM. After that, 10 μL 

CCK8 solution was added to each well for 2 hours and 

absorbance was measured at 450 nm. 

 

Western blot 

 

First, we employed gel electrophoresis technology to 

isolate proteins extracted from AC16 cells. Then, we 

employed protein transfer technology to transfer the 

isolated proteins from the gel to the PVDF membrane. 

After that, we employed 5% bovine serum albumin to 

block the protein on the PVDF membrane for one hour. 

Subsequently, the PVDF membrane was incubated with 

FDX1, SLC31A1, MAP2K1, LIAS, POLD1, HSP70 and 

DLAT primary antibodies at 4°C overnight. On the 

second day, the PVDF membrane was incubated with the 

corresponding secondary antibodies at room temperature 

for 1 hour. Finally, the chemiluminescence reaction and 

blot imaging were performed on the PVDF membrane. 

 

RT-qPCR 

 

The experimental parameters of RT-qPCR were set 
according to the specification. The parameters of the 

reverse transcription were set to: 25°C for five minutes, 

55°C for 15 minutes, 85°C for five minutes. The 
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parameters of the amplification were set to: pre-

denaturation for five minutes at 95°C, followed by 40 

cycles at 95°C for 10 seconds and 60°C for 30 

seconds. The relative expression level of the mRNA of 

the target gene was assessed by the ΔΔCt method. The 

Supplementary Table 3 exhibited the primer sequences 

(primer synthesis was carried out by Generay Biotech, 

China). 
 

Immunofluorescence 
 

The AC16 cells seeded on glass coverslips were fixed 

with paraformaldehyde for 30 minutes, and then the 

cells were blocked in 3% goat serum for one hour. Next, 

the cells were incubated in the primary antibodies of 

FDX1, MAP2K1 and SLC31A1 overnight at 4°C. After 

that, the cells were incubated in cyanine 3 (Cy3) 

coupled secondary antibodies for one hour under dark 

conditions. Finally, the cell nuclei were stained with 

4′,6-diamidino2-phenylindole (DAPI) staining solution. 
 

Statistical analysis 
 

The R 4.2.1 software was employed to perform 

bioinformatics analysis. The GraphPad Prism 7.0 

software was employed to perform in vitro experiment 

data analysis. Three or more sets of data were compared 

by employing One-way ANOVA. The statistically 

significant difference was defined as P-value less than 

0.05 (P < 0.05). 

 

Data availability 

 

All data of this study is involved in the article and 

supplementary materials, additional data could be 

acquired by connecting corresponding authors. 

 

RESULTS 
 

Identification of differential CRGs in training sets 

 

According to the previous research, a total of 59 CRGs 

have been identified [16–19]. Then, we conducted 

differential expression analysis of CRGs between 

primary myocardiopathy group and control group in 

training sets. The results indicated that 33 differential 

CRGs were identified in DCM, 26 in HCM and 11 in 

ARVC (Figure 1A–1F). Next, through the intersection 

of the differential CRGs of three diseases, six shared 

 

 

Figure 1. Identification of shared differential CRGs. (A, B) The box plot and heatmap of differential CRGs in DCM. (C, D) The box plot 

and heatmap of differential CRGs in HCM. (E, F) The box plot and heatmap of differential CRGs in ARVC. (G) The Venn diagram of differential 
CRGs shared by the three kinds of primary cardiomyopathy. 
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differential CRGs were obtained (Figure 1G). Finally, 

we checked the changes in the expression trends of 

these six genes, and found that there were four genes 

whose expression trends changed consistently in the 

three diseases, they were all downregulated in the 

disease group. Therefore, we ultimately identified four 

genes as differential CRGs shared by the three kinds of 

primary cardiomyopathy: COA6, FDX1, MAP2K1, and 

SLC31A1. The result of PPI network indicated that 

these four genes do not interact with each other 

(Supplementary Figure 2). 

 

Functional analysis of the shared differential CRGs 

 

We first conducted the single-gene GSEA to detect the 

biological functions associated with the four shared 

differential CRGs. The results indicated that the shared 

CRGs were related to multiple immunoinflammatory 

processes, such as cell adhesion, adaptive immune 

response, B cell receptor signaling pathway and 

cytokine-cytokine receptor interaction (Figure 2A–2H). 

