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INTRODUCTION 
 

Lung cancer is the leading cause of cancer related 

mortality in China. Although smoking is the main  

factor in the development of lung cancer, the high 

incidence of lung cancer among non-smokers is related 

to genetic factors and environmental carcinogen exposure 

[1]. Xuanwei city, a rural area in southwestern China 

(Yunnan Province) with the highest incidence and 

mortality rates of lung cancer, is mainly caused by the 

burning of smoked coal without indoor ventilation [2–

4]. Although indoor air pollution in Xuanwei has been 

well controlled after the 1980s, the higher incidence and 

mortality of lung cancer have not changed significantly 

[5]. This evidence indicates that the mechanism of 

Xuanwei lung cancer (XWLC) has not been well under-

stood and should be further investigated. Moreover, 

most previous studies focused on the epidemiology  

and etiology of XWLC, but the understanding of the 

molecular basis of XWLC is still insufficient. 

 

The tumorigenesis and development of lung cancer  

is a complicated pathological process, which involves 

multi-gene participation and multi-level development. A 

complex molecular network interaction accompanied by 

the abnormal expression of several genes is formed to 
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jointly regulate the biological process of tumor cells, 

resulting in tumor invasion and metastasis [6]. Although 

some progress has been made in XWLC chemotherapy 

and targeted molecular therapy in recent years, but the 

overall 5-year survival rate is still less than 15% due to 

the limitations of treatment options, tumor metastasis, 

and recurrence [7]. Therefore, any single study is 

unlikely to elucidate the molecular mechanism of human 

lung cancer. Multi-omics methods provide a powerful 

tool for comprehensively and systematically revealing 

tumor progression pathways and essential biomarkers. 

Recently, the genomic, transcriptomic, proteomic, and 

epigenomics of the large-scale lung adenocarcinoma 

(LUAD) cohort have been widely reported. The integra-

ted omics technologies revealed the molecular structure 

of LUAD and markers of tumor progression, which 

further elucidated new disease subtypes, signaling 

pathways, and provided potential targets for precision 

medicine in lung cancer [8–10]. 

 

LUAD is the main pathological type of XWLC. In 

recent years, the molecular mechanisms underlying the 

Xuanwei LUAD have been widely reported by high 

throughput techniques [11–13]. These studies described 

differentially expressed molecules and pathway changes 

in tumor tissues and provided high potential research 

value for XWLC. However, the exact mechanism of 

regulation and maintenance of protein expression and 

post-translational modifications (especially phosphory-

lation) and its relationship with XWLC is still unclear. 

In this study, we performed a comprehensive multi-

omics approach, including transcriptome, proteome, and 

phosphoproteome, on fresh LUAD tissues and paired 

adjacent non-tumor tissues from three XWLC patients. 

We report the dysregulated RNA and protein molecular 

events in Xuanwei LUAD and the post-transcriptional 

regulatory mechanisms extensively involved by non-

coding RNAs, as well as the signal transduction networks 

mediated by protein phosphorylation modifications. 

Besides, we combined our result with previously LUAD 

multi-omics datasets, which adds not only novel insights 

into the fundamental biological processes related to 

cancer but also provide interesting clues about potential 

therapeutic approaches for XWLC. 

 

METHODS 
 

Clinical specimens 

 

Samples were collected from the Department of Thoracic 

Surgery I of Yunnan Cancer Hospital (the Third 

Affiliated Hospital of Kunming Medical University). 

This study was approved by the Ethical Committees  

of Yunnan Cancer Hospital (No. KY2019.57). We 

investigated three LUAD patients in the Xuanwei  

area from January 2019 to January 2020. Patients had 

undergone surgical resection and had not received any 

prior treatment, including chemotherapy or radiation. 

All patients used coal for heating or cooking for more 

than 10 years. The TNM stage was reviewed according 

to the 8th edition of the International Association for the 

Study of Lung Cancer (IASLC) staging system. Clinical 

information of individual patients, including age, 

histology, stage, and TNM, were listed in Supplementary 

Table 1. All patients provided informed consent. 

 

Nearby tissue was designated as non-tumor and was 

greater than 5 cm away from the surgical margin. In 

total, six tissue samples (including three tumor tissues 

and adjacent non-tumor tissues) were taken from three 

patients. Each sample was cut into two pieces. One was 

stored in methanal for hematoxylin and eosin (HE) stain 

and transmission electron microscopy (TEM) 

examination. Another was stored in liquid nitrogen 

immediately and then used for omics experiments. 

 
Transcriptome sequencing 

 

Total RNA from six tissue samples was extracted using 

a mirVana miRNA Isolation Kit (Ambion, Austin, TX, 

USA) following the manufacturer’s protocol. The quality 

and concentration of RNA were determined using  

an Agilent 2100 Bioanalyzer (Agilent Technologies, 

Santa Clara, CA, USA). After digesting the ribosomal 

RNA, samples with RNA Integrity Number (RIN) ≥7 

were used to construct libraries by a TruSeq Stranded 

Total RNA with Ribo-Zero Gold. Paired-end sequences 

with 150 bp were generated on an Illumina HiSeq4000 

platform. After removing adapters, clean reads were 

aligned to the human reference genome (hg38) to 

quantify coding genes, lncRNAs, and circRNAs. For 

small RNA, libraries were generated using NEBNext® 

Multiplex Small RNA Library Prep Set for Illumina® 

(NEB, Ipswich, MA, USA) and sequenced on an 

Illumina Hiseq2500 platform to get 50 bp single-end 

reads. The complete bioinformatics process can be seen 

in Supplementary Materials. 

