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INTRODUCTION 
 

Endometrioid endometrial adenocarcinoma (EEA) is a 

most common histopathologic type of Uterine Corpus 

Endometrial Carcinoma. The prognosis of patients with 

endometrioid endometrial adenocarcinoma depends on 

several factors, such as the stage, grade, and hormone 
receptor status of the tumor, as well as the age and 

overall health of the patient [1]. Although the 5-year 

overall survival rate of EEA patients without metastasis 

is 74–91%, the prognosis of patients with EEA is not 

ideal [2, 3]. Therefore, it is urgent to find new treatment 

methods to improve the prognosis of these patients. 

 

Copper accumulation in the human body may cause a 

variety of diseases. Cuproptosis, a new form of 

programmed cell death, may contribute to tumori-

genesis [4]. Cuproptosis is a recently described type of 

programmed cell death, that is involved in the 

occurrence and development of malignant tumors [5]. 
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ABSTRACT 
 

Objective: Cuproptosis may contribute to tumorigenesis. However, the predictive value and therapeutic 
significance of cuproptosis-related lncRNAs (CRLs) in endometrioid endometrial adenocarcinoma (EEA) remains 
unknown. 
Methods: We obtained RNA-seq data from TCGA database and searched the Literature to identify cuproptosis-
related genes. Using machine learning models, we identified prognostic lncRNAs for cuproptosis. Immune 
properties and drug sensitivity were investigated based on these signatures. Further, a ceRNA network was 
constructed by bioinformatics and in vitro experiments were performed. 
Results: We determined two cuproptosis-related signatures to build the prognostic model in EEA. Afterward, 
the risk scores of two cuproptosis-related signatures were associated with clinicopathological molecular 
typing and as independent prognostic factors for EEA. In addition, we observed significant differences in 
immune function, checkpoints, and CD8+ T lymphocyte infiltration between the two risk groups. 
Furthermore, chemotherapy drugs such as AKT inhibitors exhibited lower IC50 values in the high-risk group. 
We speculate that ACOXL-AS1 can be served as an endogenous ‘sponge’ to regulate the expression of MTF1 
by miR-421. Through in vitro experiments, we preliminarily validated the ceRNA network relationship in the 
cellular model. 
Conclusion: In EEAs, this study proposed a broad molecular signature of CRLs are promising biomarkers for 
predicting clinical outcomes and therapeutic responses. 
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Copper induces cell death by targeting fatty TCA cycle 

proteins [6]. Excessive intracellular copper binds to 

lipoacylated DLAT in cells, thereby inducing aberrant 

oligomerization of DLAT and formation of insoluble 

DLAT foci, that induce cytotoxic stress and cell death 

[7]. Therefore, targeting cuproptosis-related molecules 

may be an effective novel therapy. 

 

Cuproptosis has been implicated in various cancers, as 

copper is involved in many signaling pathways and 

biological processes that affect tumor growth, 

metabolism, invasion, angiogenesis, and drug 

resistance. Some studies have suggested that 

cuproptosis may be a potential therapeutic strategy for 

some cancers, especially those that rely on mito-

chondrial respiration or have high copper levels [8]. 

 

Long non-coding RNA (lncRNA) plays a crucial role in 

regulating the expression of various cancer-related 

genes and effects on translation, histone modifications, 

and post-transcriptional processes [9]. It also plays 

important regulatory roles in posttranslational 

modifications, energy metabolism, cell immune and 

cancer patient survival [10]. Therefore, both long non-

coding RNA (lncRNA) and cuproptosis are related to 

the regulation of energy metabolism and affect tumor 

progression. However, the role of cuproptosis-related 

lncRNAs (CRLs) in EEA remains unclear. 

 

In this study, 2 CRLs were identified and used to 

construct and validate a novel prognostic signature. The 

correlation between signature scores and immunity, 

drug selection was analyzed. 

 

MATERIALS AND METHODS 
 

Publicly available datasets and preprocessing 

 

We downloaded the mRNA expression level by RNA 

sequencing (RNA-Seq), somatic mutations and clinical 

phenotype of 516 endometrial cancer patients from 

TCGA database(https://portal.gdc.cancer.gov/) [11]. 

The RNA sequencing data was then screened against 

the clinical data collected for patients with endometrial 

cancer based on their histological subtype. Endo-

metrioid endometrial adenocarcinoma (EEA) is a type 

of endometrial cancer that originates from the 

endometrial glands and is characterized by estrogen-

dependent growth and favorable prognosis. EEA variant 

data were retained. RNA-Seq data were normalized 

using the R software package limma [12]. According to 

the annotation file for the platform, probes were 

converted into gene symbols. If several probes 

corresponded to the same gene symbol, the probe with 

the greatest value was used. The identification and 

removal of outliers was conducted using boxplots and 

principal components analyses (PCAs) [13]. Finally, the 

expression and clinical data of 318 patients (TCGA-

UCEC) were used for the study analysis (Table 1). 

 

MAF was originally developed by The Cancer Genome 

Atlas (TCGA) as a standardized format for storing 

somatic variants detected in cancer samples, we analyze 

and visualize MAF Files by the MAFtools R package 

[14]. Tumor mutational burden (TMB) is defined as the 

total number of somatic, coding, base substitutions, and 

indels (insertions and deletions) per megabase of the 

genome examined, which were extracted and estimated 

by Perl scripts. Furthermore, the data about stemness 

scores, MSI status, and infiltration measure were 

summarized from a number of research papers, so as to 

provide a more comprehensive analysis. Stemness 

scores can be accessed at https://bioinformaticsfmrp. 

github.io/PanCanStem_Web [15]. The data on MSI 

status were acquired using the R package 

“TCGAbiolinks”. Infiltration measure data (ESTIMATE, 

CIBERSORT etc.) were obtained by an R package 

‘IOBR’ [16]. 

 

Coexpression analysis between cuproptosis-related 

genes and lncRNAs 

 

By reviewing the literature, we obtained 19 key genes 

including NFE2L2, NLRP3, ATP7B, ATP7A, 

SLC31A1, FDX1, LIAS, LIPT1, LIPT2, DLD, DLAT, 

PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH, 

DLST associated with copper death signaling [17]. 

Then, we performed coexpression analysis between 

cuproptosis-related genes and lncRNAs using the 

“correplot” package in R [12]. Co-expressed genes can 

be identified by using the Pearson correlation 

coefficient with a threshold of at least 0.4 and a p-value 

lower than 0.001. R package “ggalluvial” was used to 

visualize the results. Finally, 941 cuproptosis-related 

lncRNAs were found. 

 

Identification of cuproptosis-associated clusters and 

survival analysis  

 

After performing univariate Cox regression analysis of 

CRLs, we retained 11 lncRNAs associated with 

cuproptosis. ConsensusClusterPlus R package was used 

to analyze consistency [18]. The maximum number of 

clusters was set to 6, and 100 samples were drawn for 

clusterAlg = “hc”, and innerLinkage = “average”. Then, 

we performed a survival analysis for the clusters. 

 

Prognostic model construction and Nomogram 

prediction model 

 

A risk signature for predicting the prognosis of EEA 

patients was constructed based on the lncRNAs related 
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https://bioinformaticsfmrp.github.io/PanCanStem_Web
https://bioinformaticsfmrp.github.io/PanCanStem_Web


www.aging-us.com 14244 AGING 

Table 1. Baseline Characteristics of EEA patients come from TCGA. 

Characteristic N = 3181 

Risk  

High risk 159 (50%) 

Low risk 159 (50%) 

Cancer status  

Tumor free 269 (85%) 

With tumor 33 (10%) 

Age  

<60 133 (42%) 

≥60 184 (58%) 

Histologic grade  

Moderate 92 (29%) 

Poor 148 (47%) 

Well 78 (25%) 

Myometrial invasion  

<50% 166 (58%) 

≥50% 119 (42%) 

Clinical stage  

Stage I–II 250 (78.5%) 

Stage III–IV 68 (21.5%) 

Distant metastatic  

No 307 (97%) 

Yes 11 (3.5%) 

Lymph modes metastatic  

No 181 (57%) 

Yes 34 (11%) 

Necrosis  

<10% 227 (71%) 

≥10% 91 (29%) 

1n (%); Median (IQR). 