Some other recent studies have also reported the 

correlation between CRGs and immune inflammation, 

suggesting that the process of cuproptosis may be 

accompanied by changes in the immune inflammatory 

system, and the exact mechanism requires further 

investigation in the future [25, 26]. Considering the 

relevance between these shared differential CRGs and 

immuno-inflammatory response, we studied the 

relevance between the levels of shared differential 

CRGs and the levels of immune cells infiltration. The 

results indicated that levels of the shared differential 

CRGs were not only correlated with each other, but also 

associated with the levels of multiple immune cells 

infiltration (Figure 2I–2K). Moreover, the chromosome 

positions of the shared CRGs were presented in the 

Figure 2L. To further research the role of cuproptosis 

and immuno-inflammatory response in the three kinds 

of primary cardiomyopathy, GSVA analysis and 

immune infiltration analysis were conducted. The 

results of GSVA indicated that biological processes 

such as cell death, mitochondria-related function and 

immune inflammation were significantly different 

between the three kinds of primary cardiomyopathy 

groups and the control groups, including apoptosis, 

transcription process of mitochondria, IkappaB 

phosphorylation, T helper 2 cell differentiation and 

Toll-like receptor signaling pathway (Figure 3A–3F). 

The results of immune infiltration analysis also 

indicated that there were obviously differences in the 

 

 
 

Figure 2. Functional analysis of four shared differential CRGs. (A–D) Single-gene GSEA GO analysis of four shared differential CRGs. 

(E–H) Single-gene GSEA KEGG analysis of four shared differential CRGs. (I, J) The correlation analysis of four shared differential CRGs. (K) The 
correlation analysis of four shared differential CRGs and immune cells. (L) The position of four shared differential CRGs on chromosome. 
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levels of multiple immune cells infiltration between the 

three kinds of primary cardiomyopathy groups and the 

control groups (Figure 3G–3L). 

 

Construction of diagnostic model based on K-CRGs 

 

We conducted LASSO regression to assess the 

performance of four shared differential CRGs in the 

diagnosis of three kinds of primary cardiomyopathy and 

three K-CRGs with the greatest diagnostic performance 

were chosen (Figure 4A–4F). Then, we estimated the 

efficacy of the three K-CRGs in the diagnosis of three 

kinds of primary cardiomyopathy, and the results 

indicated that some genes had well diagnostic 

performance (Figure 4G–4I). After that, we built three 

machine learning models (RF, SVM and GLM) on the 

basis of three K-CRGs. We employed three assessment 

methods (residual boxplots, cumulative residual 

distribution curves and ROC curves) to assess the 

diagnostic performance of three models. The results 

indicated that all the three models exhibited the 

outstanding diagnostic value (Figure 5A–5I). Lastly, we 

built the nomograms on the basis of three K-CRGs to 

predict the risk of primary cardiomyopathy and 

validated the predictive value of the nomograms by 

employing two assessment methods (calibration curves 

and DCA). The results indicated that the predictive 

value of the nomograms was excellent (Figure 5J–5R). 

 

Identification of cuproptosis-related molecular 

subtype based on K-CRGs 

 

We carried out the unsupervised clustering analysis on 

the training sets according to the expression levels of 

 

 
 

Figure 3. Differential function analysis between three kinds of primary cardiomyopathy group and control group. (A, B) The 
GSVA-GO analysis and GSVA-KEGG analysis for DCM. (C, D) The GSVA-GO analysis and GSVA-KEGG analysis for HCM. (E, F) The GSVA-GO 
analysis and GSVA-KEGG analysis for ARVC. (G, H) The box plot and bar plot of infiltrated immune cells in DCM. (I, J) The box plot and bar 
plot of infiltrated immune cells in HCM. (K, L) The box plot and bar plot of infiltrated immune cells in ARVC. 
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three K-CRGs to identify the molecular subtypes of 

three kinds of primary cardiomyopathy. We employed 

four assessment methods (consensus clustering matrix, 

CDF curves, CDF delta area curves and consensus 

clustering score) to determine the most appropriate 

numbers of molecular subtype clusters for each primary 

cardiomyopathy. The results indicated that the most 

appropriate numbers of molecular subtype clusters for 

each primary cardiomyopathy was two (Figure 6A–6C, 

6E–6G, 6I–6K, Supplementary Figures 3A–3O and 4A–

4U). Therefore, we divided DCM patients, HCM 

patients and ARVC patients into two molecular subtype 

clusters respectively (cluster 1 and cluster 2). The 

results of PCA indicated that in each disease, the two 

clusters were obviously split (Figure 6D, 6H, 6L). Since 

the K-CRGs are correlated with cuproptosis and 

immuno-inflammatory response, we then tried to 

determine whether there were differences in cell death, 

mitochondria-related function and immune inflam-

mation between the two molecular subtype clusters in 

each disease (since there was only one sample in cluster 

2 of disease ARVC, subsequent analysis was only 

carried out for disease DCM and disease HCM). The 

results of GSVA indicated that significant differences in 

numerous biological functions related to cell death, 

mitochondrion and immune inflammation, such as 

apoptosis, cell proliferation, mitochondrial DNA repair, 

antigen-stimulated 

 

 
 