 
Proteomic and phosphoproteomic experiment 

 

Six tissue samples were transferred into a low protein 

binding tube and lysed with PMSF buffer to extract 

protein. Protein concentration was determined by BCA 

assay. After tryptic digestion and TMT labeling, the 

TMT-labeled peptide mix was fractionated using an 

Agilent Zorbax Extend C18 column on Agilent 1100 

HPLC. Protein samples were separated on the Acclaim 

PepMap RSLC analytical column (RP-C18, Thermo 

Fisher Scientific, USA). Shotgun proteomics analyses 

were performed using Orbitrap Q Exactive HF-X mass 

spectrometer (Thermo Fisher Scientific). Protein with  

at least one unique peptide was identified at a false 
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discovery rate (FDR) less than 1.0% on peptide or protein 

level. For phosphoproteomic samples, phosphopeptides 

were enriched using titanium dioxide beads (TiO2), and 

LC-MS/MS analysis was similar to proteomic experi-

ment. The complete experimental and bioinformatics 

process can be seen in the supporting materials. 

 

Consistency analysis of omics data 

 

Principal component analysis (PCA) and unsupervised 

cluster analysis were performed to evaluate the data 

accuracy and visualize differences among samples. 

Procrustes analysis was used to compare the overall 

relevance between omics data. Pearson correlation 

coefficients among RNA expression, protein expression, 

or phosphorylation intensity were calculated to assess 

the correlation of gene transcription, translation, and 

phosphorylation modification. All statistical analysis 

(including the following) was performed in the R 

program (v3.6.1) if there was no special software 

mentioned. 

 
Differential expression analysis and functional 

enrichment 

 

DESeq2 (v1.26.0) [14] was applied for the detection of 

differentially expressed genes (DEGs) and other non-

coding RNAs between tumor and non-tumor samples 

with a P-value of ≤0.05 and fold change (FC) of ≥2. 

The student’s t-test was performed with a permutation-

based P-value of ≤0.05 and FC ≥1.2 to identify 

differentially expressed proteins (DEPs) or phosphosites 

in a pairwise manner. Gene Set Enrichment Analysis 

(GSEA) [15] was applied to find enriched pathways  

in transcriptome and proteome. Curated gene sets (H2)  

and GO gene sets (C5) were used for enrichment 

analysis, and an FDR value of 0.05 was adjusted as a 

cutoff. 

 
Molecular network construction 

 

For understanding the physical association or co-

expression patterns across DEPs, a protein-protein 

interaction (PPI) network of DEPs was established 

using the STRING database (v11.0) [16] with the 

highest confidence cutoff of 0.95. To explore the  

post-transcriptional regulation of non-coding RNAs, a 

competing endogenous RNA (ceRNA) network was 

constructed. TargetScan (v7.2) [17] was used to predict 

the coding genes targeted by miRNAs. LncRNAs or 

circRNAs-miRNA interactions were predicted using 

miRanda tools (v3.3) [18]. Network visualization was 

performed using Cytoscape software (v3.8.0) [19]. The 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment were 

conducted to explore the function of network modules 

and target genes by using DAVID (v6.8) [20] and 

KOBAS (v3.0) [21] software, respectively. FDR ≤0.05 

was recognized as significant enrichment. 

 

Kinase-substrate relationship prediction 

 

The motif sequence represented the preference of kinase 

for substrates. We used MOMO (v5.1.1) [22] to analyze 

significantly enriched motifs. Kinase-substrate pairs 

were predicted by PhosphoSitePlus database (v6.5.9.3) 

[23] and NetworKIN algorithm (v3.0) [24]. Through the 

human kinome tree [25], we obtained the protein kinase 

domain sequences and constructed the phylogenetic 

tree. 

 

Public data analysis 

 

Pan-cancer and tissue-specific analysis of significant 

prognostic factors were used in the transcriptome dataset 

from The Cancer Genome Atlas (TCGA) and Genotype-

Tissue Expression (GTEx), respectively. Statistically 

significant differences were evaluated with the Student’s 

t-test. Kaplan-Meier survival analysis was performed to 

estimate the overall survival (OS) of LUAD patients 

and transcriptomic subtypes according to the TCGA 

dataset and the previous study [10]. Survival curves were 

calculated by Survival R package with the log-rank  

test P-value < 0.05. The main parameters used in the 

bioinformatical analysis were shown in Supplementary 

File 1. 

 

Data availability 

 

RNAseq (mRNA, lncRNA, circRNA, and miRNA)  

data are available at GEO under accession number 

GSE165298. Other datasets used in the current study are 

available from the corresponding author on reasonable 

request. 

 

RESULTS 
 

Molecular profiling of Xuanwei LUAD 

 

In our study, we processed an integrative analysis of 

Xuanwei LUAD at the transcriptomics, proteomics, and 

phosphoproteomic level (Figure 1A). We first examined 

the characteristics of pathological tissues by TEM 

(Figure 1B). Compared with non-tumor tissues, the cell 

density in LUAD was higher, the nucleus was irregular 

polygonal, and the nucleoplasmic ratio was imbalanced. 

Most of the mitochondria in the cytoplasm were 

swelled, cristae were broken, dissolved, or even 

disappeared. A small amount of rough endoplasmic 

reticulum expanded and became cystic, and a small 

amount of autophagy and secondary lysosomes were 

also seen. Some cancer cells undergo apoptosis, with 
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loss of cell volume, shrunk nucleus, and increased 

cytoplasmic electron cloud density. 