 

to cuproptosis. Least absolute shrinkage and selection 

operator (LASSO) regression was used to select 

predictors to avoid overfitting [19]. Multivariate Cox 

regression analysis was used to determine the candidate 

genes for final inclusion in the risk model. A risk 

signature for predicting the prognosis of EEA patients 

was constructed based on the lncRNAs related to 

cuproptosis. The mathematical formula for calculating 

the risk score was as follows: 
 

 
1

riskscore _ _
N

i

Expression i coefficient i
=

=   

 

Patients were divided into high and low risk groups 

using the median risk score as the cutoff value. 

 

Nomograms are widely used for cancer prognosis 

mainly because of their ability to reduce statistical 

predictive models to a single numerical estimate of 

event probabilities [20]. Based on the results of LASSO 

and multivariate COX regressions, we developed a 

nomogram by using the R packages, “regplot”, “RMS” 

and “survival”. Calibration curves were used to assess 

the accuracy of the nomogram. 

 

Pathway enrichment analysis and gene set 

enrichment analysis 

 

In this study, differentially expressed genes (DEGs) 

between high-risk and low-risk groups were identified 

using the R package “limma.” The threshold value was 

set to log2 |fold change|>1 and p-value < 0.05. We 

applied Gene Ontology (GO) and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) analyses to elucidate 

molecular functions and key signaling pathways. At the 

same time, gene set enrichment analysis of EEA 
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Table 2. Primer’s design. 

Primer Sequence (5′ to 3′) 

ACOXL-AS1 F  TTCGGAGCTCTGGTTTCTGT 

ACOXL-AS1 R  GGACTTATACCGACGCTCCA 

β-actin F GGCCAGGTCATCACCATTG 

β-actin R GGATGTCCACGTCACACTTCA 

MTF1 F ACTGGTGCCTTCCTCATCTGG 

MTF1 R CACTGTCCGTCGTCATCTTCATC 

mir-421 F CGCGGCCATCAACAGACATTAAT 

mir-421 R ATCCAGTGCAGGGTCCGAGG 

mir-421 RT Primer GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACGCGCCC 

 

patients were performed to identify an association with 

disease phenotypes and pathways through R package 

clusterProfiler [21]. 

 

Tumor microenvironment and immune cell 

infiltration profile 

 

According to the proportion of immune cells and 

stromal cells in the tumor, an estimation algorithm was 

used to calculate the stromal score, immune score, 

estimated score and tumor purity. We applied TIMER, 

MCP-counter, CIBERSORT, QUANTISEQ, and xCell 

to calculate the proportion and abundance of tumor-

infiltrating immune cells (TICs) in EEA [22]. Using 

the single-sample gene set enrichment analysis 

(ssGSEA) algorithm, we evaluated tumor-infiltrating 

immune cell infiltration and function [23]. An 

algorithm called Tumor Immune Dysfunction and 

Exclusion (TIDE) was used to predict the response to 

immunotherapy [24]. 

 

Chemotherapeutic response and construction of the 

ceRNA network 

 

The Cancer Cell Line Encyclopedia enables predictive 

modelling of anticancer drug sensitivity [25, 26]. The 

efficacy of chemotherapeutic drugs in EEA patients was 

predicted through the Genomics of Drug Sensitivity in 

Cancer (GDSC) database [27]. Drug sensitivity and 

gene expression profiling data of cancer cell lines in 

GDSC are integrated for investigation. The expression 

of each risk group in the gene set was performed by 

Spearman correlation analysis with the small 

molecule/drug sensitivity (IC50). The half maximal 

inhibitory concentration (IC50) was calculated by 

Prophetic software in R package. 

 

According to the competitive endogenous RNA 

(ceRNA) theory, we constructed a network of lncRNAs, 

miRNAs, and mRNAs [28]. StarBase V2.0 was used to 

analyze the interaction between lncRNAs and miRNAs 

[29]. 

 

Cell culture and quantitative real-time PCR analysis 

 

HEC-1A is a human endometrial cancer cell line 

obtained from the Cell Bank of the Chinese Academy of 

Sciences. The HHUA cells were generously donated by 

the Department of Obstetrics and Gynecology, the First 

Affiliated Hospital of Shantou University Medical 

College. The cells were cultured in the presence of 10 

μM Cu2+ and 10 nM Elesclomol for 48 hours, followed 

by microscopic observation and imaging. Cell 

proliferation was measured using the CCK8 kit 

(Beyotime, Shanghai, China). Subsequently, cellular 

RNA was extracted for further analysis. A control group 

was included, in which cells were cultured without the 

addition of Cu2+ and Elesclomol. TRIzol reagent was 

used to extract total RNA. Total RNA was reverse 

transcribed using PrimeScript reverse transcription 

reagent (Takara, Otsu, Shiga, Japan). In accordance 

with the manufacturer’s protocol, miRNA reverse 

transcription was performed using miRNA stem loop 

reverse transcription kit (Shanghai Sangong Biological 

Company, China). Quantitative PCR analysis was 

carried out using the 7500 Fast Real-Time PCR System 

instrument with TB Green Premix Ex Taq II (Takara, 

Japan) according to the manufacturer’s protocol. In each 

sample, the experiment was repeated three times and 2-

Ct was used to calculate the RNA expression. Table 2 

shows the primer sequences used in this study. 

 

Lentiviral transfections and Western blotting 

 

To establish human endometrial cancer cell lines with 

overexpression of ACOXL-AS1, we used ACOXL-

AS1-expressing lentiviral vector (OE-ACOXL-AS1) 

and negative control lentiviral vector provided by Akey 

Biotechnology Co. LTD (Guangzhou, China). Human 

endometrial cancer cells were seeded in each well of a 
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6-well plate at a density of 1 × 105 cells per well. When 

the cell confluence reached 60% in each well, we added 

lentivirus (MOI = 10) to the cell culture medium. Then, 

we selected stable ACOXL-AS1-overexpressing cells 

with puromycin (3 µg/ml). Finally, we measured the 

expression level of ACOXL-AS1 in stable cells by 

qRT-PCR. 

 

Cell lysis was performed with RIPA cell lysate (absin) 

and the lysates were centrifuged at 14000 g/min for 

5 min. The supernatants were collected, and the protein 

concentration was determined by a BCA protein assay 

kit (Thermo Scientific). Equal amounts of protein were 

separated by SDS-PAGE and transferred to PVDF 

membranes. The membranes were incubated with the 

following primary antibodies: rabbit anti-MTF1 

(1:1000; ab236401; Abcam), mouse anti-β-actin 

(1:1000; TA-09; ZSGB-BIO). Fluorescent antibody 

Anti-mouse/rabbit 800 was used as the secondary 

antibody. The signals were detected by Bio-Rad 

ChemiDoc™ MP Chemiluminescence/fluorescence 

imaging system (Bio-Rad) and quantified by ImageJ 

software (1.4.3.67, NIH). 

 

Statistical analysis 

 

R (version 4.2.1) software was used for statistical 

analysis and visualization of the data. The following 

packages were used: “Maftools,” “ggplot2,” “limma,” 

“survminer,” “dplyr,” “plyr,” “survivalROC,” 

“clusterProfiler,” “ggplotify,” “cowplot,” “Hmisc,” 

“gridExtra,” “GSVA,” “corrplot,” “VennDiagram,” 

“pheatmap” and “tidyverse,”. When comparing two 

groups, the Wilcoxon test was used, and when 

comparing three groups, the ANOVA test was used. 

Prognosis was assessed using the Kaplan–Meier method 

and the Pearson method was used for correlation. We 

considered a p-value of 0.05 as statistically significant 

(*p < 0.05; **p < 0.01; ***p < 0.001). 

 

Data and code availability statements 

 

According to the TCGA project 

(https://portal.gdc.cancer.gov/) policies, all public 

access to these databases will be open. All code used in 

this manuscript are available at https://github.com/ 

w28924461701/Cuproptosis-in-UCEC/. 