Figure 4. Estimation of the diagnosis efficacy of four shared differential CRGs. (A, B) The LASSO coefficient and most appropriate 

lambda value of four shared differential CRGs in DCM. (C, D) The LASSO coefficient and most appropriate lambda value of four shared 
differential CRGs in HCM. (E, F) The LASSO coefficient and most appropriate lambda value of four shared differential CRGs in ARVC. (G–I) 
Estimation of the diagnosis efficacy of three K-CRGs via ROC analysis in DCM, HCM and ARVC. 
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inflammatory response and macrophage colony 

stimulating factor response (Figure 7A–7D). In 

addition, the immune analysis results also indicated that 

there were differences in immune cells infiltration 

among different clusters (Figure 7E–7H). Finally, we 

evaluated the efficacy of K-CRGs in identifying 

molecular subtype clusters of each primary cardio-

myopathy. The results of ROC analysis indicated that 

partial single gene exhibited good performance in 

identifying molecular subtypes of primary cardio-

 

 
 

Figure 5. Establishment of diagnosis model on the basis of three K-CRGs. (A–C) The residual boxplots, cumulative residual 

distribution curves and ROC curves of three machine learning algorithms in DCM. (D–F) The residual boxplots, cumulative 
residual distribution curves and ROC curves of three machine learning algorithms in HCM. (G–I) The residual boxplots, cumulative residual 
distribution curves and ROC curves of three machine learning algorithms in ARVC. (J) The nomogram of DCM. (K, L) The calibration curves 
and DCA of the DCM nomogram. (M) The nomogram of HCM. (N, O) The calibration curves and DCA of the HCM nomogram. (P) The 
nomogram of ARVC. (Q, R) The calibration curves and DCA of the ARVC nomogram. 



www.aging-us.com 14219 AGING 

cardio-myopathy, and the machine learning models on 

the basis of three K-CRGs exhibited better performance 

(Figure 8A–8H). 

 

Verification of the diagnostic value of K-CRGs 

 

Firstly, the expression levels of three K-CRGs were 

validated in the independent validation set of three kinds 

of primary cardiomyopathy. The results indicated that the 

expression trends of these K-CRGs in independent 

validation sets were concordant with their expression 

trends in training sets of each primary cardiomyopathy 

(Figure 9A–9I). Then, the diagnostic efficacy of three K-

CRGs was assessed in independent validation sets. The 

results indicated that partial single gene exhibited good 

diagnostic value (Figure 10A–10C), and the machine 

learning models on the basis of three K-CRGs exhibited 

better value (Figure 10D–10L). Next, the molecular 

subtype identification efficacy of the K-CRGs was 

assessed in an independent validation set. The results 

indicated that the most appropriate numbers of molecular 

subtype clusters for each primary cardiomyopathy was 

two (Supplementary Figures 5A–5U and 6A–6X). In the 

end, the results of ROC analysis indicated that partial 

single gene exhibited good performance in identifying 

molecular subtypes of primary cardiomyopathy (Figure 

11A–11C), and the machine learning models on the basis 

of three K-CRGs exhibited better performance 

(Figure 11D–11L). 

 

Regulatory molecular prediction of K-CRGs 

 

Firstly, the ceRNA network was built on the basis of 

three K-CRGs. The network contained 188 nodes 

 

 
 

Figure 6. Identification of molecular subtypes clusters in the three kinds of primary cardiomyopathy. (A–D) The consensus 

clustering matrix, CDF curves, CDF delta area curves and PCA of DCM. (E–H) The consensus clustering matrix, CDF curves, CDF delta area 
curves and PCA of HCM. (I–L) The consensus clustering matrix, CDF curves, CDF delta area curves and PCA of ARVC. 
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(three mRNA, 132 miRNAs and 53 lncRNAs) and 224 

edges (Figure 12A). The interactive relation of each 

mRNA, miRNA and lncRNA was exhibited in 

Supplementary Table 4. Then, the targeted drugs of 

three K-CRGs were forecasted by employing the 

DSigDB database, and in all 83 drugs were acquired. Of 

these drugs, 74 drugs possibly regulate MAP2K1 gene, 

six drugs possibly regulate FDX1 gene and four drugs 

possibly regulate SLC31A1 gene (Figure 12B). In the 

end, the molecular docking was conducted to forecast 

 

 
 

Figure 7. Differential function analysis between different molecular subtypes clusters. (A, B) The GSVA-GO analysis and GSVA-

KEGG analysis for two cluster of DCM. (C, D) The GSVA-GO analysis and GSVA-KEGG analysis for two cluster of HCM. (E, F) The box plot and 
bar plot showing the differences in infiltrated immune cells between two clusters of DCM. (G, H) The box plot and bar plot showing the 
differences in infiltrated immune cells between two clusters of HCM. 
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the binding sites and binding strength of these K-CRGs 

and drugs. In Figure 12C–12H, we visualized the two 

drugs that bind most firmly to each K-CRGs. 

