
www.aging-us.com 153 AGING 

INTRODUCTION 
 

Osteoarthritis (OA) is one of the main causes of pain 

and disability among the elderly in the world. With  

the population aging, this disease burdens increasing.  

The cause of OA is not completely clear. Risk factors 

include age, obesity, sex, injury, and heredity [1]. More 

evidence suggests that OA is a disease involving the 

whole joint, including structural changes in hyaline 

articular cartilage, subchondral bone, synovium, 

ligaments, articular capsule, subpatellar fat pad, and 

muscles around the joint [2]. The traditional diagnosis 

of OA depends on patients’ symptoms and radiography 

evaluation, however, there are limited value in the 

detection of early OA. In the past few years, more and 

more researchers have devoted themselves to finding 

biomarkers that can be used for early diagnosis and 

treatment of OA. Although the practice process is full of 
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ABSTRACT 
 

Background: Osteoarthritis (OA) is one of the main causes of pain and disability in the world, it may be caused 
by many factors. Aging plays a significant role in the onset and progression of OA. However, the mechanisms 
underlying it remain unknown. Our research aimed to uncover the role of aging-related genes in the 
progression of OA. 
Methods: In Human OA datasets and aging-related genes were obtained from the GEO database and the HAGR 
website, respectively. Bioinformatics methods including Gene Ontology (GO), Kyoto Encyclopedia of Genes 
Genomes (KEGG) pathway enrichment, and Protein-protein interaction (PPI) network analysis were used to 
analyze differentially expressed aging-related genes (DEARGs) in the normal control group and the OA group. And 
then weighted gene coexpression network analysis (WGCNA), the least absolute shrinkage and selection operator 
(LASSO) regression, and the Random Forest (RF) machine learning algorithms were used to find the hub genes. 
Results: Four overlapping hub genes: HMGB2, CDKN1A, JUN, and DDIT3 were identified. According to the 
nomogram model and receiver operating characteristic (ROC) curve analysis, four hub DEARGs had good 
diagnostic value in distinguishing normal from OA. Furthermore, the qRT-PCR test demonstrated that HMGB2, 
CDKN1A, JUN, and DDIT3 mRNA expression levels were lower in OA group than in normal group. 
Conclusion: Finally, these four-hub aging-related genes may help us understand the underlying mechanism of 
aging in osteoarthritis and could be used as possible diagnostic and therapeutic targets. 
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challenges, its clinical application is a relatively distant 

prospect [3]. 

 

The increase of senescent cells in diverse tissues is  

one of the markers of aging. The senescent cells still 

retain their activity and metabolic capabilities despite 

losing their ability to divide. It has an effect on the 

surrounding normal tissues and cells by secreting a large 

number of pro-inflammatory cytokines, chemokines, 

Matrix metalloproteinases (MMPs), and angiogenic 

factors, which form the senescence-associated secretory 

phenotype (SASP) [4, 5]. In some animal disease model 

studies, the application of senolytics, a class of drugs 

that target to induce senescence cell death (quercetin 

and dasatinib et al.), and senomorphics, a type of SASP 

inhibitor (apigenin and resveratrol et al.) had achieved 

satisfactory results and were progressing to the clinical 

trial stage [6, 7]. As a result, the elimination of senescent 

cells is considered to be a promising treatment for OA 

[8]. 

 

Bioinformatics and machine learning analyses are 

critical for understanding the molecular mechanisms of 

disease and screening key genes [9]. In this study, we 

screened the differentially expressed aging-related 

genes (DEARGs) in the normal control group and the OA 

group by bioinformatic analysis including differential 

gene analysis and WCGNA, and then LASSO and the 

Random Forest (RF) algorithm, the machine learning 

were employed to identify diagnostic biomarkers in OA 

progression, thereby providing new possibilities for OA 

therapy. 
 

RESULTS 
 

Identification of DEARGs in OA 

 

The study flowchart was depicted in Figure 1. 