 

RESULTS 
 

Identification of CRLs and consensus clustering 

analysis 

 

In the EEA cohort within TCGA, we obtained nineteen 

cuproptosis-related genes and 16,876 lncRNAs that 

were annotated by NCBI GenBank, Ensembl, and 

GENCODE. By co-expression analysis, 941 

cuproptosis-related lncRNAs were found, and 

associations are visualized in the Sankey plot (Figure 

1A). Eleven CRLs associated with prognosis were 

mined by univariate Cox regression analysis (Figure 1B, 

P < 0.05). The least absolute shrinkage and selection 

operator (LASSO) is an efficient gene selection method 

[30]. A total of 11 lncRNAs were selected to fit a 

LASSO regression model, the next step was to find the 

most appropriate values for λ (=0.00659) using 10-fold 

cross-validation (Figure 1C). Finally, two cuproptosis-

related lncRNAs (AL512353.1, ACOXL-AS1) were 

identified by LASSO and Multivariate Cox regression 

analysis (Figure 1C, 1D). Cytoscape software was 

employed to visualize associations between lncRNAs 

and cuproptosis-related gene (Figure 1E). 

 

Cluster analyses were conducted using the eleven 

prognosis-related lncRNAs. When EEA patients were 

divided into four subgroups, the clusters could be seen, 

and the subgroups showed good internal consistency 

and stability (Figure 1F–1H). Survival analysis revealed 

the prognostic significance of the clustering (Figure 1I, 

P = 0.025). 

 

Construction and validation of cuproptosis-related 

risk score and consensus clustering analysis 

 

To further understand the prognostic role of the two 

cuproptosis-related lncRNAs, we randomly divided the 

dataset into training and validation groups. The training 

dataset was used to train a risk model, while the testing 

dataset was used to evaluate the performance of the 

model. A multivariate Cox regression analysis was then 

applied to the remaining genes to establish a prognostic 

signature in the training dataset. Regression coefficient 

in multivariate Cox regression analysis were derived 

from the training data, and were the parameters further 

refined using the combined dataset after passing the 

testing dataset. The risk score (RS) equation was 

defined as RS = (AL512353.1 × 1.264) + (ACOXL-AS1 

× 1.658). According to the mathematical formula for 

calculating the risk score, patients were classified into a 

high risk or low risk group based on the median value 

of RS. 

 

Kaplan-Meier survival analysis in the training, 

validation and all samples set showed that the overall 

survival (OS) of patients in the high-risk group 

predicted poor survival (Figure 2A–2C, P < 0.05). The 

model yielded better accuracy and calibrated survival 

estimates in predicting 1-, 3-, and 5-year survival 

(AUC: 0.703 to 0.798, Figure 2D). The layout of risk 

scores and survival status of EEA patients is shown in 

Figure 2E, 2F. In addition, the expression levels of the 

https://portal.gdc.cancer.gov/
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two cuproptosis-related lncRNAs between high- and 

low-risk groups are also displayed. 

 

Relationships between cuproptosis-related risk and 

clinicopathological features 

 

The relationship between risk and clinicopathologic 

characteristics in EEA patients was further investigated. 

When comparing high-risk and low-risk groups with 

current clinical variables, we can use the chi-squared 

test to measure the association between categorical 

variables and the Wilcoxon rank-sum test to compare 

continuous variables. Risk classification was correlated 

with molecular subtypes, histologic grade, and 

myometrial invasion (p < 0.05), but other features did 

not obvious relevance (Figure 3A–3E, Table 3). The 

risk score was associated with molecular subtypes (p < 

0.01), cancer status (p < 0.01) and age (p = 0.03), in 

EEA patients, POLE hypermutation and MSI subtypes 

have low risk values, while high CNV is associated with 

high-risk values (Figure 3A). For lymph node 

metastasis, there were no obvious differences in risk 

 

 
 

Figure 1. Consensus clustering analysis of cuproptosis-related lncRNAs and LASSO regression model. (A) Coexpression analysis 

of IncRNA and cuproptosis. (B) Univariate Cox regression analysis of cuproptosis-related lncRNAs. (C) LASSO regression model for the 
prognostic analysis of the lncRNA signature. (D) Forest plot visualing the results of multivariate Cox regression. (E) Correlation between two 
lncRNAs and 19 cuproptosis-related gene. Network visualization and analysis of lncRNAs and cuproptosis-related gene with Cytoscape. (F) 
Consensus matrix heatmap defining three clusters (k = 4) and their correlation area. (G, H) Cumulative distribution function (CDF) when k = 
2–6. (I) Kaplan–Meier curve of the 4 clusters of patients with EEA in the TCGA cohort. 
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score between patients with lymph node metastasis and 

that without lymph node metastasis (Figure 3B–3D, p = 

0.07). At the same time, in EAA patients in early-stage 

cancer (stage I, II), we also found that the patients in the 

predicted high-risk groups had shorter survival time 

than those in the low-risk groups (Figure 3E, p = 0.032). 

 

 
 

Figure 2. Evaluation of the established cuproptosis-related lncRNAs signature in the training and test sets. (A–C) Kaplan-

Meier survival analysis in the training (A), validation (B) and all samples (C) sets. (D) ROC curves for risk scores at 1, 2, and 3 years. (E, F) 
Expression heat map, risk score distribution, and relapse status. 
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Development of a nomogram following univariate 

and multivariate Cox analysis 

 

To investigate the influence of clinicopathological 

features on prognosis of EEA patients, univariate and 

multivariate Cox proportional hazards analyses were 

employed, and results visualized as a forest plot. 

Univariate Cox analysis showed that risk Score, distant 

metastasis and necrosis were related to OS (Figure 3F 

P < 0.05). Then, multivariate Cox regression analyses 

 

 
 

Figure 3. Clinicopathological analysis and prognostic nomogram based on cuproptosis-related lncRNAs signature. (A–D) 

Correlation between risk score and molecular subtypes (A), cancer status (B), age (C), and lymph node metastasis (D). (E) Correlation 
between risk score and survival probability in patients at stage I–II. (F, G) Univariate and multivariate Cox regression analysis. (H) 
Nomogram for predicting probabilities of EEA patient 1-, 3-, 5-year OS in the TCGA cohort. (I) ROC curves showing the predictive efficiency 
of the nomogram. (J) Calibration plots of 1-, 3-, and 5-year OS predicted by the nomograms. 
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Table 3. Association with clinical and risk group in endometrioid endometrial adenocarcinoma patients come 
from TCGA. 

Variable N High risk, N = 159 Low risk, N = 159 p-value 

Molecular subtypes 247   0.001 

CN high 14 6 (5%) 8 (6%)  

CN low 70 30 (25%) 40 (30%)  

MSI 50 15 (12%) 35 (27%)  

Notassigned 99 62 (53%) 37 (28%)  

POLE 14 4 (3%) 10 (7%)  

Age 317   0.079 

<60  59 (37%) 74 (47%)  

≥60  100 (63%) 84 (53%)  

Histologic grade 318   0.031 

Moderate  43 (27%) 49 (31%)  

Poor  85 (53%) 63 (40%)  

Well  31 (19%) 47 (30%)  

Myometrial invasion 285   0.038 

<50%  89 (64%) 77 (52%)  

≥50%  49 (36%) 70 (48%)  

Clinical stage 318   0.68 

Stage I–II  123 (77.4%) 127 (79.5%)  

Stage III–IV  36 (22.1%) 32 (19.8%)  

Distant metastatic 318   0.8 

No  154 (97%) 153 (96%)  

Yes  5 (3.1%) 6 (3.8%)  

Lymph modes metastatic 318   0.86 

No  89 (56%) 92 (58%)  

Yes  16 (10%) 18 (11%)  

Necrosis 318   0.5 

<10%  111 (70%) 116 (73%)  

≥10%  48 (30%) 43 (27%)  

Pearson’s Chi-squared test; Wilcoxon rank sum test. 

 

demonstrated that risk Score and necrosis were also 

independently associated with OS (Figure 3G P < 0.05). 

 

A nomogram model including all seven clinico-

pathologic factors was constructed to predict survival 

probability by adding all the points associated with the 

seven factors (Figure 3H). The higher the score, the 

greater the likelihood of death. The result showed that 

risk, age, lymph node metastasis, necrosis and cancer 

status were correlated with OS (p < 0.05). To validate 

reliability of the nomogram, the AUC values were 

calculated. Internal validation showed an AUC value of 

0.816 (Figure 3I), a total C-index value for predicting 

OS of 0.907, and a C-index value of risk scores of 
0.782. Calibration curves of the 1-, 3- and 5-year overall 

survival showed that the predicted OS was in good 

agreement with the observed OS (Figure 3J). 