 

A total of 82.33G clean reads were generated from 

whole-transcriptome sequencing with 90.26–90.98% 

Q30 bases distribution, and the average GC content  

were 49.05% (Supplementary Table 2). After clean  

reads were aligned with the human reference genome 

(hg38), the alignment efficiency was between 97.16% 

and 97.32%, suggesting good sequencing quality for  

all samples. Transcriptome analysis identified 12,774 

genes with FPKMs of more than 1 (Supplementary  

Table 2). Meanwhile, proteomics measurement of six  

samples resulted in a total of 5,053 proteins based  

on Score Sequest HT 0 and unique peptide ≥1  

(Supplementary Table 3A). After filtering, 3,820 high-

quality proteins were identified (Supplementary Table 

3B). Furthermore, a total of 4,748 phosphosites with 

high confidence corresponding to 1,893 phosphoproteins 

were recognized at a localization probability of ≥0.75 

and delta score ≥8 (Supplementary Table 4). More than 

90% of the high-quality proteins and phosphoproteins 

 

 

 
Figure 1. Multi-omics landscape of LUAD samples. (A) Experimental workflow to analyze transcriptome, proteome, phosphoproteome, 

and small RNA sequencing data. (B) Electron micrograph of the tissue section. Left, non-tumor tissue; right, LUAD tissue. (C) Quantitative 
statistics of total genes among transcriptome, proteome, and phosphoproteome, as well as the overlap of gene number among three omics. 
(D) Procrustes analysis shows the correlation between different omics. 
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were overlapped with transcriptome, whereas a half 

number of phosphoproteins were also identified in the 

proteome (Figure 1C). This high-quality data was used 

in further analyses. 

 

The PCA of transcriptomic, proteomic, and 

phosphoproteomic data revealed a significant difference 

between LUAD and non-tumor samples (Supplementary 

Figure 1A–1C), and Procrustes analysis revealed a 

considerable correlation among three omics (Figure 1D). 

These results provide an opportunity to explore the 

consistent association among three omics data. 

 

Integrative transcriptome and proteome analysis 

 

An integrated analysis of transcriptome and proteome 

changes was performed to investigate the extent and 

levels of transcriptional or translational regulation. 

There were 3,588 genes shared between transcrip- 

tome and proteome (Figure 1C). By comparing the 

expression level of mRNAs and proteins, we observed 

most of these shared genes had a strong positive 

correlation (Figure 2A), which means that two omics 

data changed synchronously. Functional analysis also 

showed that almost all significantly enriched terms 

were in a similar state of activation or inhibition in two 

datasets (Supplementary Figure 2A, 2B). Activated 

pathways involved in metabolism, genetic information 

processing, and cellular processes, which accelerate 

the proliferation of tumor cells. Cell adhesion is an 

essential process for tumor metastasis, and decreased 

cell adhesion is associated with cancer spread [26]. 

Extracellular matrix-related terms were also down-

regulated. It was reported previously that breaking the 

extracellular matrix around the tumor is necessary for 

tumor cell migration and invasion [27]. Interestingly, 

the gene set involved in the immune system had a 

large mRNA score but only a small protein score, 

indicating that these proteins may tightly be controlled 

at a post-transcriptional level to have suitable amounts 

for tumor progression. 

 

A total of 1,962 genes were differentially expressed 

between LAUD and non-tumor samples, 809 of which 

were upregulated and 1,153 were downregulated 

(Figure 2B). Several abnormally highly expressed 

genes were observed, and some of them have been 

proven to have essential roles in various cancers.  

For instance, GCNT3 is a novel core mucin synthase, 

usually highly expressed in non-small-cell lung cancer 

(NSCLC) and correlated with tumor invasion [28]. 

CASR controls body calcium homeostasis, and its 

overexpression can induce osteoclast differentiation 
and promote bone metastasis in LUAD [29]. Proteomic 

analysis revealed 197 up-regulated and 148 down-

regulated DEPs in LUAD (Figure 2C). A group of 

significantly upregulated proteins was also known  

to be related to lung cancer progression. It is well 

known that MT1X is one of the isoforms of metallo-

thionein. Theocharis et al. observed that metallothionein 

expression was prominent in squamous cell lung 

carcinoma and adenocarcinoma [30]. GRN implicates 

in tumorigenesis as an autocrine growth and survival 

factor [31], and is also reported being a prognostic 

factor in localized NSCLC [32]. Moreover, a lot of 

previously reported lung signature genes [33] also  

had significant differential expression in our LUAD 

samples (Figure 2D). The above results generate a vast 

resource of dysregulated molecular events, which 

provide valuable clues for recapitulating the potential 

molecular regulation or metabolic network of LUAD. 

 

However, only a few differentially expressed genes  

were shared between transcriptome and proteome 

(Supplementary Figure 2C). To compare similarities or 

differences of functional changes at the transcription 

and translation level, an unbiased analysis of gene 

expression changes was performed using GSEA. 

Likewise, enrichment scores were in a high degree of 

significant consistency (Figure 2E). Several categories 

involved in metabolism, molecular processes, homeo-

stasis, cell behavior, and disease-related pathways 

were associated with cancer hallmarks (Figure 2F, 2G). 

Many functions related to intracellular homeostasis 

and tissue physiology were disordered and contributed 

to a cascade of dysfunctional processes such as in-

flammation, stress response, and immune-suppressive. 

