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INTRODUCTION 
 

Globally, colorectal cancer has emerged as the second 

most lethal form of cancer. The prevalence of colon 

cancer is rising, and the tendency toward occurrence in 

the young is becoming more and more pronounced, as a 

result of changes in people’s lifestyles and higher living 
standards [1]. In addition to this, the prognosis for 

colorectal cancer patients is very grim. the 5-year 

survival rate for Stage IV colorectal cancer patients is 
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ABSTRACT 
 

Background: Recently, there has been a great deal interest in cuproptosis, a form of programmed cell death 
that is mediated by copper. The specific mechanism through which cuproptosis-related genes impact the 
development of colorectal cancer (CRC) remains unknown.  
Methods: Here, we combined bulk RNA-seq with scRNA-seq to investigate the CRGs functions within CRC. A 
number of 61 cuproptosis-related genes were chosen for further investigation. Nine prognostic CRGs were 
identified by Lasso-Cox. The RiskScore was created and the patients have been separated into two different 
groups, low- and high-RiskScore group. The CIBERSORT, ESTIMATE, MCP-counter, TIDE, and IPS have been 
employed to score the TME, and GSVA and GSEA were utilized to evaluate the pathway within the both groups. 
Further, we used cell communication analysis to explore the tumor microenvironment remodeling mechanisms 
of the COX17 and DLAT based on scRNA-seq. Finally, we used IHC and qPCR to validate the expression of COX17 
and DLAT. 
Results: AOC3, CCS, CDKN2A, COX11, COX17, COX19, DLD, DLAT, and PDHB have been recognized as prognostic 
CRGs in CRC. The high-risk group exhibited the worst prognosis, an immune-deficient phenotype, and were 
more resistant to ICB treatment. Further, scRNA-seq analysis revealed that elevated expression of COX17 in 
CD4-CXCL13Tfh could contribute to the immune evasion while DLAT had the opposite effect, reversing T cell 
exhaustion and inducing pyroptosis to boost CD8-GZMKT infiltration. 
Conclusions: The current investigation has developed a prognostic framework utilizing cuproptosis-related 
genes that is highly effective in predicting prognosis, TME type, and response to immunotherapy in CRC 
patients. Furthermore, our study reveals a novel finding that elevated levels of COX17 expression within CD4-
CXCL13 T cells in CRC mediates T cell exhaustion and Treg infiltration, while DLAT has been found to facilitate 
the anti-tumor immunity activation through the T cell exhaustion reversal and the induction of pyroptosis. 
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only 11%-15% [2, 3]. However, effective therapies for 

CRC are still limited to colectomy, radiotherapy and 

adjuvant chemotherapy. These therapies have very 

limited effects and are associated with more serious side 

effects, such as neuropathy and chemotherapy-related 

diarrhea, especially oxaliplatin [3, 4]. In recent years, 

immunotherapy, especially anti-PD-1/PD-L1, has been 

prominent in the treatment of high-frequency MSI/ 

mismatch repair-deficient (MSI-H/dMMR) CRC 

patients [5]. However, this therapy is ineffective in a 

significant proportion of patients, most likely due to the 

complex tumor microenvironment (TME) of colorectal 

cancer patients. It is generally known that clinical 

prognosis, anti-tumor immunotherapy, and tumor-

infiltrating lymphocytes (TILs) infiltration in tumor 

tissue are all closely associated [6, 7]. While TIL 

infiltration is lower in the tissues of cancer patients with 

microsatellite stability (MSS), resulting in low 

responsiveness to antitumor immunotherapy, within the 

context of colorectal cancers that exhibit MSI are 

characterized by the accumulation of somatic mutations 

throughout the DNA, rendering them more susceptible 

to infiltration by TILs [8, 9]. Thus, the investigation of 

new immune-related indicators is imperative for the 

purpose of prognosticating clinical findings and 

determining the immunotherapy effectiveness in cases 

of colorectal cancer. The effectiveness of tumor 

immunotherapy has been demonstrated to be enhanced 

by ferroptosis-related metabolism in the past [10], but 

the role of copper metabolism in immunotherapy has 

not been explored. Due to its redox characteristics, 

copper, a vital nutrient, may be both helpful and 

harmful to cells [11]. It has been demonstrated that 

compared to healthy tissues, tumor tissues require 

higher concentrations of copper to promote cell 

proliferation and metastasis [12]. According to a recent 

study, the promotion of a unique model of regulated cell 

death (RCD) called cuproptosis is facilitated by 

intracellular copper, and it is different from the more 

conventional models of cell death include apoptosis, 

ferroptosis, pyroptosis, as well as necrosis [13]. The 

direct interaction between copper and the lipidated 

constituents of the tricarboxylic acid (TCA) cycle is has 

performed a crucial role within the cuproptosis process. 

This allows the aggregation of lipidated proteins and 

consequent depletion of proteins containing iron-sulfur 

clusters, hence, the induction of proteotoxic stress leads 

to cellular dysfunction and ultimately leads to apoptotic 

or necrotic cell death [13]. More specifically, under the 

regulation of the FDX1, LIAS linked lipoyl moiety to 

DLAT. When excess copper ions enter the cell, these 

copper ions bind to lipoyl moiety of lipoylated DLAT to 

oligomerize DLAT and further proteotoxic stress and 
eventually cell death [14]. The cuproptosis-related 

genes (CRGs) effect on the growth, proliferation, and 

prognostication of colorectal cancer remains unclear. It 

is also necessary to investigate their mechanisms as 

possible antitumor immunotherapy targets. 
 