Differential gene analysis was performed using  

307 aging-related genes in 20 cases of OA cartilage 

tissues and 18 cases of normal cartilage tissues, with an 

adjusted p-value of 0.05 and an FC absolute value of >1 

as the standard. There were 42 DEARGs in total, with 

22 up-regulated genes and 20 down-regulated genes. 

These DEARGs between the OA group and control 

group are displayed in the heat map and volcano map 

(Figure 2A, 2B). 

 

Functional enrichment and protein-protein 

interaction analysis of DEARGs 

 

GO and KEGG enrichment analyses were performed 

utilizing the R software to identify the potential 

biological functions of DEARGs. We obtained 1037 

and 95 terms for the GO and KEGG enrichment 

analyses, respectively, based on the screening criterion 

 

 
 

Figure 1. Work flowchart. Abbreviations: DEARGs: differentially expressed aging-related genes; LASSO: least absolute shrinkage and 

selection operator; WGCNA: weighted gene co-expression network analysis. 
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of adjusted P-value 0.05 (Supplementary Tables 1, 2). 

DEARGs were primarily involved with aging, response 

to lipopolysaccharide, and response to molecules of 

bacterial origin (Biological Process, BP). RNA poly-

merase II transcription regulator complex, transcription 

regulator complex, cyclin−dependent protein kinase 

holoenzyme complex (Cellular Component, CC). 

DNA−binding transcription activator activity RNA 

polymerase II−specific, DNA−binding transcription 

activator activity, DNA−binding transcription factor 

binding (Molecular, Function, MF) (Figure 3A).  

The most significant KEGG pathways included 

Transcriptional misregulation in cancer, Human T−cell 

leukemia virus1 infection, MAPK signaling pathway, 

Cellular senescence, and Cell cycle, The top five  

KEGG pathways are shown in Figure 3B. The PPI 

network uncovered the close interactions between 

proteins encoded by the DEARGs (Figure 3C). 

 

Establishment of a co-expression network 

 

The WGCNA algorithm was used to identify co-

expressed genes and modules based on the expression 

profiles of all genes. The soft-threshold power of = 4 

(R2 = 0.87; slope = 1.01) was adopted to ensure that the 

network was scale-free (Figure 4A, 4B). Then, the co-

expression modules in the network were identified by 

the “cutree Dynamic” function, and 9 gene modules 

were obtained. The correlations of the above-mentioned 

modules with OA and healthy controls were presented 

with heat maps, with green (cor = 0.9; P = 1e-14) and 

greenyellow (cor = −0.69; P = 2e-06) modules showing 

the strongest positive and negative connection with OA, 

respectively (Figure 5A–5C). In the green module we 

could gain 462 key genes based on the screening criteria 

(|GS|> 0.60;|MM|> 0.70). As a result, the 462 key genes 

in the green module were studied further. Finally, 13 

intersecting genes were discovered in the green module 

between 42 DEARGs and 462 key genes. (Figure 5D). 

The intersection genes were as follows: TOP2A, TFDP1, 
ELN, IGFBP3, EFEMP1, and NGF. JUN, ARNTL, 

CDKN1, AMXI1, DDIT3, HMGB2, and IRS2. 

 

Identification of candidate Hub aging-related genes 

via machine learning 

 

Subsequently, the LASSO regression and RF  

machine learning algorithms were further applied  

to screen for candidate aging-related hub genes, the 

LASSO regression algorithm identified six candidate 

genes (Figure 6A, 6B), RF algorithm ranked each  

gene based on gene importance (Figure 6C, 6D). The 

intersection of six genes from LASSO and the top five 

most important genes from the RF was visualized by a 

Venn diagram. Finally, the four intersectional aging-

related biomarker genes we obtained are as follows: 

JUN, CDKN1A, DDIT3, and HMGB2 (Figure 6E). 