Gene Ontology, KEGG pathway and gene Set 

enrichment analysis 

 

Identification of differentially expressed genes (DEGs) 

can be used to gain mechanistic insights from diseases 

[31]. When R package limma was used to analyze 

differentially-expressed genes between the high-risk 

and low-risk groups, 354 genes (228 up-regulated and 

126 down-regulated genes) showed significant changes 

(Figure 4A). The results of Gene Ontology (GO) 

analysis indicated that the differentially expressed genes 

(DEGs) were significantly enriched in various bio-

logical processes (BP), molecular functions (MF) and 

cellular components (CC). Specifically, the enriched BP 
terms included the production of molecular mediators of 

the immune response, while the enriched MF terms 

involved immunoglobulin complex formation, antigen 
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binding, immunoglobulin receptor binding, and 

receptor-ligand activity (Figure 4B–4D). Based on the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway analysis, the differentially expressed genes 

(DEGs) were associated with multiple pathways, such 

as neuroactive ligand-receptor interactions, ECM 

receptor interactions, and IL-17 signaling pathways 

(Figure 4E–4G). Furthermore, GSEA identified that 

biological pathways including positive regulation of 

triglyceride lipase activity and neuropeptide signaling 

pathway were differentially enriched in the high and 

low risk groups (Figure 4H). 

 

 
 

Figure 4. Biological function, and mechanism analysis. (A) Volcano plot of differentially-expressed genes (DEGs) between the high-
risk group and low-risk group. (B) GO Circle plot (red, upregulated genes; blue, downregulated genes) show that Top 15 enriched GO terms 
in the BP category. (C) and (D) Plot of the enriched GO terms Go enrichment analysis for associated mRNAs with risk grouping. Y-axis 
represents the enriched GO terms; X-axis (C) represents the amount of the related mRNAs enriched in GO terms; X-axis (D) represents the 
ratio of the related mRNAs enriched in GO terms. (E) represents the amount of the related mRNAs enriched in KEGG pathways, X-axis. (F) 
represents the ratio of the related mRNAs enriched in KEGG pathways. (G) DEGs associated with the significant KEGG pathway. (H) GSEA 
showing the top six most significantly enriched signaling pathways. 
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Immune infiltration analysis and Immunotherapy 

 

The ESTIMATE algorithm was applied to infer tumor 

purity, immune score, and stromal score, which 

represent the level of immune cell infiltration in the 

tumor [32]. There was a correlation between the risk 

scores and both immune score, and stromal score (Figure 

5A–5E, p < 0.01). The heat map showed infiltration of 

immune cells in each tumor sample, as determined by 

TIMER, CIBERSORT, quanTIseq, MCPcounter, XCell 

and Epic software (Figure 5F, 5G). The CIBERSORT 

algorithm was used to calculate the association of 22 

immune cell proportions (Figure 5H). The CIBERSORT 

algorithm was also employed to identify the proportion 

of immune cells between high-risk and low-risk 

groups and showed that the signature in high-risk 

patients was associated with decreased CD8+ T 

lymphocyte infiltration, mast cells resting (Figure 5I). 

Meanwhile, ssGSEA was used to evaluate all 13 

immune-related functions in the high- and low-risk 

groups, and the result showed obviously differences in 

immune check point, T cell co-stimulation, cytolytic 

 

 
 

Figure 5. Immune profile of cuproptosis lncRNAs based on EEA groups. (A–E), Level of immune cell infiltration in the tumor, 

determined by ESTIMATE. (F, G) Infiltration situation of immune cells in each tumor sample. (H) Calculate of the association of 22 immune 
cell proportions. (I) CIBERSORT algorithm identifying the proportion of immune cells. (J) Scores of 13 immune-related functions by ssGSEA, 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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activity, promoting of inflammation, and APC co 

stimulation, indicating a strong relationship between 

cuproptosis-related lncRNAs and immunity (Figure 5J). 

 

Immune checkpoint inhibition is an immunotherapy 

method that blocks the binding of immune checkpoint 

proteins to chaperone proteins [33]. Gene expression 

analysis of immune checkpoint between the risk groups 

showed that PDCD1 and TIGIT were associated with 

risk group and tended to be expressed at low levels in 

the high-risk group (Supplementary Figure 1A).  The 

scatter patterns of the top 15 most frequently mutated 

genes can be seen by looking at somatic variants, and it 

was found that the high-risk group had a lower rate of 

genetic alterations (94% vs. 97.35%, Supplementary 

Figure 1B, 1C) than the low-risk group. There were 

lower TMB values in the high-risk group, but higher 

tumor stemness and TIDE scores in the high-risk group. 

(Supplementary Figure 1D–1I). 

 

Prediction of chemotherapeutic response 

 

By identifying molecular signatures of cancer, the GDSC 

database helps predict tumor’s response to antitumor 

therapy [34]. A large difference in IC50 was found 

between high-risk and low-risk groups for six 

chemotherapy agents, such as AKT inhibitors (Figure 

6A–6F). Simultaneously, there was a correlation between 

six drugs and risk score (Figure 6G–6L, p < 0.001). 

 

Construction of LncRNA-miRNA-mRNA networks 

 

Using starBase query results, miR-421, miR-483-3p, and 

miR-3200-5p can bind to their lncRNA ACOXL-AS1 

targets (Figure 7A). Then, we conducted a differential 

comparison analysis of genes related to copper death, and 

the heatmap showed that 13 genes were differentially 

expressed between normal and tumor group in TCGA-

EEA (Figure 7B). The online database miRDB provides 

functional annotation and predictions for miRNA targets 

[35]. Through the miRDB database, we found 3 miRNAs 

targeting 784 unique genes, and intersecting with 13 

copper death-related genes in TCGA. Two of these 

genes, MTF1 and GLS were related to miR-421 and 

miR-483-3p, respectively (Figure 7C). At the same time, 

we also found that miR-421 was highly expressed in 

tumors (Figure 7D, p < 0.01). Thus, ACOXL-AS1 can 

serve as an endogenous “sponge” to regulate the 

expression of MTF1 by miR-421 (Figure 7E). 

 

Cuproptosis inhibited the cell proliferation and 

influenced on ACOXL-AS1, hsa-mir-421, and MTF1 

expression in endometrial cancer cells 

 

To investigate the impact of cuproptosis on the growth 

of endometrial cancer cells, we established a copper-

induced cell death model. When HHUA and HEC-1A, 

two endometrial cancer cell lines, were treated with 

Cu2+ plus Elesclomol, their growth was significantly 

inhibited in comparison to the control group (p < 0.001, 

Figure 8A, 8B). 

 

In addition, the Cu2+ plus Elesclomol-treated group 

showed significantly higher gene expression levels for 

ACOXL-AS1 and hsa-mir-421 (p < 0.01, Figure 8C), 

while low expression levels were observed for MTF1 

gene and protein in two endometrial cancer cell lines 

(p < 0.01, Figure 8C, 8D). 

 

Effect of ACOXL-AS1 overexpression on the 

expression of hsa-mir-421 and MTF1 

 

To study the impact of ACOXL-AS1 on the expression 

of hsa-mir-421 and MTF1 in human endometrial cancer 

cell lines, two human endometrial cancer cell lines, 

HEC-1A and HHUA, were used in the study. 

Lentiviruses encoding ACOXL-AS1 cDNA (referred to 

as “ACOXL-AS1-OE”) and an empty vector were used 

to establish stable cells. The selection of stable cells was 

achieved using puromycin. ACOXL-AS1 expression in 

the stable cells was measured using quantitative 

Reverse Transcription Polymerase Chain Reaction 

(qRT-PCR). The qRT-PCR results showed that the 

expression of ACOXL-AS1 increased significantly in 

the ACOXL-AS1-overexpressed (“ACOXL-AS1-OE”) 

cells (Figure 8E). ACOXL-AS1-overexpressing cells 

showed increased expression of hsa-mir-421 and 

reduced MTF1 expression compared with controls 

(Figure 8F). 