Apart from the cancer cells malignant proliferation, 

TME comprises diverse immune cells, which are 

essential for the tumor cells development as part of the 

surrounding microenvironment. In the context of tumor 

immunity, tumor cell-mediated cellular immunity 

performs a vital function which can be categorized into 

various subtypes such as CD4+ T cells, CD8+ T cells, 

Treg cells, etc. [15]. CD4+ T cells, which act as helper 

cells, possess the capacity to enhance the anti-tumor 

immune response of CD8+ T cells. However, Treg cells 

possess the capacity to suppress the anti-tumor immune 

response and are often highly correlated with clinical 

patient prognosis and treatment outcome [16]. Recent 

investigations have demonstrated the significant 

involvement of copper ions in both humoral and cellular 

immunity [17]. However, the precise process through 

which CRGs affect immune cells in the tumor 

microenvironment remains to be clarified. 
 

Throughout this research, the correlation among 

cuproptosis-related genes and the colorectal cancer 

prognosis was investigated through an analysis of 

public databases, for this reason, a prognostic model for 

colorectal cancer was developed utilizing cuproptosis-

related genes, and further elucidated the specific 

mechanisms by which the risk gene COX17 and the 

protective gene DLAT affect immune cells through the 

level of a single-cell to improve the therapeutic efficacy 

and prognosis for colorectal cancer. 

 

RESULTS 
 

Study of cuproptosis related genes in CRC 

 

For examining 61CRGs expression levels in cases of 

colorectal cancer, at first, we started by retrieving 

information on expression profiles from the TCGA 

database. Upon conducting a comparative analysis of 

the 61 cuproptosis-related genes expression levels 

within the patient’s tumor tissues and normal tissues, it 

was observed that 31 genes exhibited differential 

expression. The expression of COX11, COX17, LIAS, 

CDKN2A and AOC3 was significantly higher in tumor 

tissues than in normal tissues. However, DLAT, PDHB, 

DLST, FDX1, SLC31A2, DLD and DBH were more 

highly expressed in normal tissues. (Figure 1A, and 

Supplementary Table 1). The STRING database was 

utilized to investigate the interaction among these gene-

encoded proteins, using the Cytoscape 3.9.1 software, 

the PPI network was mapped. The findings indicate that 
the 61 CRGs exhibited strong connectivity (Figure 1B, 

and Supplementary Figure 1). Also, in order to 

investigating the cuproptosis-related genes biological 
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functions, we performed gene set enrichment analyses 

using GO and KEGG databases. Response to copper 

ion, cellular copper in homeostasis, response to 

oxidative stress, copper ion transport signaling 

pathways in GO are enriched. Mineral absorption, 

citrate cycle (TCA cycle), central carbon metabolism in 

cancer, HIF-1 signaling pathway signaling pathways in 

KEGG are enriched. (Figure 1C–1E and Supplementary 

Table 2) These metabolic and transport routes for 

copper are linked to mitochondrial metabolism, tumor 

growth, and metastasis. We further investigated the 

copy number variants (CNV) and somatic mutations in 

CRGs in cases of colorectal cancer. The result found 

that 132 of 399 samples (33.1%) showed genetic 

variation. ATP7A was the predominantly mutated gene 

with the 18.1% mutation frequency (Figure 1F). All of 

these results suggested that the potential role of CRGs 

in colorectal cancer deserves to be explored in depth. 

 

Construction of the CRGs-related prognostic model 

 

Sixty-one genes were screened for significant prognostic 

relevance using LASSO analysis to construct a 

prognostic model (Figure 2A, 2B, p<0.05), and finally 

AOC3, CCS, CDKN2A, COX11, COX17, COX19, 

DLD, DLAT, and PDHB were recognized as signature 

genes. Enrichment analysis was conducted on the nine 

genes using GO and KEGG methods, where GO was 

 

 
 

Figure 1. Study of the cuproptosis-related genes within CRC. (A) 61 CRGs transcriptional difference among normal and tumor tissues 

(B) Interactions among CRGs. The lines among the genes indicate their interactions. (C) GO analyses of CRGs (D) KEGG analyses of CRGs  
(E) Correlation analysis of CRGs (F) The waterfall plot of tumor somatic mutations of CRGs. 
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primarily furnished with parts connected to mitochondrial 

and oxidative reactions, such as oxidoreductase  

activity and mitochondrial parts (Figure 2G). The 

majority of the signaling pathways associated with 

substance metabolism found in KEGG include 

glycolysis/gluconeogenesis, pyruvate metabolism, carbon 

metabolism, the citrate cycle (TCA cycle), and oxidative 

phosphorylation. (Figure 2H). The nine signature  

genes expression levels and their corresponding 

coefficient values were utilized in the calculation of  

risk scores, in accordance with the subsequent  

formula: RiskScore 1nCo .( )ef Xi Exp X( i)i= =   The 

individuals diagnosed with CRC have been grouped into 

high and low-risk groups relying on their RiskScores as 

presented in (Supplementary Table 3), and the Kaplan-

Meier curves exhibited a statistically significant variation 

in prognosis between patients categorized as high-risk 

and those categorized as low-risk, with those with higher 

risk exhibiting a poorer outcome (Figure 2C, p<0.001), 

while a higher frequency of mortality events was 

observed throughout the high-risk group (Figure 2E). The 

prognostic model’s predictive capacity for the prognosis 

of patients with colorectal cancer was evaluated using 

Receiver Operating Characteristic (ROC) curves. The 

results showed that the Area Under the Curve (AUC) 

values for 1-year, 3-year, and 5-year survival were 0.71, 

 

 
 

Figure 2. The CRGs-related prognostic Model construction (A, B) The LASSO regression analysis and partial likelihood deviance on the CRGs 

(C) KM and (D) ROC curves demonstrating the predictive significance within the training cohort. (E) The RiskScore and survival result of each 
case (F) TIDE scores of high- and low-risk groups (G) KEGG analyses of 9 prognostic CRGs (H) GO analyses of 9 prognostic CRGs. 
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0.75, and 0.78, respectively (Figure 2D). Based on 

further TIDE algorithm assessment of immunotherapy 

responsiveness in the two groups, individuals categorized 

as high-risk patients exhibited a greater tendency to 

develop resistance to immunotherapy (Figure 2F, 

p<0.001). 