 

CuCl2 could induce cuproptosis in AC16 cells and 

change the expression levels of K-CRGs 

 

In order to investigate the role of cuproptosis in 

cardiomyopathy and the changes in the expression 

levels of three K-CRGs, we conducted in vitro 

experiments. Firstly, the suitable CuCl2 concentration of 

construction the cuproptosis model of AC16 cells was 

selected via CCK-8 assay. The results indicated that 

CuCl2 could lead to cell morphological changes and 

death when the concentration reached 50 μM (Figure 

13A, 13B). Therefore, 50 μM concentration of CuCl2 

was selected as low dose and 75 μM concentration of 

CuCl2 was selected as high dose for subsequent 

experiments. Next, we verified whether the CuCl2-

induced cell death mode was cuproptosis. The AC16 

 

 
 

Figure 8. Establishment of the molecular subtype identification efficacy of three K-CRGs. (A, B) Establishment of the molecular 

subtype identification efficacy of three K-CRGs via ROC analysis in DCM and HCM. (C–E) The residual boxplots, cumulative residual 
distribution curves and ROC curves of three machine learning algorithms for DCM molecular subtype identification. (F–H) The residual 
boxplots, cumulative residual distribution curves and ROC curves of three machine learning algorithms for HCM molecular subtype 
identification. 
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cells were treated with CuCl2 or CuCl2 combined with 

GSH, and the expression levels of cuproptosis marker 

proteins (LIAS, POLD1 and HSP70) in the cells were 

detected. The results indicated that with the increase of 

the concentration of CuCl2, the degree of cell 

cuproptosis gradually increased (specifically manifested 

as the up-regulation of HSP70 protein, the down-

regulation of LIAS and POLD1 protein), and the degree 

of cell cuproptosis decreased after the GSH was 

employed to bind CuCl2 (Figure 13C). In addition, the 

morphological experiment and CCK-8 assay results also 

showed that cell morphological changes and death were 

suppressed when the GSH was employed, further 

indicating that cuproptosis might occur in AC16 cells 

(Figure 13D, 13E). Then, we detected the mRNA 

expression levels of three K-CRGs in AC16 cells. The 

results indicated that the mRNA expression levels of 

three K-CRGs in the CuCl2 group were significantly 

down-regulated compared with the control group, and 

these expression trend changes were significantly 

weakened in the GSH combined with CuCl2 group 

(Figure 13F–13H). Accordant results were acquired in 

subsequent experiments of western blot and 

immunofluorescence, the protein expression levels of 

 

 
 

Figure 9. Establishment of the expression levels of three K-CRGs in validation set. (A–C) The expression levels of three K-CRGs in 

DCM validation set. (D–F) The expression levels of three K-CRGs in HCM validation set. (G–I) The expression levels of three K-CRGs in ARVC 
validation set. 
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these K-CRGs were down-regulated after CuCl2 

treatment, while these trends were significantly 

weakened after treatment with GSH combined with 

CuCl2 (Figure 14A–14D). These results indicated that 

the expression levels of the K-CRGs were down-

regulated when cuproptosis occurs. The downregulation 

of these genes in patients with primary myocardiopathy 

has been found in previous bioinformatics analysis, 

which indicated that cuproptosis may be involved in the 

pathogenesis of primary cardiomyopathy. 

 

 
 

Figure 10. Estimation of the diagnosis efficacy of three K-CRGs in validation set. (A–C) Estimation of the diagnosis efficacy of 

three K-CRGs for DCM, HCM and ARVC via ROC analysis in validation set. (D–F) The residual boxplots, cumulative residual distribution 
curves and ROC curves of three machine learning algorithms in DCM validation set. (G–I) The residual boxplots, cumulative residual 
distribution curves and ROC curves of three machine learning algorithms in HCM validation set. (J–L) The residual boxplots, cumulative 
residual distribution curves and ROC curves of three machine learning algorithms in ARVC validation set. 
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Effects of K-CRGs on cuproptosis in AC16 cells 

 

To verify the role of three K-CRGs in cuproptosis of 

AC16 cells, we interfered with the expression levels of 

three K-CRGs through siRNA and then observed the 

changes in cuproptosis. Firstly, we demonstrated that 

siRNA could significantly down-regulate the expression 

levels of three K-CRGs in AC16 cells (Figure 15A–

15C). After that, the changes in cuproptosis marker 

proteins were tested in AC16 cells after knockdown of 

 

 
 

Figure 11. Establishment of the molecular subtype identification efficacy of three K-CRGs in validation set. (A–C) Estimation 

of the molecular subtype identification efficacy of three K-CRGs for DCM, HCM and ARVC via ROC analysis in validation set. (D–F) The 
residual boxplots, cumulative residual distribution curves and ROC curves of three machine learning algorithms for DCM molecular subtype 
identification in validation set. (G–I) The residual boxplots, cumulative residual distribution curves and ROC curves of three machine 
learning algorithms for HCM molecular subtype identification in validation set. (J–L) The residual boxplots, cumulative residual distribution 
curves and ROC curves of three machine learning algorithms for ARVC molecular subtype identification in validation set. 
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three K-CRGs to embody the degree of cuproptosis. 