 

PPI network analysis identified three necessary  

modules (Figure 2H and Supplementary Figure 2D–

2G). Interestingly, all proteins in module I and III  

were upregulated in LUAD, whereas module II was 

composed of downregulated proteins, suggesting the 

biological co-activation or co-inhibition are general. 

Functional enrichment analysis revealed that module I 

and III are associated with ribosome, gene expres- 

sion, and RNA process, including splicing, transport, 

metabolism, and degradation. In contrast, module II is 

mainly involved in the protein process and response to 

stimuli (Figure 2H). Strikingly, nodes at the core of the 

network involved various ribosomal proteins (RPs) 

that were highly expressed in LUAD (Figure 2H). RPs 

exert a vital role in ribosome biogenesis and cell cycle, 

and increased ribosomal activity is an essential feature 

of tumorigenesis [34]. In the down-regulated protein 

module, core protein KNG1 is known associated  

with tumorigenesis and has been reported as a novel 

biological fluid biomarker in lung squamous cell 

carcinoma [35]. A2M inhibits tumor cell adhesion and 
migration by impeding β-catenin signaling [36], also 

downregulated in NSCLC and as a core node in the 

PPI network [37]. 
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Figure 2. Integrative analysis of transcriptomics and proteomics data generated from LUAD samples. (A) Correlation between 

RNA expression and protein expression. (B, C) Analysis of differentially expressed genes between LUAD and non-tumor samples at 
transcriptional (B) or translational level (C). (D) Fold change in RNA and protein levels of lung signature-associated genes. (E) Correlation 
between transcriptome and proteome gene set enrichment scores. (F, G) Analysis of biological processes or pathways that are significantly 
activated (F) or inhibited (G) in LUAD based on GSEA. (H) Interaction network analysis of DEPs highlights three functional modules. 
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Characterization of non-coding RNAs and their 

regulatory roles 

 

Extensive inconsistencies were also present between 

transcriptome and proteome (Figure 2A, 2E). One main 

reason is that the detection capability of different omics 

has its limitation. The various forms of gene expression 

products cannot be guaranteed to be covered at the same 

time. Post-transcriptional regulatory event is another 

critical situation, such as non-coding RNAs, which can 

cause significant differences in transcription and protein 

level. According to our transcriptome data, a total of 

14,581 lncRNAs, 5,485 circRNAs, and 2,471 miRNAs 

were identified among six samples, respectively (Figure 

3A). We then analyzed differentially expressed non-

coding RNAs between two groups, and the results were 

shown in Figure 3B. 

Numerous studies have demonstrated that non-coding 

RNAs play vital roles in varieties of biological processes 

and are closely related to the occurrence of multiple 

human diseases. Based on the LncBook database  

[38], we identified four lncRNAs that were confirmed  

as LUAD markers (Figure 3C and Supplementary  

File 2). Upregulated AFAP1-AS1 is closely related  

to the metastasis and poor prognosis of lung cancer  

cells. AFAP1-AS1 regulates lung cancer proliferation, 

migration, and invasion through the competitive up-

regulation of RRM2 to inhibit miR-139-5p, IRF7, and 

RIG-I-like receptor signaling pathways, or epigenetic 

inhibition of p21 expression [39–41]. Similarly, the 

regulation of HNF1A-AS1 can be mediated by  

miRNAs, such as contacting miR-17-5p to promote the  

proliferation and invasion of lung cancer cells [42, 43].  

MIAT can target the miR-149-5p/FOXM1 axis to regulate 

 

 
 

Figure 3. Identification and functional analysis of non-coding RNAs in LUAD. (A) Quantitative statistics of lncRNAs, circRNAs, and 
miRNAs. (B) Analysis of differentially expressed lncRNAs, circRNAs, and miRNAs between LUAD and non-tumor samples. (C) Annotation of 
LUAD-related lncRNA markers based on the LncBook database. (D) The relationship between miRNAs and lncRNAs or circRNAs, expression 
of non-coding RNAs in each sample, and the functional enrichment of downstream target genes. 
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lung cancer progression partially [44]. GAS5 affects the 

occurrence and invasion of lung tumors through sponge 

miR-23a or miR-135b [45, 46]. 

 

It seems that miRNAs extensively mediate the  

regulation of target genes. We further constructed ceRNA 

regulatory networks and identified a group of key 

regulatory axes (Figure 3D and Supplementary Figure 3). 

Most of these crucial miRNAs have been reported to 

implicate in the pathological process of cancer biology. 

MiR-144-3p and miR-206 can inhibit TGF-β signaling, 

thereby restricting tumor growth and metastasis of 

LUAD [47, 48]. MiR-363-3p suppresses lung tumor cells 

migration and invasion through epithelial-mesenchymal 

transition inhibition [49]. In the upregulated ceRNA 

network, overexpressed lncRNAs or circRNAs bind  

these miRNAs to disable their functions, activating 

downstream cell proliferation, cycle, metabolism, and 

p53 pathways (Figure 3D and Supplementary File 3). 

Likewise, for the downregulated ceRNA network, 

unsuppressed miRNAs may also be high-risk factors. 

Such as miR-1297 promotes the proliferation of non-

small cell lung cancer cells by participating in the 

PTEN/Akt/Skp2 signaling pathway [50]. Downregulated 

downstream target genes in the network mainly involved 

cell adhesion, inflammation, chemotaxis, and apoptosis 

signals, facilitating tumor cell migration and invasion 

(Figure 3D). Interestingly, since the ceRNA mechanism 

mainly represented post-transcriptional regulation, this 

phenomenon may also partially explain the differences in 

immune system-related pathway alters observed between 

transcriptome and proteome (Supplementary Figure 2A). 