 

Validation of prognostic models 

 

Three GEO cohorts (GSE17536, GSE17537, and 

GSE38832) were used as validation sets to calculate the 

RiskScore according to the previous formula. CRC 

patients in these cohorts were categorized into groups 

based on their level of risk, with some being categorized 

as high-risk while others are categorized as low-risk. A 

comparison was made between the two groups in terms 

of to the probability of survival, survival status, and 

response to immunotherapy. The study reveals that the 

high-risk group exhibited a poorer prognosis through all 

three validation cohorts (Figure 3A, 3C, 3E, 3G, 3I, 3K), 

and the predictive model prognostic value was found to 

be significant for both short-term and long-term follow-

up periods by plotting time-dependent ROC curves and 

calculating AUC at different time points (Figures 3B, 

3F, 3J). Finally, in order to assess the individual risk of 

patients with TCGA-CRC, a personalized scoring chart 

was developed for predicting overall survival using four 

distinct parameters: gender, age, tumor stage, and risk 

score (Figure 3M). In addition, the calibration plot 

revealed that the nomogram conformed to the ideal 

model (Figure 3N). 

 

Immune activity comparison between subgroups 

 

In order to examine the variations in immune infiltration 

within the tumor microenvironment among the high- 

and low-risk groups, the application of ESTIMATE 

analysis revealed reduced stromal scores (p<0.001) and 

higher immune scores (p<0.001) in the low-risk group, 

indicating the immune cell infiltration elevated levels

 

 
 

Figure 3. Validation of the prognostic model. (A–L) The KM, ROC, RISKSCORE, and TIDE analysis showing the prognostic value in three 

cohorts (M) Construction of the nomogram model utilizing RiskScore and other characteristics. (N) A calibration plot compares nomogram-
predicted survival rates with observed survival rates. 
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through the low-risk group (Figure 4A). Three immune 

infiltration analyses, CIBERSORT, EPIC, and MCP-

counter, have been conducted on the TCGA cohort, 

revealing a significant variance in immune status 

between both, the high-risk group and the low-risk 

group. The low-risk patient group exhibited a higher 

prevalence of CD8+ T cells, CD4+ T cells, neutrophils, 

NK and NKT cells infiltration, whereas the group of 

individuals which categorized as high-risk showed a 

greater prevalence of fibroblast, endothelial cells, and 

fibroblasts (CAF) cells infiltration (Figure 4C–4E, and 

Supplementary Figure 2 p<0.05). The tumor may be 

suppressed through cellular immune mechanisms 

involving CD4+ T cells, CD8+ T cells, and NK cells, 

while CAF, as a major part of the tumor stroma, played 

a crucial function in tumor immune evasion [18]. 

Suggesting that our high-risk group may be correlated 

with the development of an immunosuppressive 

microenvironment. Finally, upon comparing the two 

groups IPS scores, it was observed that the low-risk 

individuals exhibited significantly greater scores 

(Figure 4B, p<0.01), Indicating that individuals with a 

lower risk profile may exhibit a more favorable reaction 

to immune checkpoint blockade therapy. 

 

Analysis of RiskScore-related signal pathways 

 

The groups categorized as high-risk and low-risk were 

subjected to gene set enrichment analyses utilizing 

GSEA and GSVA analyses. The results obtained from 

GSEA revealed that in high-risk group APICAL 

SURFACE, HYPOXIA, HEDGEHOG SIGNALING, 

and KARAS SIGNALING were activated in the 

hallmark gene set (Figure 5A). WNT SIGNALING 

PATHWAY, HEDGEHOG SIGNALING PATHWAY, 

and CALCIUM SIGNALING PATHWAY were 

activated in the KEGG gene set (Figure 5B); 

HEDGEHOG ON STATE, EGR2 AND SOX10 

MEDIATED INITIATION OF SCHWANN CELL 

MYELINATION, PEGULATION OF TP53 

ACTIVITY THROUGH ASSOCIATION WITH CO 

FACTORS, SIGNALING BY WNT and 

SIGNALLING_TO_RAS were upgraded in the 

REACTOME gene set (Figure 5C). The outcomes 

obtained from GSVA showed that 

MAPK_SIGNALING_PATHWAY,ERBB_SIGNALIN

G_PATHWAY,MTOR_SIGNALING_PATHWAY,W

NT_SIGNALING_PATHWAY,NOTCH_SIGNALING

PATHWAY,HEDGEHOG_SIGNALING_PATHWAY, 

TGF_BETA_SIGNALING_PATHWAY,VEGF_SIGN

ALING_PATHWAY were observed to be active within 

the high-risk group (Figure 5D). Among them, 

numerous pathways associated with progression and 

metastasis of cancer were determined, that have been 

significantly activated within the high-risk group, 

including the WNT pathway connected with tumor 

invasion and proliferation and the HEDGEHOG 

pathway involved in tumor angiogenesis. 