 

DISCUSSION 
 

Too much copper accumulation, will damage organs 

and lead to disease, such as hepatolenticular 

degeneration, but copper is essential [36]. Studies have 

shown elevated concentrations of copper in tumor tissue 

or serum in animal models and clinical patients with a 

variety of cancers [37]. Copper chelators are expected to 

be developed as adjuvant therapy for tumors in the 

future. 

 

We systematically analyzed the influence of a 

cuproptosis related lncRNA signature on prognosis and 

immune features in EEA by LASSO, Cox regression 

modeling and consensus cluster analysis. A nomogram 

was constructed to evaluate predictive ability. More 

importantly, their immune properties and drug 

sensitivity were investigated based on this signature. 

 

Clustering usually is the first step in data analysis [38]. 

To understand the value of cuproptosis-related lncRNAs 

in tumors, we first performed a consensus cluster 
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analysis, and found that the cluster effect was 

appropriate, and showed the survival significance. To 

study whether the cuproptosis related lncRNA signature 

could predict prognosis in EEA cohorts, using the 11 

cuproptosis-related lncRNAs, LASSO-Cox regression 

was conducted and two lncRNAs were identified to be 

associated with prognosis. A risk score model showed 

that cuproptosis related lncRNA signature was 

associated with survival in a training cohort and testing 

cohort, and the high-risk subtype was significantly 

 

 
 

Figure 6. Chemotherapy drug response prediction for EEA in high- and low-risk EEA patients. (A) BMS345541. (B) NPK76-II-72-1. 

(C) AP-24534. (D) AKT inhibitor VIII. (E) BX-912. (F) XL-184. (G–L) Correlation analysis between risk group and 6 chemotherapy drugs. 
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associated with poor prognosis. These findings 

distinctly indicate that these signatures could provide 

prognostic biomarkers for patients with EEA. 

The NCCN Guidelines for Uterine Neoplasms V.1.2021 

indicates that G2-3 grade, age ≥60 years, deep muscle 

invasion and necrosis are high risk factors [39]. 

 

 
 

Figure 7. Construction of LncRNA-miRNA-mRNA networks. (A) StarBase V2.0 was used to analyze the interaction between lncRNAs 

and miRNAs. (B) Heatmap indicating cuproptosis-related genes show differential expression changes in normal and EEA tumor groups. 
(C)  Venn diagram showing the common genes between TCGA and miRDB target genes. (D) miR-421 expression in normal or tumor group. 
(E) Schematic diagram for ACOXL-AS1-miR-421-MTF1 regulation. 
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Figure 8. Cuprotosis cell model and expression of ACOXL-AS1, mir-421 and MTF1 in endometrial cancer cells. (A) Colony 

formation ability under differential conditions as determined by a colony formation assay. (B) Proliferation of endometrial cancer cells is 
detected by the Cell Counting Kit-8 assay. (C, D) Relative expression of ACOXL-AS1, mir-421 and MTF1 in endometrial cancer cells under 
different conditions. (E)  overexpress the ACOXL-AS1 gene in HEC-1A and HHUA cells, while the “negative control lentiviral vector” is 
used as a reference (F) The impact of ACOXL-AS1 overexpression on the expression levels of MTF1 and miR-421, **p < 0.01, ***p < 0.001, 
****p < 0.0001. 



www.aging-us.com 14257 AGING 

In addition, POLE mutations are associated with a high 

tumor mutational burden, which leads to an increased 

number of mutations in the DNA of the tumor cells. 

This high mutation rate can result in the production of 

abnormal proteins that can be recognized by the 

immune system, leading to a better prognosis and a 

lower risk of recurrence. Similarly, MSI is associated 

with defects in DNA repair mechanisms, leading to an 

increased number of mutations. This subtype is also 

associated with a better prognosis and a lower risk of 

recurrence. Our analysis of clinicopathological factors 

has shown that risk classification is correlated with 

molecular subtypes, histologic grade, and myometrial 

invasion. Univariate and multivariate analysis showed 

that risk score remains an independent prognostic 

factor, along with age, cancer status, lymph metastasis 

and necrosis. Therefore, our results suggest that risk 

scores of cuproptosis-related lncRNA signature can be 

poor prognostic factors. Nomograms are a common 

tool for estimating prognosis in oncology and 

medicine, and are designed to help physicians assess 

risk [40]. Calibration curves and C-indices are reliable 

indicators for evaluating nomogram models [41, 42]. 

That is to say, the larger the C-index, the more accurate 

the prognosis prediction. Our study shows that risk 

score, lymph node metastasis, necrosis and age are 

associated with poor survival. The total C-index and 

calibration curves for the 1-, 3- and 5-year overall 

survival demonstrated the good reliability of this 

model. 

 

The immune response involves the recognition and 

elimination of cancer cells by various immune cells and 

molecules. Immunoglobulins, also known as antibodies, 

play a critical role in the immune response by 

recognizing and binding to specific antigens on the 

surface of cancer cells [43]. The formation of 

immunoglobulin complexes and the binding of 

immunoglobulin receptors to antigens are key steps in 

the immune response against tumors [44]. In tumors, 

aberrant expression or dysregulation of these 

interactions can contribute to tumor growth, invasion, 

and metastasis. Our present analysis utilizing Go 

methodology precisely identifies these molecular 

functions. These findings provide evidence that the risk 

stratification of long non-coding RNAs (lncRNAs) 

linked to copper-induced cell death is correlated with 

immune function. 

 

Studies have shown that neuroactive ligand-receptor 

interactions play a crucial role in regulating various 

physiological processes, including cell proliferation, 

differentiation, and apoptosis [45, 46]. ECM 
(extracellular matrix) receptor interactions also play a 

vital role in tumor development and progression. ECM 

proteins, such as collagens, laminins, and fibronectin, 

provide structural support for cells and facilitate cell 

signaling [47]. 

 

Adipose triglyceride lipase activity regulates cancer cell 

proliferation and cancer invasion [48]. Overall, these 

three signaling pathways – neuroactive ligand-receptor 

interactions, ECM receptor interactions, and IL-17 

signaling pathways – all play important roles in tumor 

development and progression by KEGG pathway and 

gene set enrichment analysis. These studies also suggest 

that cuproptosis related lncRNAs promote tumor 

progression. 

 

A comprehensive understanding of the characteristics 

of the tumor immune microenvironment is essential 

for optimizing the efficacy of immunotherapy [49]. 

Tumor purity, immune score, and stromal score are 

three crucial factors that can exert significant 

influence on tumor progression [50]. Research has 

revealed that higher levels of tumor purity are 

generally associated with a poorer prognosis, as this 

suggests more aggressive cancer cells and a greater 

potential for metastasis. Conversely, a higher immune 

score has been positively correlated with better 

outcomes, as this indicates an effective recognition 

and attack of cancer cells by the immune system [51, 

52]. Similarly, higher stromal scores have been 

associated with a worse prognosis, indicating a well-

supported and thriving tumor with the capacity to 

grow and spread [52]. And just like the results above, 

we found that patients in the high-risk group have a 

lower interstitial score and immune score than those 

in the low-risk group. 

 

CD8+ T lymphocytes, also known as cytotoxic T cells, 

are a type of immune cell that can recognize and kill 

cancer cells [53]. Therapies that target immune 

checkpoint markers, such as monoclonal antibodies that 

block PD-L1 and CTLA-4, have shown promise in 

treating a variety of cancers, particularly those that are 

associated with a high level of immune checkpoint 

marker expression. These therapies have been shown to 

increase the infiltration of CD8+ T cells into tumors, 

leading to improved patient outcomes [54]. Our results 

showed the signature in high-risk patients is associated 

with decreased CD8+ T lymphocyte infiltration, and 

immune checkpoint markers (PD-L1). The study 

suggests that it led to poorer tumor outcomes, such as 

increased tumor growth, metastasis, and decreased 

survival rates. 

 

The use of tumor mutation burden and microsatellite 

instability to predict the response to immunotherapy has 
been included in the latest NCCN 2022 guidelines. In 

the high-risk group, TMB values were lower, but tumor 

stemness and TIDE scores were higher. 
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The above results indicate that high-risk EEA patients 

do not respond to or can escape from immunotherapy. 

 

To find effective treatment method for high-risk EEA 

patients with a cuproptosis-related lncRNA signature, 

we used the GDSC database to predict a patient’s 

response to antitumor therapy. We found six types of 

compounds to be effective for patients in the high-risk 

group, particularly AKT inhibitors. 