The results indicated that the cuproptosis degree was 

declined after knockdown of FDX1 and SLC31A1 

(specifically manifested as the protein expression levels 

of LIAS and POLD1 were up-regulated, and HSP70 

were down-regulated), while the cuproptosis degree was 

not significantly changed after knockdown of MAP2K1 

(Figure 15D). These results suggested that expression 

levels of FDX1 and SLC31A1 might impact the 

cuproptosis degree, the expression level of MAP2K1 

 

 
 

Figure 12. Regulatory molecular prediction of K-CRGs. (A) The ceRNA network of K-CRGs. (B) The targeted drug network of K-CRGs. 

(C) Forecast of combinative location between FDX1 and latamoxef (their combined free energy is -7.7). (D) Forecast of combinative location 
between FDX1 and glibenclamide (their combined free energy is -7.5). (E) Forecast of combinative location between MAP2K1 and dasatinib 
(their combine free energy is -9.8). (F) Forecast of combinative location between MAP2K1 and sorafenib (their combined free energy is -
9.7). (G) Forecast of combinative location between SLC31A1 and lycorine (their combined free energy is -5.5). (H) Forecast of combinative 
location between SLC31A1 and parthenolide (their combined free energy is -5.1). 
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only changed with the change of cuproptosis degree, but 

can’t impact the cuproptosis degree. Then, we tested the 

cell viability after knockdown of three K-CRGs. The 

results indicated that after knockdown of FDX1 and 

SLC31A1, the viability of AC16 cells was significantly 

increased, while the viability of AC16 cells did not 

change after knockdown of MAP2K1 (Figure 15E). 

These results further demonstrated FDX1 and SLC31A1 

could affect the severity of cuproptosis in AC16 cells 

and thereby impact the cell viability. Subsequently, we 

 

 
 

Figure 13. Effects of CuCl2 on morphology, viability and cuproptosis degree of AC16 cells. (A) The effects of CuCl2 on AC16 cells 

morphology. (B) The effects of CuCl2 on AC16 cells viability. (C) The protein expression levels of POLD1, HSP70 and LIAS in AC16 cells (n = 3). 
(D) The effects of GSH on AC16 cells morphology. (E) The effects of GSH on AC16 cells viability. (F–H) The mRNA expression levels of three 
K-CRGs in AC16 cells. (*P < 0.05, **P < 0.01). 
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further explored the mechanisms by which the FDX1 

gene and SLC31A1 gene regulate cuproptosis in cardio-

myocytes. According to previous literature reports, the 

core pathological mechanism of cuproptosis is as 

follows: the copper ion binds to lipoylated DLAT 

protein, inducing the aggregation of a large amount of 

copper and lipoylated DLAT complexes in the cell, 

eventually resulting in proteotoxic stress and cell death 

[11]. It should be noted that the lipoylation of DLAT is 

a necessary condition for binding copper ions, and 

 

 
 

Figure 14. Effects of CuCl2 on the expression levels of three K-CRGs in AC16 cells. (A) The protein expression levels of three 

K-CRGs in AC16 cells (n = 3). (B–D) Typical immunofluorescence images and quantitative analysis of three K-CRGs in AC16 cells (n = 3). (*P < 
0.05, **P < 0.01). 
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DLAT that is not modified by lipoylation cannot bind to 

copper ions. Therefore, intracellular copper ion level 

and lipoylation level of DLAT are the key factors 

affecting cuproptosis. Our next experiments attempted 

to explore whether FDX1 gene and SLC31A1 gene 

affect cuproptosis in cardiomyocytes through the 

regulation of copper ion level and DLAT lipoylation 

level. The results showed that, compared with CuCI2 

treatment group, knockdown of SLC31A1 gene could 

significantly down-regulate copper ion level, 

 

 
 

Figure 15. Effects of three K-CRGs on cuproptosis in AC16 cells. (A–C) The effect of siRNA knockdown on three K-CRGs. (D) The 

protein expression levels of POLD1, HSP70 and LIAS in AC16 cells after three K-CRGs were knocked down (n = 3). (E) The effects of three K-
CRGs knockdown on AC16 cells viability. (F) The effects of three K-CRGs knockdown on copper ion levels in AC16 cells. (G) The protein 
expression levels of lipoylated DLAT and total DLAT in AC16 cells after three K-CRGs were knocked down (n = 3). (*P < 0.05, **P < 0.01). 
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knockdown of FDX1 gene could significantly reduce 

the level of lipoylated DLAT and had no significant 

effect on total DLAT level, knockdown of MAP2K1 

gene had no significant effect on copper ion level and 

lipoylated DLAT level (Figure 15F, 15G). These results 

suggested that SLC31A1 gene affected the degree of 

cuproptosis in cardiomyocyte mainly by regulating the 

level of intracellular copper ion, and FDX1 gene 

affected the degree of cuproptosis in cardiomyocyte 

mainly by regulating the level of lipoylated DLAT. In 

the future, the SLC31A1 gene and FDX1 gene are 

expected to be potential therapeutic targets for primary 

cardiomyopathy. 