 

 
 

Figure 4. Comparison of the subgroup's immune activity. (A) The comparison of stromal, immune, as well as estimate scores among 
the low- and high-risk score groups (B) Comparison of the IPS score in high- and low-risk groups. Immuno-infiltration analysis using 
CIBERSORT (C), EPIC (D), and MCPcounter (E). 
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Survival analysis of 9 CRGs 

 

We further validated the relationship between the nine 

genes selected by lasso-cox using the KM plot. All of 

them exhibited a significant association with the 

prognosis of individuals diagnosed with CRC (p<0.05), 

where patients in the high expression groups of AOC3 

(Supplementary Figure 3A), CCS (Supplementary Figure 

3B), CDKN2A (Supplementary Figure 3C), COX17 

(Supplementary Figure 3E), and COX19 (Supplementary 

Figure 3F) exhibited unfavorable prognosis. Individuals 

in the high expression groups of COX11 (Supplementary 

Figure 3D), DLAT (Supplementary Figure 3G), DLD 

(Supplementary Figure 3H), and PDHB (Supplementary 

Figure 3I) had a better prognosis. 

 

Genetic features of RiskScore and tumor somatic 

mutation of CRC 

 

Tumors with low somatic mutation rates tend to have 

low immunogenicity, inducing low anti-tumor immune 

responses in the body and making immunotherapeutic 

regimens against that tumor insensitive. Based on the 

somatic mutation waterfall plots within the high-risk 

group and low-risk group, our findings indicate that the 

individuals categorized in the low-risk group exhibited 

a greater incidence to the mutations number in 

comparison to those related to the high-risk group. 

(Figure 6A, 6B). 

 

Expression and subcellular localization of COX17 

and DLAT 

 

Next, the two hub genes with the highest |Coef| values, 

namely risk factor COX17 and protective factor DLAT, 

were screened based on the Lasso analysis for further 

analysis. (Supplementary Table 4) First, the IHC results 

showed higher expression of COX17 (Figure 7A, 7B) 

and lower expression of DLAT within tumor tissues 

than normal tissues. The qPCR experiments were also 

carried out to detect the expression levels of these two 

genes in HCT116 and NCM-460 cells, and the results

 

 
 

Figure 5. Analysis of RiskScore-related signal pathways. (A) Hallmark (B) KEGG (C) REACTOME enrichment analysis by gene set 

enrichment analysis (GSEA) (D) KEGG enrichment analysis by the Gene Set Variation Analysis (GSVA). 
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Figure 6. RiskScore genetic features and somatic mutation of the CRC. (A) Tumor somatic mutation within the high-risk group and 
(B) the low-risk group revealed by the waterfall. 

 

 
 

Figure 7. Expression and subcellular localization of COX17 and DLAT (A) The expression of COX17 is greater in tumor tissues compared to (B) 

normal tissues. (C) COX17 was mainly located in mitochondria. DLAT expression in (D) CRC and (E) normal issues. (F) DLAT were mainly 
located in the mitochondria by the HPA database analysis. 
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were consistent with previous IHC results 

(Supplementary Figure 4, p<0.05). Furthermore, the 

subcellular localization maps of COX17 (Figure 7C) 

and DLAT (Figure 7F) showed that both genes were 

mainly localized in mitochondria, suggesting that the 

occurrence of cuproptosis was closely related to 

mitochondrial metabolism. 

 

Pan-cancer survival and functional analysis of 

COX17 and DLAT 

 

The relationship between COX17 and DLAT and 

overall survival (OS) in 32 cancer patients was analyzed 

and found that COX17 and DLAT expression were 

significantly associated with OS in many cancers. 

Among them, COX17 was identified as a potential risk 

factor in GBM(p<0.001) and CRC(p<0.001), however, 

in other types of cancer, it possesses a protective 

function, especially PCPG (p<0.05) (Figure 8A). DLAT 

exhibited a protective effect in CRC(p<0.001), but in 

LIHC (p<0.001), GBMLGG (p<0.001), LGG (p 

<0.001) and BRCA (p<0.001) (Figure 8C) was a risk 

factor suggesting that there is often heterogeneity 

among our tumors. It is especially important to find 

tumor treatment-specific targets. Additionally, for 

evaluating the enrichment of pathways in groups with 

high and low expression of COX17 and DLAT, the 

GSEA was employed, and the outcomes showed that 

MAPK_SIGNALING_PATHWAY (p<0.05) and 

WNT_SIGNALING_PATHWAY (p<0.05) were sig-

nificantly activated in the COX17 high expression 

group (Figure 8B). Within the context of the DLAT 

high expression group, PYROPTOSIS (p<0.01) and 

RELEASE OF APOPTOTIC FACTORS FROM 

MITOCHONDRIA were upregulated (Figure 8D). 

Surprisingly, DLAT actually linked pyroptosis to 

cuproptosis, by inducing mitochondrial apoptosis and 

further active Apaf-1-caspase-3-GSDME pathway 

(Supplementary Figure 5, p<0.05) through which 

mitochondrial damage induce pyroptosis [19]. Some 

studies have revealed that a minor proportion of cancer 

cells experiencing pyroptosis can adequately modulate 

 

 
 

Figure 8. Pan-cancer survival and functional analysis of COX17 and DLAT. A forest plot shows the risk degree of COX17 (A) by the 

uni-Cox. Genomic enrichment analysis (GSEA)-based KEGG functional enrichment for the expression of COX17 (B) in CRC. A forest plot shows 
the risk degree of DLAT (C) by the uni-Cox. GSEA-based KEGG functional enrichment for DLAT (D) in CRC. 
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the tumor immune microenvironment, thereby inducing 

a potent T-cell-mediated antitumor immune response 

[20]. This suggests that DLAT may shaping an 

immunoactive TME. 