 

Hub aging-related genes expression levels 

 

The expression levels of the four hub genes were 

validated by using box plots. The results of the training

 

 
 

Figure 2. Identification of DEARGs. (A) Heatmap of DEARGs between normal and OA cartilage tissues. (B) Volcano plot for DEARGs 

between normal and OA cartilage tissues. Red square/plots represent up-regulated genes and blue square/plots represent down-regulated 
genes. 
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set GSE114007 revealed that the expression levels of 
HMGB2, CDKN1A, JUN, and DDIT3 were significantly 

lower in OA samples than in normal samples (p < 

0.001) (Figure 7A). To verify the reliability of the 

result, we used an external data set GSE169077 to 

further validate the expression levels of the four hub 

genes (Figure 7B). Consistent with the training set 

results, the expression levels of HMGB2, CDKN1A,  

and DDIT3 were significantly lower in OA samples 

than in normal samples (p < 0.01). However, compared 

with normal samples, although the expression levels  

of JUN were lower in OA, there was no statistical 

difference (P > 0.05) (Figure 7B). 

Hub aging-related genes diagnostic value in OA and 

normal samples 

 

We chose four hub aging-related genes as the  

final risk prediction model for OA and built the 

corresponding nomogram to demonstrate the diagnostic 

value of these hub genes. The nomogram score was 

used to predict the possibility of suffering from OA 

(Figure 8A). The calibration curve indicated that 

nomogram model performed very well in predicting OA 

(Figure 8B). Also, the DCA indicated the nomogram 

model has a high clinical application value (Figure 8C). 

Additionally, ROC curve analysis aims to explore the 

 

 

 
Figure 3. GO and KEGG pathway enrichment analyses of DEARGs. (A) GO enrichment analyses of DEARGs. (B) The connections 

between DEARGs and the top five enriched KEGG pathways. (C) PPI network constructed with the DEARGs. 
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sensitivity and specificity of nomogram and individual 

genes in the diagnosis of OA. In the training set 

GSE114007, the area under the curve (AUC) value of 

1.000 for the nomogram was obtained. In the prediction of 

OA, the AUC values for HMGB2, CDKN1A, JUN, and 

DDIT3 were 0.986, 0.975, 0.972, and 1.000, respectively 

(Figure 8D). In the validation set GSE169077, we obtained 

similar results indicating that all hub aging-related genes 

and nomogram have good diagnostic values (Figure 8E). 

 

RT-PCR validation of the 4 Hub genes 

 

The results indicated that the relative mRNA  

expression levels of four hub aging-related genes 

including HMGB2, CDKN1A, and JUN were consistent 

with the results of the previous analysis. The DDIT3 

showed no statistically significant difference (Figure 9). 
 

DISCUSSION 
 

OA may cause by many factors, including mechanical 

overload, low-grade chronic inflammation, oxidative 

stress, and cell senescence [5, 10–12]. Cell senescence 

is an important sign of aging that is characterized  

by permanent cell cycle arrest and SASP release, 

destroying the extracellular matrix and affecting cell 

metabolism, inducing senescence of normal cartilage 

and synovial cells, and aggravating OA [13–15]. 

 

 
 

Figure 4. Using weighted gene coexpression network analysis (WGCNA) to determine soft threshold capability. (A) The soft 

thresholding power β in the WGCNA was determined based on a scale-free R2 (R2 = 0.87). (B) Histogram of connectivity distribution and 
checking the scale-free topology when β = 4. 
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A series of studies on the role of aging-related genes  

in tumors have been conducted in recent years, but  

there have been few studies on non-neoplastic aging-

related diseases such as idiopathic pulmonary fibrosis, 

Alzheimer’s disease, atherosclerosis, and so on [16–19]. 

However, while OA is one of the most common aging-

related diseases, it is unclear that the role of aging-

related genes in OA progression. 