 

DISCUSSION 
 

The pathogenesis of a variety of primary 

cardiomyopathy, including DCM, HCM and ARVC, 

has not been fully elucidated at present, resulting in the 

research on early diagnosis and targeted therapy has not 

achieved breakthrough progress. Programmed cell death 

plays an important role in the course of many kinds of 

primary cardiomyopathy and is expected to clarify the 

exact pathogenesis of various types of primary 

cardiomyopathy and the potential relationship between 

them [27]. The copper is one of the significant cofactors 

of transporters and enzymes. The copper has a role in 

maintaining cell redox balance, and recent research has 

found that copper could induce a unique mode of 

programmed cell death, known as cuproptosis [11]. 

Previous investigation had reported that dysmetabolism 

of copper could cause heart failure and cardiomyopathy, 

but the exact mechanism remained unclear [28, 29]. 

Now, cuproptosis offers the probability to reveal the 

potential mechanism. Although cuproptosis is a mode of 

cell death that has only recently been reported, there are 

many studies that have revealed the correlation between 

cuproptosis and multiple diseases [30, 31]. As far as we 

know, our research is the first to report that cuproptosis 

is the potential common pathogenesis of three kinds of 

primary cardiomyopathy. 

 

In our study, multiple bioinformatics analysis methods 

were employed to perform a comprehensive analysis of 

six GEO datasets of primary cardiomyopathy, including 

749 ventricular tissue samples. We first identified four 

shared differential CRGs that were significantly 

differentially expressed in all three kinds of primary 

cardiomyopathy. These four CRGs contained two core 

genes (FDX1 and SLC31A1) that regulate cuproptosis, 

suggesting that cuproptosis may be the common 

pathogenesis of the three kinds of primary cardio-

myopathy. In subsequent analysis, we identified three K-

CRGs with the best diagnostic performance. The 

machine learning models constructed based on the three 

K-CRGs not only exhibited excellent diagnostic 

performance in the three kinds of primary cardiomyo-

pathy, but also exhibited excellent performance in the 

identification of molecular subtype. Previous research 

had found that patients with certain diseases could be 

divided into different molecular subtypes clusters based 

on differences in gene expression profiles. The different 

molecular subtypes clusters have different clinical 

features, therapy sensitivity and prognosis [32–34]. In our 

research, we discovered that K-CRGs were able to 

identify different clusters of molecular subtypes in 

primary cardiomyopathy. The different clusters of 

molecular subtypes in each cardiomyopathy differed in 

the biological functions associated with cell death and 

immune inflammation. This suggested that K-CRGs held 

promise for identifying subpopulations with specific 

cardiomyocyte death and immunoinflammatory signa-

tures in patients with primary cardiomyopathy. 

Cardiomyocyte death and immunoinflammation are the 

pathogenesis of primary cardiomyopathy, therefore, 

patients with different molecular subtypes may differ in 

disease severity and may show different sensitivities to 

anti-inflammatory and anti-cell death therapies. It is 

reasonable to expect that the value of these K-CRGs in 

the identification of molecular subtypes will contribute to 

the development of risk stratification and individualized 

treatment strategies for patients with primary 

cardiomyopathy in the future. In addition, we built the 

ceRNA network and targeted drug network of the K-

CRGs on the basis of the online databases, which will 

contribute to the future research of therapeutic targets and 

drugs. Our study not only found the latent relevance 

between primary cardiomyopathy and cuproptosis, but 

also offered valuable evidence for the use of CRGs in the 

diagnosis and molecular subtype identification of primary 

cardiomyopathy. Further study on cuproptosis and 

primary cardiomyopathy is expected to clarify the 

pathogenesis of primary cardiomyopathy, find new 

diagnostic markers and individualized therapy methods. 

However, what needs to be pointed out is that the 

differential genes selection standard employed in our 

research was relatively lax. It is well known that when 

conducting bioinformatics analysis, differential 

expression analysis of tumor diseases often generates 

many differential genes, but the amounts of differential 

genes acquired in analyses of non-tumor diseases is 

usually very small. In this case, it is inapposite to employ 

strict selection standard, such as |log2 fold change| > 1. 