 

Single-cell analysis of COX17 and DLAT expression 

in the immune microenvironment of colorectal 

carcinoma 

 

For further discover the function of COX17 and DLAT 

on TME, we chose a scRNA-seq data set which was 

collected from tumor tissue and peripheral blood 

samples of 14 treatment-naïve CRC patients, containing 

200,626 cells totally. We classified cells from CRC 

patients into 40 clusters, such as CD4+ T cells, CD8+ T 

cells, lymphocytes, phagocytes, monocytes, dendritic 

cells (DC), mast cells, natural killer (NK) cells, 

neutrophils, plasma cells, and B cells (Figure 9A), 

which demonstrated that COX17 presented a significant 

degree of expression in the tumor microenvironment 

while DLAT expression levels were low (Figure 9B, 

9C). We further analyzed the expression of two genes in 

different cells. The results showed that COX17 was 

highly expressed in malignant cell, epithelial cell, 

fibroblast, neutrophil, CD4-CXCL13-T cell, CD4-

CTLA4-Treg, CD8-PDCD1-T cell (Supplementary 

Figure 6). However, the overall expression of DLAT 

was low in TME and was only expressed in cells such 

as malignant cells, CD4-CCR7-T cells and CD8-CCR7-

T cells (Supplementary Figure 7). 

 

CD4-CXCL13-Tfh drives suppressive tumor 

microenvironment formation through upregulating 

the expression of COX17 

 

Cell communication analysis discovered that CD4-

CXCL13-Tfh cells promotes the increase of CD4-

CXCL13-Tfh cells (Figure 10D) on the one hand, and 

leads to the increase of CD4-LEF1-Treg (Figure 10A), 

CD4-CTLA4-Treg (Figure 10E) and exhausted CD8+ T 

cells CD8-PDCD1 (Figure 10F) moreover by elevating 

expression of COX17, suggesting that high COX17 

expression in CD4-CXCL13-Tfh cells may drive the 

formation of immunosuppressive TME by inducing T 

cell exhaustion. Additionally, we also revealed that 

expression of COX17 in CD4-CCR7-TCF7 and CD4-

IL7R-MAL cells were positively correlation with the 

proportion of CD4-CXCL13-Tfh cells in TME (Figure 

11B, 11C). Next, we use TIGER to analyze the CD4-

CXCL13-T cell distribution throughout the cancer 

versus paracancer, and the results showed that tumor 

tissue contained a proportion of 86.96% of CD4-

CXCL13-T cells (Figure 10G, 10H). The expression of 

COX17 and DLAT in the above cell types was also 

examined, and the UMAP plot of COX17 expression 

showed an overlap in the distribution of COX17 and 

CD4-CXCL13-Tfh cells (Figure 10J), indicating a close 

association between CD4-CXCL13-Tfh cells and the 

expression of COX17. 

 

DLAT shapes the immunoactive tumor micro-

environment and enhances anti-PD-1 efficacy 

 

Meanwhile, we also explored the mechanism of DLAT 

reprogramming TME. High expression of DLAT in 

CD8-CCR7 and CD8-GZMK T cells infiltration was 

elevated by CD8-GZMK T cells (p<0.05) (Figure 11A, 

11B). CD8-GZMK T cells are commonly denoted as 

effective T cells, which is the main force in killing 

tumor cells in anti-tumor immunity. Furthermore, the 

upregulation of DLAT expression leads to a reduction 

in the infiltration level of CD4-CXCL13-Tfh and CD8- 

PDCD1 cells by CD4-CD8-IFIT1 (p<0.01) (Figure 11C, 

11D). These outcomes indicated that DLAT has the

 

 
 

Figure 9. Introduce the outcomes of a single-cell analysis carried out to examine COX17 and DLAT expression levels within 
the immune microenvironment of colorectal cancer. (A) UMAP plot illustrates the 40 cell types distribution and dissimilarity.  
(B) COX17 is highly expressed in TME. (C) DLAT is expressed in small amounts in each cell type. 
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ability to shape immunoactive TME by elevating the 

cytotoxic T cells levels and reversing T cells 

exhaustion. Next, the connection among DLAT and 

multiple immune cells expression levels through 

colorectal cancer was analyzed by the TIMER, and the 

outcomes revealed that the DLAT expression showed a 

positive association within CD8+ T cells, neutrophils, 

macrophages, B cells, and DC cells infiltration levels 

(p<0.01) (Figure 11E). Finally, we discovered that 

DLAT (blue dot) expression was significantly 

upregulated after anti-PD-1 immunotherapy (Figure 

11F, 11G). Taken together, we discovered that DLAT 

improves the immunotherapy response within CRC 

individuals by shaping hot TME. 

 

DISCUSSION 
 

The important role of copper metal in the initiation and 

proliferation of cancers has made this field of cancer 

biology a popular focus for investigation. A growing 

 

 
 

Figure 10. CD4-CXCL13-Tfh drives suppressive tumor microenvironment formation through upregulating the COX17 expression  
(A–F) Association between expression of COX17 and cell composition (G) Histogram of CD4-CXCL13-T composition in cancer and paracancer 
(H) UMAP map of cancer and paracancer (I) UMAP show the landscape of cell types of CD4+T clusters. (J) Expression and distribution of 
COX17 and (K) DLAT. 
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amount of evidence indicates that tumor growth, 

migration, angiogenesis, and TME formation are 

significantly influenced by copper ion homeostasis and 

mitochondrial metabolism [21–23]. Therefore, A 

RiskScore model was developed utilizing a cuproptosis-

related gene signature. The aforementioned model has 

the ability to precisely forecast the prognosis, clinical 

characteristics, and response to immunotherapy in CRC 

patients. Subsequently, we investigated tumor immune 

microenvironment and pathway activity within the high 

and low RiskScore groups and screened two hub genes 

based on this model: COX17 and DLAT. Finally, we 

combined scRNA-seq analysis to delve into the specific 

mechanism of TME reprogramming by COX17 and 

DLAT.  