In summary, dysregulated non-coding RNAs can directly 

or indirectly regulate the function of coding genes to 

accelerate the pathological process of LUAD. 

 
Analysis of the phosphoproteomic features 

 

Protein phosphorylation plays an essential role in the 

activation and inactivation of protein functions, including 

enzymes involved in metabolism, transcription factors 

that initiate gene expression, or protein complexes that 

determine cell fate. We then quantified and characterized 

the global profile of the phosphoproteome. 

 

Only 4,748 high-quality phosphosites were considered for 

further analysis (localization probability ≥0.75 and delta 

score ≥8, Figure 1C). More than half of phosphoproteins 

had only a single phosphorylation site, about a quarter  

of phosphosites were doubly phosphorylated, as well as 

only a fraction was triply (or more) phosphorylated 

(Supplementary Figures 4A and 5A). The majority of 

phosphorylation events occurred on serine (91.03%), 

followed by threonine (8.36%), whereas less than 1% of 

phosphotyrosines were detected (Supplementary Figures 

4B and 5B). By comparing with the modification sites 

from the PhosphoSitePlus database, 86.57% of our 

quantified phosphosites were identical (Supplementary 

Figures 4C and 5C). However, only 8.22% were annotated 

as regulatory sites (Supplementary Figures 4D and 5D), 

implying that the functional role of most phosphorylation 

events quantified here had not been investigated. 

Interestingly, phosphorylation sites with known regulatory 

functions were generally involved in processes or signaling 

pathways related to transcription, cell proliferation, 

migration, apoptosis, and carcinogenesis (Supplementary 

Figures 4E–4I and 5E). This suggested that abnormal 

activation or inhibition of downstream target genes or 

signal axises caused by altered protein phosphorylation 

state may be necessary causes of LUAD. A higher 

correlation between phosphosites activation and protein 

expression was found (Figure 4A) for the 1,012 

phosphoproteins detected simultaneously by proteome and 

phosphoproteome (Figure 1C). To further confirm whether 

protein phosphorylation was related to disease, we 

analyzed the phosphosite intensity difference between 

LUAD and non-tumor samples. In total, 126 phosphosites 

from 90 proteins were increased, and 152 phosphosites 

from 117 proteins were decreased (Figure 4B and 

Supplementary Figure 5F). Similarly, hierarchical 

clustering analysis resulted in two separate groups  

based on the increased and decreased phosphosites 

(Supplementary Figure 5G–5I). Functional enrichment 

analysis showed that these phosphoproteins played 

significant roles in gene expression regulation, RNA and 

protein modification, cell cycle and motility, metabolism, 

and physiological regulation related processes or pathways 

(Figure 4C). 

 

By analyzing the amino acid enrichment around 

differentially accumulating phosphosites, we found 

three significantly enriched kinase motifs belonging to 

the phosphoserines motif (Figure 4D). The enrichment 

of phosphothreonine or phosphotyrosine motifs were 

not observed, which may be because of their low 

abundance. Through PhosphoSitePlus and NetworKIN 

to predict the kinase-substrate relationship pairs, 

members of specific kinase families were highlighted in 

LUAD (Figure 4E). In particular, the activities of the 

AGC and CMGC group were more noticeable, mainly 

including nine members of the MAPK family, seven 

members of the PKC family, three members each from 

the PKA and CDK family. 

 
To better understand the phosphorylation in LUAD, we 

focused on significantly different phosphate sites and 

constructed a kinase-substrate relationship network 

(Figure 4F). The unique network contained 85 proteins 

corresponding to 109 relationships and showed their 

changes in the RNA expression, protein expression,  

and phosphorylation response. We noticed that in  

most cases, kinase or substrate activities were highly 
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Figure 4. Functional characterization of phosphorylated proteins and construction of the kinase-substrate regulatory 
network. (A) Correlation between protein expression and its phosphorylation intensity. (B) Changes in the intensity of phosphosites 
between LUAD and non-tumor samples. (C) Functional enrichment analysis of phosphorylated proteins with differential phosphorylation. 
(D) Significantly enriched kinase motifs for phosphosites that are dysregulated in LUAD. (E) Kinase annotation and family analysis for 
dysregulated phosphosites. (F) A phosphorylation regulatory network constructed based on dysregulated phosphosites and annotated 
kinase-substrate relationship pairs in LUAD. 
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consistent with the level of phosphorylation. Specific 

kinases were involved in regulating multiple biological 

processes, and many substrates were also involved in 

crosstalk between kinases, indicating that there was a 

complex network in the body rather than a linear 

cascade of signal transduction pathways. For instance, 

SRRM2 had 6 significant upregulated phosphosites with 

higher activation in LUAD. SRRM2 has been identified 

as a scaffold protein for splicing factors [51], and its 

overexpression may cause splicing-based damage to  

cell cycle-related genes and cause cell abnormalities. 

JUND is an influential transcription factor regulating 

cell apoptosis and resist oxidative stress by regulating 

genes involved in antioxidant defense and hydrogen 

peroxide production [52]. Our data showed that the 

phosphorylation level of JUND was generally inhibited, 

which would lead to uncontrolled cell proliferation and 

defects in the ability to respond to stress. These results 

all revealed that kinase signal dysregulation contributed 

to the progress of LUAD. 

 
Comparative omics analysis of multiple LUAD 

datasets 

 

We also compared our dataset with previous 

transcriptome, proteome, or phosphoproteome studies 

involved in LUAD research, including TCGA data-

base, Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) database, the large-scale LUAD dataset for 

the Chinese population (GSE140343, transcriptome; 

IPX0001804000, proteome, and phosphoproteome) 

[10], and another Xuanwei LUAD dataset (GSE89039, 

the only transcriptome was available) [53]. 