 

More and more evidence supports that there is a close 

link between aging and OA. For example, the removal 

of local senescent cells alleviates the occurrence of 

traumatic OA and is beneficial to the repair of tissue 

injury [20]; YAP or FOXD1 reduces cellular sene-

scence in local bone joints and contributes to creating  

a chondrogenic environment [21]; Up-regulation of 

MFG-E8 protects against OA by targeting chondrocyte 

senescence and inhibiting NF-κB pathway [22], and 

miR-29b-5p alleviates OA via inducing a decline  

in catabolic enzymes and senescence-related genes  

and a rising in cartilage ECM synthesis [23]. These 

findings suggest that senescence plays a vital role in the 

progression of OA. In this study, we use bioinformatics 

and machine learning methods to investigate the role of 

senescence-related genes in OA, as this may provide 

new ideas for regulating cell senescence and alleviating 

OA. 

 

We downloaded and analyzed OA patients’ sequencing 

data from the GEO database. The first 307 aging-related 

genes were extracted. 42 DEARGs filtered in R using 

the limma package were crossed with key module genes 

in WGCNA to yield 13 important genes, and then four 

hub aging-related genes: HMGB2, CDKN1A, JUN, and 

DDIT3 were screened using LASSO regression and RF 

machine learning algorithm. The diagnostic ability of 

 

 
 

Figure 5. (A) Clustering dendrograms of genes with varying degrees of similarity, the different colors below represent various co-

expression modules. (B) Module–trait relationship. The green module was significantly associated with OA. (C) Distribution of mean gene 
significance in modules associated with OA. (D) Venn diagram shows that thirteen common genes are identified from the intersection of 
genes between the green module and DEARGs. 
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four hub DEARGs to OA was validated using a 

nomogram and ROC curve based on an external data 

set. Finally, the qRT-PCR method was used to confirm 

the credibility of the results. 

The high-mobility group box 2 (HMGB2) protein is  

a chromatin-binding protein that can increase protein 

binding to chromatin and regulate transcription, DNA 

damage, and repair [24]. Accumulating research has 

 

 
 

Figure 6. Machine learning screens biomarkers for diagnosing OA. (A, B) The LASSO regression revealed that the number of genes 
corresponding to the lowest point of the curve (n = 6) is best suited for the diagnosis of OA. (C, D) Random Forest algorithm showed errors 
in OA; each gene is ranked according to its importance score. (E) The Venn diagram depicts the intersection genes of LASSO and RF results. 

 

 
 

Figure 7. The expression levels of four hub genes were shown by boxplots. (A) Expression of the hub genes in the GSE114007 

dataset, HMGB2, CDKN1A, JUN, andDDIT3 expression were all down-regulated in OA samples. (B) The expression of the Hub gene in an 
external GSE169077 data set (**p < 0.01; ***p < 0.001). 
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demonstrated that HMGB2 plays a significant role in 

controlling cell senescence and aging-related disorders, 

such as orchestrating the chromatin landscape of SASP 

gene loci. This suggests that part of HMGB2’s function 

in regulating aging may be through SASP secretion 

inhibition [25]. HMGB2 Downregulation Promotes 

 

 
 

Figure 8. Construction of the nomogram model and assessment diagnostic value. (A) Construction of the nomogram model on 

the basis of the four hub aging-related genes. (B) The calibration curve evaluates the predictive accuracy of the nomogram model. (C) The 
DCA curve to assess the clinical application value of nomogram model. (D) All hub genes and nomogram ROC curve for the training set 
GSE114007. (E) All hub genes and nomogram ROC curve for the validation set GSE169077. 
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Cellular Senescence in Microvascular Endothelial  

Cells [26]. In articular cartilage, HMGB2 is mainly 

distributed in the superficial zone, the expression of 

HMGB2 decreases with aging. OA occurs earlier and 

more severely in HMGB2 gene deficiency mice [27]. 

These reports are consistent with the results of our 

study. 