 

In this study, we firstly revealed alterations in CRGs at 

both the genetic and transcriptional levels in individuals 

with CRC. Then taking into account the patient 

heterogeneity and complexity of the CRC. We 

constructed the RiskScore model based on 61 CRGs 

expression profiles utilizing the Lasso-Cox analysis 

method. Within these, 9 genes connected with the 

prognosis of colorectal cancer patient. Furthermore, two 

RiskScore groups demonstrated significant variations in 

clinical prognosis, immune infiltration, stromal score, 

TIDE, TMB, etc. Low RiskScore exhibited a more 

favorable prognosis, more infiltration results of CD8+ T 

cells, NK cells, and neutrophils, and more sensitivity to 

immunotherapy such as anti-PD-1 than high RiskScore. 

This suggests that the high RiskScore and low 

RiskScore may correspond to the immune-desert 

phenotype and immune-active phenotype, respectively. 

The RiskScore model could help deliver ICB therapies 

more precisely and provide a new idea to break the 

bottleneck of ICB efficacy. Subsequently, a nomogram 

was developed by introducing the individual’s age, 

gender, tumor stage, and RiskScore for enhancing the 

accuracy of prognostic prediction. Finally, we 

investigated the pathway variations among the two 

groups using GSEA and GSVA analysis showed that 

several pathways critical for the regulation of tumor 

 

 
 

Figure 11. DLAT shapes the positive tumor microenvironment. (A–D) Correlation between expression of DLAT and cell composition 
(E) DLAT expression and immune cell infiltration. (F) immune cell landscape and DLAT expression distribution after anti-PD-1treatment  
(G) immune cell landscape and DLAT expression distribution without anti-PD-1 treatment. 
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proliferation, invasion, and immune evasion, including 

the MAPK pathway, WNT pathway, HYPOXIA 

pathway, and EGR2 and SOX10 mediated pathways, 

are upregulated in high RiskScore, and several studies 

demonstrate the involvement of a hypoxic environment 

in the formation of immunosuppressive TME [24]. 

 
Copper ions are closely related to the immune system 

and are necessary to maintain a normal immune 

response [25]. It has also been found that tumors are 

helped to achieve immune evasion by copper ions 

mediating the exhaustion of tumor-specific T cells [26, 

27]. Our results further elucidated the specific 

mechanism of this phenomenon, and scRNA-seq 

analysis found that CD4-CXCL13Tfh induced an 

increase in CD8-PDCD1 exhausted T cells in CRC 

TME through elevating expression of COX17, while 

COX17 also likely induced CD4-CCR7-TCF7 Naïve T 

cells to become immunosuppressive CD4-CXCL13 T 

cells and further worsen TME. COX17 is a copper ion 

chaperone protein that functions by binding intracellular 

copper and transporting it to specific sites. The role of 

COX17 in cancer is still unclear. We revealed that 

COX17 was significantly associated with poor 

prognostic outcomes within CRC patients and GBM 

and better prognosis in PCPG. The GSEA analysis 

found that COX17 mediates tumor proliferation and 

invasion through the WNT pathway, which is in line 

with the outcomes of Ramchandani et al., who 

discovered that by reducing COX17 expression in 

triple-negative breast malignancy induced copper 

depletion and thus inhibited tumor metastasis [28]. In 

contrast, another gene we focused on, DLAT, is likely 

to activate anti-tumor immunity by inducing an increase 

in CD8-GZMK T cells. And it reverses the exhaustion 

of T-cell by reducing CD8-PDCD1 and CD4-CXCL13 

T-cell content, forming HOT TME. Previous studies 

have shown that DLAT functions as the E2 subunit 

within the PDC complex in the catabolic glucose 

pathway. It is also associated with diseases such as 

gastric malignancy, obesity, and non-small cell lung 

cancer [29, 30]. However, the mechanisms by which 

DLAT regulates antitumor immunity and reprograms 

TME have been little studied. Our study revealed a 

significant connection between DLAT and the 

prognosis of individuals diagnosed with multiple tumors 

and may induce the pyroptosis by driving mitochondrial 

apoptosis, thereby shaping immunoactive TME. In 

addition to this, DLAT expression levels were increased 

in CRC after anti-PD-1 treatment, suggesting that it 

may be a potential prognostic indicator or response 

biomarker for immune checkpoint blockade therapy. 

 
The results of the cell communication analysis brought 

CD4-CXCL13 T cells to our attention. According to 

this study, CD4-CXCL13 T cells clustered in malignant 

tissues in colorectal cancer and shaped immuno-

suppressive TME by upregulating COX17, which 

induced T cell exhaustion and infiltration of Treg. A 

previous study by Joshua et al. suggested that CD4-

CXCL13 T cells in melanoma correlate with survival 

and macrophage, CD8+ T, and B cell activation. This 

study also found that CD4-CXCL13 T was associated 

with worse survival in glioblastoma and clear renal 

carcinoma, etc., which suggesting that there is 

heterogeneity in the function of CD4-CXCL13T cells 

[31]. However, the involvement of this cohort of cells in 

CRC has yet to be investigated, and our study fills the 

gap to some extent. 