Some research of bioinformatics analysis defined the 

P-value less than 0.05 as the selection standard for 

differential genes [35, 36]. Therefore, this standard 

was also adopted in our study. It should be acknowledged 

that such selection standard can lead to higher false 

positive rates. 
 

The SLC31A1 gene encodes a cupric transporter 

protein, which performs cupric transmembrane transport 
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in trimer form and plays an important role in regulating 

cupric homeostasis [37]. In addition, SLC31A1 also 

mediates cell uptake of platinum chemotherapy drugs, 

so previous studies on SLC31A1 mainly focused on 

tumor drug resistance [38]. Recently, researchers have 

noticed the role of SLC31A1 in cardiomyopathy. One 

study reported that SLC31A1-related signaling 

pathways may be involved in the pathogenesis of 

diabetic cardiomyopathy [39]. MAP2K1 is a member of 

the dual specificity protein kinase family and is an 

important part of the intracellular and extracellular 

MAP kinase signaling pathway, which is involved in 

many biological processes such as cell proliferation and 

differentiation [40]. Studies have found that the function 

of MAP2K1 depends on the activation of copper [41], 

and the MAP2K1-mediated signaling pathway could 

lead to myocardial myofibrillar disarray and myocardial 

hypertrophy [42]. Meanwhile, MAP2K1 inhibitors 

could rescue myocardial hypertrophy and fibrosis and 

improve cardiac function [43]. These findings suggest 

that MAP2K1 is potentially associated with cuproptosis 

and cardiomyopathy. The FDX1 gene encodes a small 

molecular iron-sulfur clusters protein, which plays an 

important role in regulating steroid hormone synthesis, 

mitochondrial cytochrome P450 enzyme electron 

transfer, and lipoylation [44, 45]. The recent study had 

found that FDX1-mediated protein lipoylation is the key 

link in the occurrence of cuproptosis [11]. Previous 

studies have never reported the role of FDX1 in 

cardiomyopathy or heart failure. Our study is the first to 

find that FDX1 is significantly down-regulated in three 

kinds of primary cardiomyopathy, suggesting that 

FDX1 may be involved in the pathogenesis of primary 

cardiomyopathy through cuproptosis mechanism. Next, 

we performed in vitro experiments to further investigate 

the role of these three genes in cuproptosis of 

cardiomyocytes. Since the primary cardiomyopathy is 

characterized by pathological changes in the heart 

structure caused by no clear reason, a suitable animal 

model cannot be established. Previous studies have 

chemically induced cardiac structural changes similar to 

those in DCM or HCM and found that myocardial 

programmed cell death plays an important role, such as 

apoptosis, pyroptosis and ferroptosis [10]. Therefore, 

our in vitro experiment focused on verifying whether 

cardiomyocytes could lead to death through the 

cuproptosis mechanism, whether the changes in the 

expression levels of three K-CRGs when cuproptosis 

occurred were consistent with the changes in GEO 

datasets, and whether knockdown of these genes could 

inhibit the degree of cuproptosis in cardiomyocytes. The 

results showed that, under certain conditions, 

cardiomyocytes could be induced to cuproptosis. The 
mRNA and protein levels of FDX1, MAP2K1 and 

SLC31A1 were significantly down-regulated during 

cuproptosis in cardiomyocytes, which was in line with 

the expression trends of the three kinds of primary 

cardiomyopathy groups in the GEO datasets. These 

results indicated that cardiomyocytes cuproptosis may 

be the common pathogenesis of three kinds of primary 

cardiomyopathy. Finally, by knocking down these three 

K-CRGs, we further found that FDX1 and SLC31A1 

could regulate the degree of cuproptosis in cardio-

myocytes and affect cell viability. These results 

indicated that these two genes have the potential to be 

new therapeutic targets for primary cardiomyopathy in 

the future, which needs to be confirmed in further 

studies. 
 

Our research contained a large sample size and is the 

first to report the potential relevance between 

cuproptosis and primary cardiomyopathy. Thus, our 

research offered compelling basis for the discovery of 

novel markers for primary cardiomyopathy diagnosis 

and molecular subtypes identification. At the same time, 

our research also broke new ground for future studies 

on the pathogenesis and targeted therapy of primary 

cardiomyopathy. However, we should admit that our 

research has certain limitations: First, the detection of 

indicators related to cuproptosis in vitro experiments 

was not comprehensive enough. In our research, the 

expression levels of three cuproptosis signature proteins 

were employed to embody the degree of cuproptosis, 

but did not detect other indicators that could embody 

the degree of cuproptosis. Second, since the primary 

cardiomyopathy is characterized by pathological 

changes in the heart structure caused by no clear reason, 

a suitable animal model cannot be established. In this 

study, only in vitro experiments were conducted to 

verify the results of bioinformatics analysis, and further 

in vivo experiments were lacking for more adequate 

verification. We believe we will refine the limitations in 

further research. 
 