 

At the same time, we constructed a ceRNA network of 

cuproptosis-related lncRNAs-miRNAs-mRNAs by 

bioinformatics methods. An in vitro cell experiment was 

also conducted to determine the gene expression 

relationship of the ceRNA network. These results are 

helpful for further study of the molecular mechanisms 

of cuproptosis related lncRNA signature. 

 

However, our study still has some limitations, and a 

large number of clinical samples will be needed to 

verify our results and confirm whether the conclusions 

to guide clinical treatment. 

 

CONCLUSION 
 

We identify a cuproptosis-related lncRNA signature that 

predicts poor outcomes and is associated with a 

decrease of CD8+ T lymphocyte infiltration in patients 

with EEA. AKT inhibitors may provide therapeutic 

benefits. 

 

AUTHOR CONTRIBUTIONS 
 

Hongrong Wu wrote the manuscript and contributed to 

preparing and making the Figures. Hongrong Wu, 

Ruilin Lin, and Liangli Hong designed this study and 

carried out data acquisition and analysis. Ruilin Lin 

performed in vitro experiments mentioned in the paper. 

All authors read and approved the final manuscript. 

 

ACKNOWLEDGMENTS 
 

We thank Changsha Yaxiang Biotechnology Co. LTD 

for its linguistic assistance during the preparation of this 

manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest related to 

this study. 

 

FUNDING 
 

This study was supported by National Natural Science 

Foundation of China, 81902634. 

REFERENCES 
 
1. Guan J, Xie L, Luo X, Yang B, Zhang H, Zhu Q, Chen X. 

The prognostic significance of estrogen and 
progesterone receptors in grade I and II endometrioid 
endometrial adenocarcinoma: hormone receptors in 
risk stratification. J Gynecol Oncol. 2019; 30:e13. 
https://doi.org/10.3802/jgo.2019.30.e13 
PMID:30479097 

2. McVicker L, Cardwell CR, Edge L, McCluggage WG, 
Quinn D, Wylie J, McMenamin ÚC. Survival outcomes 
in endometrial cancer patients according to diabetes: 
a systematic review and meta-analysis. BMC Cancer. 
2022; 22:427. 
https://doi.org/10.1186/s12885-022-09510-7 
PMID:35439978 

3. Murali R, Delair DF, Bean SM, Abu-Rustum NR, Soslow 
RA. Evolving Roles of Histologic Evaluation and 
Molecular/Genomic Profiling in the Management of 
Endometrial Cancer. J Natl Compr Canc Netw. 2018; 
16:201–9. 
https://doi.org/10.6004/jnccn.2017.7066 
PMID:29439179 

4. Chen L, Min J, Wang F. Copper homeostasis and 
cuproptosis in health and disease. Signal Transduct 
Target Ther. 2022; 7:378. 
https://doi.org/10.1038/s41392-022-01229-y 
PMID:36414625 

5. Wang Y, Zhang L, Zhou F. Cuproptosis: a new form of 
programmed cell death. Cell Mol Immunol. 2022; 
19:867–8. 
https://doi.org/10.1038/s41423-022-00866-1 
PMID:35459854 

6. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, 
Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, 
Spangler RD, Eaton JK, Frenkel E, Kocak M, et al. 
Copper induces cell death by targeting lipoylated TCA 
cycle proteins. Science. 2022; 375:1254–61. 
https://doi.org/10.1126/science.abf0529 
PMID:35298263 

7. Tang D, Chen X, Kroemer G. Cuproptosis: a copper-
triggered modality of mitochondrial cell death. Cell 
Res. 2022; 32:417–8. 
https://doi.org/10.1038/s41422-022-00653-7 
PMID:35354936 

8. Xie J, Yang Y, Gao Y, He J. Cuproptosis: mechanisms 
and links with cancers. Mol Cancer. 2023; 22:46. 
https://doi.org/10.1186/s12943-023-01732-y 
PMID:36882769 

9. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: 
lncRNA localization and function. J Cell Biol. 2021; 
220:e202009045. 

https://doi.org/10.3802/jgo.2019.30.e13
https://pubmed.ncbi.nlm.nih.gov/30479097
https://doi.org/10.1186/s12885-022-09510-7
https://pubmed.ncbi.nlm.nih.gov/35439978
https://doi.org/10.6004/jnccn.2017.7066
https://pubmed.ncbi.nlm.nih.gov/29439179
https://doi.org/10.1038/s41392-022-01229-y
https://pubmed.ncbi.nlm.nih.gov/36414625
https://doi.org/10.1038/s41423-022-00866-1
https://pubmed.ncbi.nlm.nih.gov/35459854
https://doi.org/10.1126/science.abf0529
https://pubmed.ncbi.nlm.nih.gov/35298263
https://doi.org/10.1038/s41422-022-00653-7
https://pubmed.ncbi.nlm.nih.gov/35354936
https://doi.org/10.1186/s12943-023-01732-y
https://pubmed.ncbi.nlm.nih.gov/36882769


www.aging-us.com 14259 AGING 

https://doi.org/10.1083/jcb.202009045 
PMID:33464299 

10. Tan YT, Lin JF, Li T, Li JJ, Xu RH, Ju HQ. LncRNA-
mediated posttranslational modifications and 
reprogramming of energy metabolism in cancer. 
Cancer Commun (Lond). 2021; 41:109–20. 
https://doi.org/10.1002/cac2.12108 
PMID:33119215 

11. Hutter C, Zenklusen JC. The Cancer Genome Atlas: 
Creating Lasting Value beyond Its Data. Cell. 2018; 
173:283–5. 
https://doi.org/10.1016/j.cell.2018.03.042 
PMID:29625045 

12. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, 
Smyth GK. limma powers differential expression 
analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015; 43:e47. 
https://doi.org/10.1093/nar/gkv007 
PMID:25605792 

13. Wu H, Zhang J. Decreased expression of TFAP2B in 
endometrial cancer predicts poor prognosis: A 
study based on TCGA data. Gynecol Oncol. 2018; 
149:592–7. 
https://doi.org/10.1016/j.ygyno.2018.03.057 
PMID:29602546 

14. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. 
Maftools: efficient and comprehensive analysis of 
somatic variants in cancer. Genome Res. 2018; 
28:1747–56. 
https://doi.org/10.1101/gr.239244.118 
PMID:30341162 

15. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, 
Poisson L, Weinstein JN, Kamińska B, Huelsken J, 
Omberg L, Gevaert O, Colaprico A, Czerwińska P, 
Mazurek S, et al, and Cancer Genome Atlas Research 
Network. Machine Learning Identifies Stemness 
Features Associated with Oncogenic 
Dedifferentiation. Cell. 2018; 173:338–54.e15. 
https://doi.org/10.1016/j.cell.2018.03.034 
PMID:29625051 

16. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, Zhou R, Qiu 
W, Huang N, Sun L, Li X, Bin J, Liao Y, et al. IOBR: 
Multi-Omics Immuno-Oncology Biological Research to 
Decode Tumor Microenvironment and Signatures. 
Front Immunol. 2021; 12:687975. 
https://doi.org/10.3389/fimmu.2021.687975 
PMID:34276676 

17. Li SR, Bu LL, Cai L. Cuproptosis: lipoylated TCA cycle 
proteins-mediated novel cell death pathway. Signal 
Transduct Target Ther. 2022; 7:158. 
https://doi.org/10.1038/s41392-022-01014-x 
PMID:35562341 

18. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a 
class discovery tool with confidence assessments and 
item tracking. Bioinformatics. 2010; 26:1572–3. 
https://doi.org/10.1093/bioinformatics/btq170 
PMID:20427518 

19. Tibshirani R. The lasso method for variable selection 
in the Cox model. Stat Med. 1997; 16:385–95. 
https://doi.org/10.1002/(sici)1097-
0258(19970228)16:4<385::aid-sim380>3.0.co;2-3 
PMID:9044528 

20. Iasonos A, Schrag D, Raj GV, Panageas KS. How to 
build and interpret a nomogram for cancer prognosis. 
J Clin Oncol. 2008; 26:1364–70. 
https://doi.org/10.1200/JCO.2007.12.9791 
PMID:18323559 

21. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou 
L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. 
clusterProfiler 4.0: A universal enrichment tool for 
interpreting omics data. Innovation (Camb). 2021; 
2:100141. 
https://doi.org/10.1016/j.xinn.2021.100141 
PMID:34557778 

22. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, Li B, Liu XS. 
TIMER2.0 for analysis of tumor-infiltrating immune 
cells. Nucleic Acids Res. 2020; 48:W509–14. 
https://doi.org/10.1093/nar/gkaa407 
PMID:32442275 

23. Zhuang W, Sun H, Zhang S, Zhou Y, Weng W, Wu B, Ye 
T, Huang W, Lin Z, Shi L, Shi K. An immunogenomic 
signature for molecular classification in 
hepatocellular carcinoma. Mol Ther Nucleic Acids. 
2021; 25:105–15. 
https://doi.org/10.1016/j.omtn.2021.06.024 
PMID:34401208 

24. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, 
Bu X, Li B, Liu J, Freeman GJ, Brown MA, et al. 
Signatures of T cell dysfunction and exclusion predict 
cancer immunotherapy response. Nat Med. 2018; 
24:1550–8. 
https://doi.org/10.1038/s41591-018-0136-1 
PMID:30127393 

25. Geeleher P, Cox NJ, Huang RS. Clinical drug response 
can be predicted using baseline gene expression 
levels and in vitro drug sensitivity in cell lines. 
Genome Biol. 2014; 15:R47. 
https://doi.org/10.1186/gb-2014-15-3-r47 
PMID:24580837 

26. Barretina J, Caponigro G, Stransky N, Venkatesan K, 
Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, 
Sonkin D, Reddy A, Liu M, Murray L, et al. The Cancer 
Cell Line Encyclopedia enables predictive modelling of 
anticancer drug sensitivity. Nature. 2012; 483:603–7. 

https://doi.org/10.1083/jcb.202009045
https://pubmed.ncbi.nlm.nih.gov/33464299
https://doi.org/10.1002/cac2.12108
https://pubmed.ncbi.nlm.nih.gov/33119215
https://doi.org/10.1016/j.cell.2018.03.042
https://pubmed.ncbi.nlm.nih.gov/29625045
https://doi.org/10.1093/nar/gkv007
https://pubmed.ncbi.nlm.nih.gov/25605792
https://doi.org/10.1016/j.ygyno.2018.03.057
https://pubmed.ncbi.nlm.nih.gov/29602546
https://doi.org/10.1101/gr.239244.118
https://pubmed.ncbi.nlm.nih.gov/30341162
https://doi.org/10.1016/j.cell.2018.03.034
https://pubmed.ncbi.nlm.nih.gov/29625051
https://doi.org/10.3389/fimmu.2021.687975
https://pubmed.ncbi.nlm.nih.gov/34276676
https://doi.org/10.1038/s41392-022-01014-x
https://pubmed.ncbi.nlm.nih.gov/35562341
https://doi.org/10.1093/bioinformatics/btq170
https://pubmed.ncbi.nlm.nih.gov/20427518
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3c385::aid-sim380%3e3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3c385::aid-sim380%3e3.0.co;2-3
https://pubmed.ncbi.nlm.nih.gov/9044528
https://doi.org/10.1200/JCO.2007.12.9791
https://pubmed.ncbi.nlm.nih.gov/18323559
https://doi.org/10.1016/j.xinn.2021.100141
https://pubmed.ncbi.nlm.nih.gov/34557778
https://doi.org/10.1093/nar/gkaa407
https://pubmed.ncbi.nlm.nih.gov/32442275
https://doi.org/10.1016/j.omtn.2021.06.024
https://pubmed.ncbi.nlm.nih.gov/34401208
https://doi.org/10.1038/s41591-018-0136-1
https://pubmed.ncbi.nlm.nih.gov/30127393
https://doi.org/10.1186/gb-2014-15-3-r47
https://pubmed.ncbi.nlm.nih.gov/24580837


www.aging-us.com 14260 AGING 

https://doi.org/10.1038/nature11003 
PMID:22460905 

27. Piper M, Gronostajski R, Messina G. Nuclear Factor 
One X in Development and Disease. Trends Cell Biol. 
2019; 29:20–30. 
https://doi.org/10.1016/j.tcb.2018.09.003 
PMID:30287093 

28. Ala U. Competing Endogenous RNAs, Non-Coding 
RNAs and Diseases: An Intertwined Story. Cells. 2020; 
9:1574. 
https://doi.org/10.3390/cells9071574 
PMID:32605220 

29. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: 
decoding miRNA-ceRNA, miRNA-ncRNA and protein-
RNA interaction networks from large-scale CLIP-Seq 
data. Nucleic Acids Res. 2014; 42:D92–7. 
https://doi.org/10.1093/nar/gkt1248 
PMID:24297251 

30. Xiong Y, Ling QH, Han F, Liu QH. An efficient gene 
selection method for microarray data based on LASSO 
and BPSO. BMC Bioinformatics. 2019; 20:715. 
https://doi.org/10.1186/s12859-019-3228-0 
PMID:31888444 

31. Xiong H, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Li J, Liu L. 
RNAseq analysis reveals pathways and candidate genes 
associated with salinity tolerance in a spaceflight-
induced wheat mutant. Sci Rep. 2017; 7:2731. 
https://doi.org/10.1038/s41598-017-03024-0 
PMID:28578401 

32. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna 
R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird 
PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, et 
al. Inferring tumour purity and stromal and immune 
cell admixture from expression data. Nat Commun. 
2013; 4:2612. 
https://doi.org/10.1038/ncomms3612 
PMID:24113773 

33. Bagchi S, Yuan R, Engleman EG. Immune Checkpoint 
Inhibitors for the Treatment of Cancer: Clinical Impact 
and Mechanisms of Response and Resistance. Annu 
Rev Pathol. 2021; 16:223–49. 
https://doi.org/10.1146/annurev-pathol-042020-
042741 
PMID:33197221 

34. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot 
H, Forbes S, Bindal N, Beare D, Smith JA, Thompson 
IR, Ramaswamy S, Futreal PA, Haber DA, et al. 
Genomics of Drug Sensitivity in Cancer (GDSC): a 
resource for therapeutic biomarker discovery in 
cancer cells. Nucleic Acids Res. 2013; 41:D955–61. 
https://doi.org/10.1093/nar/gks1111 
PMID:23180760 

35. Wang X. miRDB: a microRNA target prediction and 
functional annotation database with a wiki interface. 
RNA. 2008; 14:1012–7. 
https://doi.org/10.1261/rna.965408 
PMID:18426918 

36. Bandmann O, Weiss KH, Kaler SG. Wilson's disease 
and other neurological copper disorders. Lancet 
Neurol. 2015; 14:103–13. 
https://doi.org/10.1016/S1474-4422(14)70190-5 
PMID:25496901 

37. Wang F, Jiao P, Qi M, Frezza M, Dou QP, Yan B. 
Turning tumor-promoting copper into an anti-cancer 
weapon via high-throughput chemistry. Curr Med 
Chem. 2010; 17:2685–98. 
https://doi.org/10.2174/092986710791859315 
PMID:20586723 

38. Guijo-Rubio D, Duran-Rosal AM, Gutierrez PA, 
Troncoso A, Hervas-Martinez C. Time-Series 
Clustering Based on the Characterization of Segment 
Typologies. IEEE Trans Cybern. 2021; 51:5409–22. 
https://doi.org/10.1109/TCYB.2019.2962584 
PMID:31945011 

39. Abu-Rustum NR, Yashar CM, Bradley K, Campos SM, 
Chino J, Chon HS, Chu C, Cohn D, Crispens MA, 
Damast S, Diver E, Fisher CM, Frederick P, et al. NCCN 
Guidelines® Insights: Uterine Neoplasms, Version 
3.2021. J Natl Compr Canc Netw. 2021; 19:888–95. 
https://doi.org/10.6004/jnccn.2021.0038 
PMID:34416706 

40. Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. 
Nomograms in oncology: more than meets the eye. 
Lancet Oncol. 2015; 16:e173–80. 
https://doi.org/10.1016/S1470-2045(14)71116-7 
PMID:25846097 