 
A high homogeneity was observed across all data- 

sets, suggesting that the overall changes in RNA or  

protein among different sources of LUAD were similar 

(Supplementary Table 5, Figure 5A). The hierarchical 

clustering of the dysregulated status of shared genes 

among four datasets revealed that the two Xuanwei 

LUAD datasets had closer similarities, highlighting that 

Xuanwei LUAD was more specific than other regions in 

China and abroad (Figure 5B). Hardly any gene was 

observed to have an opposite up-down regulation state in 

the comparison. GSEA revealed that biological processes 

related to the cell cycle were simultaneously activated 

among four LUAD groups. In contrast, functional 

activities of cell differentiation and tissue development 

were inhibited, which were general features of tumor 

cells (Figure 5C). In contrast, chromosomal components 

and energy production seem to have higher activity in 

Xuanwei LUAD. The GSEA of the proteome revealed 

that a similar series of crucial metabolic pathways were 

highly activated in Xuanwei LUAD (Figure 5D–5F),  

but not significant in CPTAC and Chinese large-scale 

LUAD datasets. These results are implying that Xuanwei 

LUAD may experience more severe energy dis- 

orders. Notably, we observed pervasive downregulated 

functional items were appeared in Xuanwei LUAD, 

including cell recognition, immunity, cytokines, as well 

as signal transduction (Figure 5C). Combining these 

characteristics, we speculated that the accompanying 

more molecular deficiencies might be a vital factor of the 

high LUAD incidence in Xuanwei. 

 

We further investigated possible biomarkers in  

Xuanwei LUAD. Combining the transcriptome and 

overall survival of patients from TCGA and Chinese 

large-scale LUAD datasets, a total of 6 significant 

prognostic factors were identified in 127 upregulated, 

and 275 downregulated common genes from all four 

transcriptome datasets (Figure 5B and Supplementary 

Figures 6 and 7). Two large-scale LUAD datasets 

consistently showed that patients with higher expression 

of CEP55, KIF20A, or PLK1 had a worse prognosis, 

whereas lower expression of BMX, KAZN, or VIPR1 

would bring higher risks. Interestingly, these six 

prognostic factors were also continuously activated  

or inhibited in almost all types of tumors according to 

the pan-cancer analysis of TCGA transcriptome data 

(Figure 5F, Supplementary Figures 8 and 9), implying 

that they can be used as general tumor biomarkers. 

 

The expression characteristics of VIPR1 in LUAD 

patients 

 

It was worth noting that VIPR1 showed a strikingly 

high level in lung tissue when we checked the tissue-

specific expression of these six prognostic-related genes 

through the GTEx database (Figure 6A). Consistent 

with the transcriptome, the proteome datasets also 

showed that the protein expression of VIPR1 was 

reduced in LUAD (Figure 6B). These highlighted the 

important function of VIPR1 in the lung. Related 

studies have confirmed that VIPR1 has a significant 

inhibitory effect on the growth and development of 

LUAD cells. Knockdown of VIPR1 increases the 

growth, migration, and invasion of LUAD cells [54–

57]. GSEA of TCGA LUAD transcriptome data showed 

that pathways related to cell cycle, gene expression, 

metabolism, DNA damage, and cancer were more 

significantly enriched in low expressing VIPR1 patient 

group (Figure 6C, 6D). This was very similar to our 

Xuanwei LUAD molecular characteristics (Figure 2F) 

and gave patients with low VIPR1 expression a worse 

prognosis. Collectively, we provided more insights into 

VIPR1 as a LUAD general biomarker. 

 

DISCUSSION 
 

Xuanwei is one of the regions with the highest 

incidence and mortality of lung cancer in China. The 
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Figure 5. Comparative analysis of public data of LUAD expression profile. (A) The correlation between our dataset and previously 

published transcriptome, proteome, and phosphoproteome datasets of LUAD. (B) The heat map shows the dysregulated state of common 
genes among four transcriptome datasets. The label highlights six significant prognostic factors. (C) GSEA of four transcriptome datasets, 
the representative biological processes that are significantly activated or inhibited are shown. (D) Three representative metabolic pathways 
that are significantly activated in Xuanwei LUAD proteome by using GSEA. (E) Kaplan-Meier curves show the relationship between the 
overall survival time of LUAD patients and VIPR1 expression level in tumors according to publicly available LUAD datasets. (F). The 
expression of VIPR1 among pan-cancer settings. 
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incidence of XWLC in women is as high as 

400/100,000, which is 20 times higher than the national 

average incidence of lung cancer. However, its etiology 

and pathogenesis are complicated and are still mostly 

unknown, especially the lack of knowledge about protein 

expression and modification. The occurrence and 

development of XWLC is a very complex multi- 

gene event, involving the functional changes of multiple 

oncogenes and tumor suppressor genes. However, 

studies on the expression profile at whole proteome and 

 

 
 

Figure 6. Analysis of VIPR1 expression characteristics in LUAD. (A) The tissue-specific expression of VIPR1 mRNA from GTEx. (B) 

Relative protein expression levels of VIPR1 in three LUAD proteomic data sets. (C) GSEA of the transcriptome of patients with high VIPR1 
expression relative to patients with low VIPR1 expression according to TCGA and Chinese large-scale LUAD datasets. (D) Five representative 
pathways that are significantly enriched in the low VIPR1 expression group are shown. 
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transcriptome-wide in the carcinogenesis and progression 

of XWLC adenocarcinoma are rarely reported. In this 

study, we reported the vast landscape of transcriptome, 

proteome, and phosphoproteome of Xuanwei LUAD  

for the first time. We systematically characterized  

the differential molecular processes in lung tissue to 

provide more insights into regional lung cancer. 