In conclusion, by bioinformatics analysis and in vitro 

experimental validation, our research found that 

cuproptosis possibly be the potential common patho-

genesis of three kinds of primary cardiomyopathy, and 

FDX1, MAP2K1 and SLC31A1 possibly be prospective 

markers for the diagnosis and molecular subtype 

identification of primary cardiomyopathy. Our research 

has broken new ground for the domain of primary 

cardiomyopathy, further investigation on the foundation 

of our research is expected to make inspiring progress 

in the clarification of pathogenesis and development of 

novel diagnosis and therapy approaches of primary 

cardiomyopathy in the future. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The flowchart of this study. 

 

 

 
 

Supplementary Figure 2. The PPI network of four CRGs shared by the three kinds of primary cardiomyopathy. 

 

 



www.aging-us.com 14236 AGING 

 
 

Supplementary Figure 3. The consensus clustering matrix of three kinds of primary cardiomyopathy when k = 3-9. (A–G) k = 
3 − 9 of DCM. (H–N) k = 3 − 9 of HCM. (O) k = 3 of ARVC. 
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Supplementary Figure 4. The item and score of consensus clustering of three kinds of primary cardiomyopathy when  
k = 2 − 9. (A–H) The item of consensus clustering of DCM when k = 2 − 9. (I) The score of consensus clustering of DCM when k = 2 − 9. (J–Q) 

The item of consensus clustering of HCM when k = 2 − 9. (R) The score of consensus clustering of HCM when k = 2 − 9. (S, T) The item of 
consensus clustering of ARVC when k = 2 − 3. (U) The score of consensus clustering of ARVC when k = 2 − 3. 
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Supplementary Figure 5. The consensus clustering matrix of three kinds of primary cardiomyopathy when k = 2 − 9 in the 
validation set. (A–H) k = 2 − 9 of DCM. (I–P) k = 2 − 9 of HCM. (Q–U) k = 2 − 6 of ARVC. 
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Supplementary Figure 6. The item and score of consensus clustering of three kinds of primary cardiomyopathy when k = 2 − 9 
in the validation set. (A–H) The item of consensus clustering of DCM when k = 2 − 9. (I) The score of consensus clustering of DCM when k 

= 2 − 9. (J–Q) The item of consensus clustering of HCM when k = 2 − 9. (R) The score of consensus clustering of HCM when k = 2 − 9. (S–W) 
The item of consensus clustering of ARVC when k = 2 − 6. (X) The score of consensus clustering of ARVC when k = 2 − 6. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 4. 

 

Supplementary Table 1. Summary of six GEO datasets. 

Name Disease type Disease samples Control samples Group  

GSE141910 DCM 166 166 Training set 

GSE141910 HCM 28 166 Training set 

GSE29819 ARVC 6 6 Training set 

GSE57338 DCM 82 136 Validation set 

GSE36961 HCM 106 39 Validation set 

GSE107475 ARVC 9 0 Validation set 

GSE107156 ARVC 0 5 Validation set 

Abbreviations: DCM: dilated cardiomyopathy; HCM: hypertrophic cardiomyopathy; ARVC: arrhythmogenic right ventricular 
cardiomyopathy. 
 

Supplementary Table 2. Summary of CRGs symbol. 

CRGs ID 

AOC3 LOXL2 SCO2 

ATOX1 MAP2K1 SLC25A3 

ATP7A MAP2K2 SLC31A1 

ATP7B MT1A SLC31A2 

CCL8 MT1B SOD1 

CCS MT1E TYR 

CD274 MT1F UBE2D1 

CDKN2A MT1G UBE2D2 

COA6 MT1H UBE2D3 

COX11 MT1M UBE2D4 

COX17 MT1X ULK1 

CP MT2A ULK2 

DBH MT-CO1 VEGFA 

DLAT MT-CO2 NFE2L2 

DLD MTF1 NLRP3 

FDX1 PDE3B LIPT2 

GLS PDHA1 DLST 

HIST1H3A PDHB DBT 

LIAS PDK1 GCSH 

LIPT1 SCO1  
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Supplementary Table 3. Primer sequences. 

Name Species Forward primer Reverse primer 

FDX1 Human TTCAACCTGTCACCTCATCTTTG TGCCAGATCGAGCATGTCATT 

MAP2K1 Human CAATGGCGGTGTGGTGTTC GATTGCGGGTTTGATCTCCAG 

SLC31A1 Human GGGGATGAGCTATATGGACTCC TCACCAAACCGGAAAACAGTAG 

GAPDH Human GGACCTGACCTGCCGTCTAG GTAGCCCAGGATGCCCTTGA 

 

 

Supplementary Table 4. Interactions of ceRNA. 

 

 