41. Vickers AJ, Cronin AM. Everything you always wanted 
to know about evaluating prediction models (but 
were too afraid to ask). Urology. 2010; 76:1298–301. 
https://doi.org/10.1016/j.urology.2010.06.019 
PMID:21030068 

42. Huitzil-Melendez FD, Capanu M, O'Reilly EM, Duffy A, 
Gansukh B, Saltz LL, Abou-Alfa GK. Advanced 
hepatocellular carcinoma: which staging systems best 
predict prognosis? J Clin Oncol. 2010; 28:2889–95. 
https://doi.org/10.1200/JCO.2009.25.9895 
PMID:20458042 

43. Newton K, Dixit VM. Signaling in innate immunity and 
inflammation. Cold Spring Harb Perspect Biol. 2012; 
4:a006049. 
https://doi.org/10.1101/cshperspect.a006049 
PMID:22296764 

44. Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano 
A, Sautès-Fridman C. B cells and tertiary lymphoid 

https://doi.org/10.1038/nature11003
https://pubmed.ncbi.nlm.nih.gov/22460905
https://doi.org/10.1016/j.tcb.2018.09.003
https://pubmed.ncbi.nlm.nih.gov/30287093
https://doi.org/10.3390/cells9071574
https://pubmed.ncbi.nlm.nih.gov/32605220
https://doi.org/10.1093/nar/gkt1248
https://pubmed.ncbi.nlm.nih.gov/24297251
https://doi.org/10.1186/s12859-019-3228-0
https://pubmed.ncbi.nlm.nih.gov/31888444
https://doi.org/10.1038/s41598-017-03024-0
https://pubmed.ncbi.nlm.nih.gov/28578401
https://doi.org/10.1038/ncomms3612
https://pubmed.ncbi.nlm.nih.gov/24113773
https://doi.org/10.1146/annurev-pathol-042020-042741
https://doi.org/10.1146/annurev-pathol-042020-042741
https://pubmed.ncbi.nlm.nih.gov/33197221
https://doi.org/10.1093/nar/gks1111
https://pubmed.ncbi.nlm.nih.gov/23180760
https://doi.org/10.1261/rna.965408
https://pubmed.ncbi.nlm.nih.gov/18426918
https://doi.org/10.1016/S1474-4422(14)70190-5
https://pubmed.ncbi.nlm.nih.gov/25496901
https://doi.org/10.2174/092986710791859315
https://pubmed.ncbi.nlm.nih.gov/20586723
https://doi.org/10.1109/TCYB.2019.2962584
https://pubmed.ncbi.nlm.nih.gov/31945011
https://doi.org/10.6004/jnccn.2021.0038
https://pubmed.ncbi.nlm.nih.gov/34416706
https://doi.org/10.1016/S1470-2045(14)71116-7
https://pubmed.ncbi.nlm.nih.gov/25846097
https://doi.org/10.1016/j.urology.2010.06.019
https://pubmed.ncbi.nlm.nih.gov/21030068
https://doi.org/10.1200/JCO.2009.25.9895
https://pubmed.ncbi.nlm.nih.gov/20458042
https://doi.org/10.1101/cshperspect.a006049
https://pubmed.ncbi.nlm.nih.gov/22296764


www.aging-us.com 14261 AGING 

structures as determinants of tumour immune 
contexture and clinical outcome. Nat Rev Clin Oncol. 
2022; 19:441–57. 
https://doi.org/10.1038/s41571-022-00619-z 
PMID:35365796 

45. Zheng R, Iwase A, Shen R, Goodman OB Jr, Sugimoto 
N, Takuwa Y, Lerner DJ, Nanus DM. Neuropeptide-
stimulated cell migration in prostate cancer cells is 
mediated by RhoA kinase signaling and inhibited by 
neutral endopeptidase. Oncogene. 2006; 25:5942–52. 
https://doi.org/10.1038/sj.onc.1209586 
PMID:16652149 

46. Kasprzak A, Adamek A. The Neuropeptide System and 
Colorectal Cancer Liver Metastases: Mechanisms and 
Management. Int J Mol Sci. 2020; 21:3494. 
https://doi.org/10.3390/ijms21103494 
PMID:32429087 

47. Sainio A, Järveläinen H. Extracellular matrix-cell 
interactions: Focus on therapeutic applications. Cell 
Signal. 2020; 66:109487. 
https://doi.org/10.1016/j.cellsig.2019.109487 
PMID:31778739 

48. Wang YY, Attané C, Milhas D, Dirat B, Dauvillier S, 
Guerard A, Gilhodes J, Lazar I, Alet N, Laurent V, Le 
Gonidec S, Biard D, Hervé C, et al. Mammary 
adipocytes stimulate breast cancer invasion through 
metabolic remodeling of tumor cells. JCI Insight. 
2017; 2:e87489. 
https://doi.org/10.1172/jci.insight.87489 
PMID:28239646 

49. Chew V, Toh HC, Abastado JP. Immune 
microenvironment in tumor progression: 
characteristics and challenges for therapy. J Oncol. 
2012; 2012:608406. 
https://doi.org/10.1155/2012/608406 
PMID:22927846 

50. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun 
Y. New horizons in tumor microenvironment biology: 
challenges and opportunities. BMC Med. 2015; 13:45. 
https://doi.org/10.1186/s12916-015-0278-7 
PMID:25857315 

51. Xu Q, Chen S, Hu Y, Huang W. Landscape of Immune 
Microenvironment Under Immune Cell Infiltration 
Pattern in Breast Cancer. Front Immunol. 2021; 
12:711433. 
https://doi.org/10.3389/fimmu.2021.711433 
PMID:34512634 

52. Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, 
Hernando-Momblona X, Iglesias M, Sevillano M, 
Palomo-Ponce S, Tauriello DV, Byrom D, Cortina C, 
Morral C, Barceló C, et al. Stromal gene expression 
defines poor-prognosis subtypes in colorectal cancer. 
Nat Genet. 2015; 47:320–9. 
https://doi.org/10.1038/ng.3225 
PMID:25706628 

53. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, 
Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, 
Berger A, Wind P, Zinzindohoué F, Bruneval P, 
Cugnenc PH, et al. Type, density, and location of 
immune cells within human colorectal tumors predict 
clinical outcome. Science. 2006; 313:1960–4. 
https://doi.org/10.1126/science.1129139 
PMID:17008531 

54. Pardoll DM. The blockade of immune checkpoints in 
cancer immunotherapy. Nat Rev Cancer. 2012; 
12:252–64. 
https://doi.org/10.1038/nrc3239 
PMID:22437870 

 

 

https://doi.org/10.1038/s41571-022-00619-z
https://pubmed.ncbi.nlm.nih.gov/35365796
https://doi.org/10.1038/sj.onc.1209586
https://pubmed.ncbi.nlm.nih.gov/16652149
https://doi.org/10.3390/ijms21103494
https://pubmed.ncbi.nlm.nih.gov/32429087
https://doi.org/10.1016/j.cellsig.2019.109487
https://pubmed.ncbi.nlm.nih.gov/31778739
https://doi.org/10.1172/jci.insight.87489
https://pubmed.ncbi.nlm.nih.gov/28239646
https://doi.org/10.1155/2012/608406
https://pubmed.ncbi.nlm.nih.gov/22927846
https://doi.org/10.1186/s12916-015-0278-7
https://pubmed.ncbi.nlm.nih.gov/25857315
https://doi.org/10.3389/fimmu.2021.711433
https://pubmed.ncbi.nlm.nih.gov/34512634
https://doi.org/10.1038/ng.3225
https://pubmed.ncbi.nlm.nih.gov/25706628
https://doi.org/10.1126/science.1129139
https://pubmed.ncbi.nlm.nih.gov/17008531
https://doi.org/10.1038/nrc3239
https://pubmed.ncbi.nlm.nih.gov/22437870


www.aging-us.com 14262 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Response to immune checkpoint therapy, tumor stemness score. (A) Immune checkpoint. (B, C) 

Oncoplots for the top 15 mutated genes in low- (B) and high-risk (C) groups. (D–H) Correlation between risk score and tumor mutation 
burden (TMB) (D), microsatellite instability (MSI) (E), stemness score (F), response to Immune checkpoint therapy (G, H). (I) Correlation 
between risk score and TIDE score. 