 

Recently, ICB therapy has demonstrated significant 

potential in treating tumors, but due to the highly 

immunosuppressive nature of CRC, just a minute 

proportion of patients experience advantageous 

outcomes [32]. A prognostic model was developed for 

predicting the response of individuals suffering from 

CRC to immunotherapy more accurately and help to 

implement ICB therapy more precisely. Targeting 

COX17 and DLAT can also remodel TME and activate 

anti-tumor immunity, favoring a breakthrough in ICB 

treatment. However, this study also has some 

shortcomings. Our research needs prospective CRC 

cohorts to validate the RiskScore model prognostic 

efficacy. Additionally, the effect of COX17 and DLAT 

expression on the cell composition in TME needs to be 

validated with more investigations. 

 

CONCLUSIONS 
 

In summary, our research has developed a cuproptosis-

related genes-based prognostic model in colorectal 

cancer that is highly effective in predicting prognosis, 

TME type, and response to immunotherapy in CRC 

patients. Moreover, through in-depth analysis of CRGs, 

we discovered that elevated levels of COX17 

expression were observed for the first time in CD4-

CXCL13 T cells in CRC mediates T cell exhaustion and 

Treg infiltration, while DLAT activates anti-tumor 

immunity by reversing T cell exhaustion and inducing 

tumor cell pyroptosis. The results validate the clinical 

significance of CRGs and investigate the process of 

reprogramming the TME, offering a novel approach for 

breaking the bottleneck of immunotherapy. 

 

MATERIALS AND METHODS 
 

Data gathering and preparation 

 

The bulk RNA sequencing (RNA-seq) data as well as the 
phenotypic data for the CRC cases was provided by The 

Cancer Genome Atlas (TCGA, https://portal.gdc. 

cancer.gov/) database [33]. A cohort under study 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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consisted of 434 samples from patients with colorectal 

cancer, comprising 383 tumor samples and 51 normal 

samples. GSE17536, GSE17537, and GSE38832 have 

been purchased from GEO database, accessible at 

(https://www.ncbi.nlm.nih.gov/geo/). In a new report by 

the TSVETKOV team [13] and The Molecular Signature 

Database (MSigDB) (http://www.gsea-msigdb.org/gsea/ 

msigdb/), we chose 61 cuproptosis-related genes from 

them for further investigation. 

 

Construction of a prognosis signature based on 

61CRGs 

 

The present study employed the least absolute shrinkage 

and selection operator (LASSO) method for conducting 

a regression analysis on 61 genes from the TCGA 

cohort. Utilizing the “glmnet” R package, the  

analysis was carried out without overfitting. Eventually, 

nine genes have been acquired to build the model. 

.R p(iskS X )core i Ex i Coef Xi( )= =   Coef (Xi)  

represents the coefficient of each CRG and Exp(Xi) 

refers to the expression level of mRNA for each. The 

TCGA and GEO cohorts have been divided into two 

distinct groups according to the basis of the optimal risk 

threshold: a high-risk group (n =172) and a low-risk 

group (n =200). Lastly, time-related ROC curves were 

employed to investigate the prognostic precision of the 

characteristic in forecasting survival outcomes at 1, 3, 

and 5 years in both high- and low-risk groups. 

 

Development and verification of nomogram scoring 

system 

 

Using clinical traits, risk scores, and outcomes from a 

separate prognostic study, the nomoR software is used 

to create prediction column line graphs [34]. The final 

score was calculated utilizing the nomogram scoring 

system by adding the scores of all variables for each 

sample. Using the “Timeroc” software program, ROC 

curve analysis was conducted to evaluate the 1, 3, and 

5-year survival rates [35]. The calibration plots of 

column line plots illustrate the correspondence among 

the speculated 1, 3, and 5-year survival events and the 

determined values in terms of expected values. 

 

Immunoreaction analysis 

 

To compare the variations in TME among two groups 

categorized as higher and lower risk groups, utilizing 

the ESTIMATE and CIBERSORT methods, the 

immune component of CRC was evaluated [36]. The 

present study assessed the immune checkpoint inhibitor 

therapy effectiveness within two distinct cohorts 

utilizing the Tumor Immune Dysfunction and Exclusion 

(TIDE) computational framework (TIDE, http://tide. 

dfci.harvard.edu/) relied on their respective dysfunction 

and exclusion scores [37]. For the purpose of obtaining 

the IPS, the Cancer Immunome Atlas (https://tcia.at/ 

was utilized. By conducting a comparative analysis of 

IPS scores between groups categorized as high-risk and 

low-risk, it was possible to predict how well CRC 

patients will respond to different forms of ICI therapy, 

including PD-1/PD-L1/PD-L2 and CTLA-4 blocking 

therapy. Utilizing CIBERSORT, EPIC, and MCP-

counter algorithms, the immune cells infiltration within 

the TME was assessed. 

 

Survival analysis 

 

The Kaplan-Meier (K-M) and log-rank tests were 

employed throughout the current investigation, utilizing 

the “survivor” R package, to assess the impact of the 

RiskScore and nine prognosis-related genes on patient 

survival. 

 

Somatic cell mutation analysis 

 

The present study utilized the R package “MAF Tool” 

to conduct an analysis of DNA mutation data obtained 

from TCGA. The primary objective was to identify the 

somatic mutation patterns exhibited by colorectal cancer 

individuals (CRC) categorized as high-risk group and 

low-risk group, according to the DNA mutation data. 

SNV of 61CRGs in the TCGA cohort was also 

determined by this way. 