 

The significant correlation between transcriptome and 

quantitative proteome proved the reliability of high-

throughput and mass spectrometry detection capabilities. 

Tang et al. found that protein-mRNA consistency in 

breast tumors was enhanced and could be used as  

a novel disease characteristic and prognostic factor [58]. 

Therefore, we believe that the positive correlation 

between transcriptome and proteome also highlights the 

progress of Xuanwei LUAD. We examined potential 

differences between transcriptome and proteome analysis 

by using non-cancerous tissue pairs adjacent to tumors 

and together looked at the connections between dif-

ferentially expressed mRNA and proteins and their 

pathways. The dysregulated genes and proteins contained 

many known lung signatures, indicating a severe loss of 

lung tissue function. However, there were differences  

at the individual molecule level due to the sensitivity  

of different omics detection methods or extensive post-

transcriptional or translational level adjustments. There-

fore, omics joint analysis can provide tumor biology 

insights missed by a single omics. The integrated study 

consistently showed abnormal metabolism, immune loss, 

increased cell proliferation and invasion, and inhibition 

of apoptotic pathways in Xuanwei LUAD, all of these 

were general signs of cancer. 

 
We identified a mass of unique non-coding RNAs, 

including lncRNAs, circRNAs, and miRNAs, further 

expanded the genome resources of Xuanwei LUAD. 

Partially dysregulated lncRNA had been described  

as well-known LUAD markers. The ceRNA network 

highlighted a set of core miRNAs and reveals the 

extensive post-transcriptional regulation mechanism of 

non-coding RNAs, emphasizing that non-coding RNAs 

coordinate the pathological process of LUAD by directly 

or indirectly regulating the function of coding genes. In 

addition, target genes also explained to some extent the 

observed molecular differences between transcriptome 

and proteome. 

 
In this study, we quantified the phosphoproteins in 

Xuanwei LUAD for the first time and identified many 

novel phosphosites. Comprehensive phosphoproteome 

analysis provided supplementary information on pathway 

activity. Even components in the pathway have not 

changed in mRNA or protein expression, the phospho-

rylation status during signal transduction will also affect 

downstream signal activation. We provided evidence 

support for members of the core kinase family  

and constructed a kinase-substrate network to report 

necessary protein modifications and possible regulatory 

modes of phosphorylation cascades. The role of kinase 

pathways in cancer, immune, or homeostasis disorders 

diseases still requires further attention. For example, the 

MAPK are prevalent in non-small cell lung cancers, e.g., 

adenocarcinoma, while relatively suppressed in small cell 

lung cancer, which suggested that the subtype specific 

pathways in LUAD. Proper targeting of these signal 

axes may delay or cancel the progression of LUAD. 

 

Finally, we compared our Xuanwei LUAD data with  

the previous large-scale LUAD datasets. There was a 

high correlation among multiple omics datasets, 

indicating the overall similar molecular patterns of 

LUAD. In particular, Xuanwei LUAD showed a higher 

degree of activation of the aerobic breathing pathway.  

Previous studies have pointed out that cellular metabolic 

reprogramming caused by activated mitochondrial 

oxidative phosphorylation and TCA cycle are signs of 

high tumor progression [59]. When it is beneficial to 

meet tumor energy requirements, the maintenance of 

OXPHOS transcription levels similar to those seen in 

normoxic cells can provide a mechanism to induce 

oxidative phosphorylation activity rapidly [60]. Genes 

encoding metabolic functions tend to show a high 

protein-mRNA correlation, emphasizing that cancer 

cells require stricter metabolic regulation to survive  

by linking transcription and translation [58]. Thus, 

Xuanwei LUAD patients may benefit from a therapy 

directed against metabolic modulation of intrinsic tumor 

pathways (redox). VIPR1 was particularly concerned 

because of its unique expression status in lung tissue. 

By supplementing the insights into the molecular 

characteristics of VIPR1-deficient patients, we also 

emphasized the possible therapeutic prospects of meta-

bolic therapy in VIPR1-deficient patients, including 

Xuanwei LUAD. 

 

Overall, our results revealed the molecular structure and 

tumor progression markers of Xuanwei LUAD and may 

provide precise medical approaches for treatment. This 

study provides a foundation for the follow-up in-depth 

analysis of the mechanism in XWLC. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Principal component analysis of transcriptome (A), proteome (B), and phosphoproteome data (C) shows the 

similarity and reproducibility among different biological replicates, related to Figure 1. 
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Supplementary Figure 2. Analysis of transcriptome and proteome consistency and differentially expressed genes and 
proteins, related to Figure 2. (A) The distribution of the Pearson correlation coefficient of RNA and protein expression values of shared 
genes between two omics data. (B, C) 2D annotation enrichment analysis examines the consistency of biological processes (B) or pathways 
(C) of shared genes between two omics data-based enrichment score. (D) The distribution of the Pearson correlation coefficient of RNA and 
protein expression values in each significantly enriched function. (E) The distribution of the fold change of RNAs and proteins. (F) 
Intersection of differentially expressed genes between transcriptome and proteome. For each pie chart, red represents upregulation genes, 
blue represents downregulation genes, and gray represents genes with opposite up-down trends between groups. (G) Heat map shows 
hierarchical clustering of differentially expressed proteins. 
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Supplementary Figure 3. Protein-protein interaction (PPI) network of differentially expressed proteins, related to Figure 2. 
(A) STRING network visualizing the functional protein association in LUAD at confidence probability of 0.95. (B) Functional enrichment 
analysis of proteins in key network modules I, II and III. 
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Supplementary Figure 4. Identification and characterization of non-coding RNAs in LUAD, related to Figure 3. (A) Types and 