 

The CDKN1A gene encodes the cyclin-dependent 

kinase inhibitor p21/WAF1/CIP1/CDKN1A, a mainly 

transcriptional target of p53. It can inhibit cell cycle 

progression and cause cell cycle arrest by inactivating 

cyclin-dependent kinase (CDK) [28, 29]. The p21 also 

shows a significant expression in normal non-

proliferating adult chondrocytes, which indicated it 

plays an important role in the chondrocyte. Indeed, 

according to reports, the down-regulation of p21 

decreased ACAN expression and increased MMP13 

expression through STAT3 phosphorylation in the 

cartilage tissue. CDKN1A-deficient mice are susceptible 

to inflammation-related OA [30–32]. In this study, 

compared with the normal group, the expression of p21 

was significantly down-regulation in OA. It might well 

be one reason or at least one mediator of the “de-

blocking” of cell cycle progression in OA chondrocytes. 

In addition, p21 is mainly activated in the early stage of 

induced senescence, and p16 is necessary to maintain 

cellular senescence [33–35]. 

 

The JUN is the transcription factor subunit of activating 

protein-1 family (AP-1). The exact involvement of AP-

1 in osteoarthritis is unknown [36]. Previous research 

has demonstrated that JUN plays an important function 

in regulating cell proliferation and apoptosis [37]. JUN 

was able to suppress p53 gene transcription, and Jun 

knockout mouse embryonic fibroblasts (MEF) increased 

the expression of p53, resulting in severe proliferation 

deficiency and early senescence [38, 39]. The Jun NH2-

terminal kinase (JNK) pathway may contribute to the 

regulation of TGF-β-mediated biological responses 

[40]. Interestingly, recent studies in the intervertebral 

disc have found that-Jun can up-regulate the expression 

of TGF-β, TIMP-3, and COL2A1 mRNA and protein 

while inhibiting the expression of inflammatory factors, 

such as IL-1β and TNF-α. Therefore, delaying inter-

vertebral disc degeneration [41]. TGF-β deficiency 

could be susceptible to osteoarthritis [42]. JUN may 

regulate the development of OA by regulating TGF- β 

signal transduction. The down-regulation of JUN may 

be an important factor in promoting the development of 

OA in this study. However, more studies are still 

needed to fully reveal the roles of JUN in OA. 

 

DNA damage-inducible transcript 3(DDIT3),  

also known as C/EBP homologous protein (CHOP)  

is an endoplasmic reticulum (ER) stress marker  

[43]. DDIT3/CHOP is activated in response to cellular 

stressors such as DNA damage, ER stress, cell cycle 

arrest, and apoptosis [44]. Previous research in mice and 

ATDC5 chondrocytes has demonstrated that DDIT3 

plays a functional role in chondrocyte metabolism [45]. 

In the early stages of OA, decreasing ER stress protein 

(CHOP) production can ameliorate OA caused by  

ER stress [46]. A recent study, however, has shown  

that DDIT3/CHOP can promote autophagy in ATDC5 

chondrocytes [47]. In the present study, compared to the 

normal group, DDIT3 expression was down-regulated 

in advanced osteoarthritis, we hypothesized that the 

decreased autophagy end of osteoarthritis could be 

connected to the downregulation of DDIT3 expression.  

 

 
 

Figure 9. The qRT-PCR method was used to detect the mRNA expression levels of four hub DEARGs. Compared with the 
normal group, the mRNA expression levels of HMGB2, CDKN1A, and JUN were significantly lower in the OA group. There is no statistical 
difference in DDIT3 mRNA expression levels between the normal and OA groups. 
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This must be demonstrated by further animal 

experiments. 

 

In general, this study obtained four hub DEARGs via 

combining bioinformatics analysis and two machine 

learning algorithms. These genes were shown by the 

nomogram model to have good diagnostic value for 

OA, and this was confirmed in another data sets.  

In addition, qRT-PCR analysis revealed that the 

expression of four genes was down-regulated in the OA 

group compared to the normal group, suggesting that 

these genes may be potential targets for therapeutic 

intervention. 

 

However, the current study has certain limitations.  

To begin, our findings are based on public datasets 

containing a small number of patients. Second, we 

started with a small number of clinical samples to 

validate these ARGs identified by the model. More 

clinical samples, basic experiments, and molecular 

processes for this signature must be validated in future 

investigations. 