 

Gene set enrichment analysis 

 
The “clusterProfiler” R package was utilized to carry 

out the pathway enrichment analysis of GO and 

(KEGG) [38]. According to the data obtained from 

mRNA expression profiling and MSigDB [39], GSEA 

[40] was employed to examine the potential signaling 

pathways that may exist between two distinct groups. 

With the use of the GSVA package in the R software, 

the enrichment scores of pathways in each sample were 

calculated [41]. 

 
Immunohistochemical analysis 

 
The Human Protein Expression Atlas (THPA) is an 

immunostaining of tissues and cells for differential 

analysis of protein expression. Presenting proteomic 

profiles of human tissues based on proteomic, 

transcriptomic, and systems biology data, combined 

with tissue microarray-based immunohistochemistry, 

the database includes individual proteins in all  

major tissues and organs of the body as well as  

overall expression [42]. The COX17 and DLAT 

protein expression levels were evaluated in both 

normal and tumor tissues through IHC analysis 

utilizing THPA. 

https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org/gsea/msigdb/
http://www.gsea-msigdb.org/gsea/msigdb/
http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://tcia.at/
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Single cell RNA sequencing analysis 

 

The scRNA-seq data pertaining to colorectal cancer, 

specifically GSE139555, GSE136394, and GSE146771, 

were purchased from the GEO database. We used R 

package ‘Seurat’ (3.1.1) to process these data. In this 

study, the Tumor Immune Single-Cell Hub (TISH) 

database (http://tisch.comp-genomics.org/home/) was 

utilized to perform gene expression profiles 

comparative analysis at the single-cell level between 

groups receiving immunotherapy and those not 

receiving immunotherapy. The investigation of cellular 

communication was conducted through the utilization of 

the software tool ‘cellchat’ and the scTIMER portal. 

The Tumor Immunotherapy Gene Expression Resource 

was utilized to analyze gene expression and dif-

ferentially expressed genes at the level of single cells 

(TIGER, http://tiger.canceromics.org/). 

 

Cell culture and quantitative real-time polymerase 

chain reaction (RT-qPCR) 

 

The colorectal cancer cell line HCT116 and normal colon 

epithelial cell line NCM-460 were purchased from 

Fuheng Biotechnology (Shanghai, China). These cells 

were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) (Gibco, USA) with 10% fetal bovine serum 

(FBS) (Gibco, USA) and 1% penicillin-streptomycin in 

an atmosphere containing 5% CO2 at 37° C. 

 

For RT-qPCR assay, we first extracted total RNAs from 

cells using AG RNAex Pro reagent (Accurate Biology, 

AG21102). After then, these RNAs were reverse 

transcribed into cDNA using Evo M-MLV Kit 

(Accurate Biology, AG11705). The cDNA was 

eventually used for RT-qPCR analysis using SYBR 

Green Pro Taq HS Premix (Accurate Biology, 

AG11701). All the reactions were performed in 

StepOnePlus™ instrument. The 2-ΔΔCt strategy was 

applied to compute the relative mRNA level of genes. 

Human GAPDH was utilized to normalize expression 

levels. The sequences of the primers were as follows: 

 

Human GAPDH: 5’- GGAGCGAGATCCCTCCAAAA 

T GGCTGTTGTCATACTTCTCATGG-3’ 

 

COX17: 5’- GGTCGGGTCTCTGTTGACTT TTGCC 

GTTCTCCTCTCTCTC-3’ 

 

DLAT: 5’- CGGAACTCCACGAGTGACC CCCCGC 

CATACCCTGTAGT-3’ 

 
Statistical analysis 

 
The R version 4.0.4 was utilized to perform the 

statistical analyses. Pearson or Spearman correlation 

analysis were employed throughout this investigation to 

evaluate the correlation between two distinct groups. In 

order to generate survival curves, the KM approach was 

applied, and were evaluated utilizing the log-rank test. 

The Lasso regression analysis was conducted in the 

investigation to evaluate the prognostic significance of 

the variables on the hazard. The Students t-test 

statistical method was employed to evaluate the 

variations within the groups. p < 0.05 was reported as 

statistically significant difference. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. PPI plot of 61 cuproptosis-related gene by GeneMANIA. 
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Supplementary Figure 2. The infiltration level of NKT cells in low- and high-risk groups. 

 

 
 

Supplementary Figure 3. KM plot of 9 prognosis-related CRGs. The KM plot of AOC3 (A), CCS (B), CDKN2A (C), COX11 (D), COX17 (E), 

COX19 (F), DLAT (G), DLD (H), PDHB (I). 
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Supplementary Figure 4. Relative mRNA level of COX17 and DLAT in HCT116 and NCM-460 cells. 

 

 
 

Supplementary Figure 5. Correlation analysis of DLAT with APAF1, CASP3 and GSDME (also known as DFNA5). 

 

 
 

Supplementary Figure 6. The expression of COX17 in different cells. 

 



www.aging-us.com 14443 AGING 

 
 

Supplementary Figure 7. The expression of DLAT in different cells. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. The expression of 61 CRGs in the TCGA cohort. 

Supplementary Table 2. Functional enrichment of 61CRGs. 

Supplementary Table 3. The risk score of patients in the TCGA cohort. 

 

Supplementary Table 4. The 9 
signature genes and their 
coefficients. 

Gene Coefficients 

COX19 0.0723218467945424 

COX11 -0.0159333955707089 

COX17 0.313420628697771 

AOC3 0.0624032376941578 

CCS 0.0497832615996111 

DLAT -0.242743143130727 

PDHB -0.129752029159547 

DLD -0.0863956442851258 

CDKN2A 0.054461573615976 

 