quantity statistics of lncRNAs based on FPKM ≥1. (B) The number of unique circRNAs detected and its comparison with the circBase 
database. (C) Length distribution of circRNAs. (D) Number of circRNAs produced by unique gene. (E) Exon number distributions of circRNAs. 
(F) Number of reads from different types of small RNA sources in the genome. (G) The number of unique miRNAs detected and its 
comparison with the miRBase database. (H) Length distribution of miRNAs. (I) Family statistical analysis on the detected miRNAs. 

 

 



www.aging-us.com 14285 AGING 

 
 

Supplementary Figure 5. Identification and characterization of phosphosites in LUAD, related to Figure 4. (A) Number of 

phosphosites from unique protein. (B) Types and quantity statistics of phosphorylation events. (C, D) Number of phosphosites and its 
comparison with the modification sites (C) or regulatory sites (D) from PhosphoSitePlus database. (E) Regulatory function annotations of 
known phosphosites. (F) Genomic distribution of proteins with differential expression and phosphorylation in LUAD. (G) Heat map shows 
hierarchical clustering of phosphosites with differential phosphorylation. (H, I) Number of phosphosites that are deregulated and its 
comparison with the kinase-substrate dataset from PhosphoSitePlus (H), or predict potential kinase-substrate relationship by using 
NetworKIN (I). 
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Supplementary Figure 6. Expression landscape of lncRNAs, circRNAs, and miRNAs in LUAD, related to Figure 3. (A–C) 

Principal component analysis of lncRNAs (A), circRNAs (B), and miRNAs expression profile (C) shows the similarity and reproducibility 
among different biological replicates. (D–F) Volcano plot shows differentially expressed lncRNAs (D), circRNAs (E), and miRNAs (F) between 
LUAD and non-tumor samples. (G–I) Heat map shows hierarchical clustering of differentially expressed lncRNAs (G), circRNAs (H), and 
miRNAs (I). 

 

 



www.aging-us.com 14287 AGING 

 
 

Supplementary Figure 7. The relationship between overall survival time of LUAD patients and the expression level of six 
prognostic factors in tumors according to TCGA and Chinese large-scale LUAD (GSE140343) transcriptome data, related to 
Figure 5. (A–F) Kaplan-Meier curves show BMX, CEP55, KAZN, KIF20A, PLK1, and VIPR1, respectively. 
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Supplementary Figure 8. Competing endogenous RNA (ceRNA) networks analysis based on differentially expressed coding 
genes and non-coding RNAs, related to Figure 3. The four networks represent upregulated lncRNAs (A), downregulated lncRNAs (B), 
upregulated circRNAs (C), and downregulated circRNAs (D), respectively. 
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Supplementary Figure 9. The relative expression of six prognostic factors among different types of tumors according to TCGA 
transcriptome data, related to Figure 5. (A–F) Boxplot shows BMX, CEP55, KAZN, KIF20A, PLK1, and VIPR1, respectively. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–5. 

 

Supplementary Table 1. Patient data of six samples. 

Sample Patient id Type Age Sex Smoker Stage TNM 

Ca1 1 Tumor 57 Female No Ia TisN0M0 

P1 1 Non-tumor 57 Female No Ia TisN0M0 

Ca2 2 Tumor 65 Female No Ia TisN0M0 

P2 2 Non-tumor 65 Female No Ia TisN0M0 

Ca3 3 Tumor 56 Female No IIIb T4N2M0 

P3 3 Non-tumor 56 Female No IIIb T4N2M0 

 

Supplementary Table 2. Transcriptomic profiles of six samples. 

 

Supplementary Table 3. Proteomic profiles of six samples. 

 

Supplementary Table 4. Phosphoproteomic profiles of six samples. 

 

Supplementary Table 5. Comparative analysis of public datasets. 
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Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 2 and 3. 

 

Supplementary File 1. The main parameters used in the bioinformatical analysis. 

Software Version Parameters 

fastp 0.19.5 --length_required 50 

RseQC 2.6.4 default 

fastqc v0.11.5 default 

hisat2 2.2.1.0 --rna-strandness rf --fr 

stringtie2 1.3.3b --rf 

bwa 0.7.5a mem -M -R 

samtools 1.3.1 mpileup -uRf -d 1000000 

ASprofile 1.0.4 default 

cpc2 beta default 

CNCI 1 -m 

Pfam v30 -e_seq 0.001 

PLEK 1.2 default 

CIRI v2.0.3 default 

miranda v3.3a -sc 150 -en -30 -strict 

find_circ v1.2 default 

TargetFinder  default 

bowtie2 2.2.9 -k30 -t 

eXpress 1.5.1 --rf-stranded 

DESeq2 1.18.0 q-value < 0.05, |log2FoldChange|>1 

htseq-count 0.9.1 -s reverse 

 

Supplementary File 2. The lung adenocarcinoma specific lncRNAs and the pan-cancer specific lncRNAs. 

 

Supplementary File 3. The downstream target genes of the ceRNA. 

 