 

CONCLUSION 
 

This study identified 4 hub DEARGs (HMGB2, 
CDKN1A, JUN, and DDIT3) associated with OA.  

These genes could be served as potential therapeutic 

targets for OA. However, more experimental studies  

are required to confirm its role in OA. 

 

MATERIALS AND METHODS 
 

Data download and processing 

 

A total of 307 aging-related genes were downloaded 

from the Human Ageing Genomic Resources (HAGR) 

(https://genomics.senescence.info/genes/index.html) [48], 

the detailed information of genes is listed in Sup-

plementary Table 3. The original sequencing data  

of GSE114007 were downloaded from the Gene 

Expression Omnibus (GEO) database, which served as 

the training dataset. Expression profile data consisted  

of 18 normal and 20 OA knee cartilage tissue samples. 

The GSE169077, which as the validation dataset 

contains 5 normal and 6 OA knee cartilage tissue 

samples, is based on the GPL96 platform (Affymetrix 

Human Genome U133A Array). First, the platform 

annotation information was downloaded to match  

gene probes to gene names. When numerous probes 

identified the same gene, the mean expression was 

determined, and when a gene was expressed in all 

samples at 0, the gene was eliminated. The data were 
then normalized using the “quantile normalization” 

algorithm in the R software “limma” package’s 

“normalizeBetweenArrays” function. 

Differential expression analysis of aging-related 

genes 

 
Differentially expressed aging-related genes (DEARGs) 

were presented between normal and osteoarthritis 

samples by using the limma software package [49].  

The DEARGs satisfied an adjusted P value < 0.05 and 

|log2-fold-change| > 1. The “heatmap” and “ggplot2” 

software packages of R were used to draw heat maps 

and volcano maps. 

 
Gene ontology, pathway enrichment and PPI 

network analysis of DEARGs 

 

We performed GO functional enrichment and KEGG 

pathway enrichment analysis on DEARGs using the 

“Clusterprofiler” R package [50–52]. The STRING 

database (https://string-db.org/) was used to observe the 

PPI network between the DEARGs [53]. 

 
Weighted gene co-expression network analysis 

(WGCNA) 

 

Weighted gene co-expression network analysis 

(WGCNA) is an algorithm that may identify co-

expressed gene modules of significant biological value 

and investigate the association between gene networks 

and diseases. The dataset was utilized for weighted co-

expression network construction using the “WGCNA” 

package for R to choose the best soft threshold (β)  

using the “pickSoftThreshold” function. The matrix 

data were converted into an adjacency matrix, which 

was then transformed into a topological overlap matrix 

(TOM) and the corresponding dissimilarity (1-TOM), 

which were separated into different modules based on 

similarly expressed genes and represented by different 

colors. The expression profile of each module was 

represented by a module eigengene (ME), and the 

correlation between each ME and clinical characteristics 

was calculated [54]. 

 
Identification of potential biomarkers in normal and 

OA 

 

Two machine learning algorithms were used to further 

screen candidate genes for OA diagnosis. The DEARGs 

and genes from key modules were intersected, and then 

the least absolute shrinkage and selection operator 

(LASSO) and Random Forest (RF) were employed to 

screen the diagnostic genes. The “glmnet” package in  

R was used to perform LASSO, a regression analysis 

algorithm that applies regularization to variable 

selection [55, 56]. RF is a popular machine learning 
algorithm that is widely used in bioinformatics analysis 

to screen important genes, and it can be accomplished 

by using the “randomForest” package in R software 

https://genomics.senescence.info/genes/index.html
https://string-db.org/
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[57]. Overlapping genes resulting from two algorithms 

as hub aging-related genes in OA diagnosis. 

 

Identification of Hub aging-related genes expression 

levels and diagnostic model construction 

 

Hub gene expression levels in healthy and OA 

individuals were assessed with the help of box plots. 

Hub aging-related genes were incorporated to construct 

a nomogram as a diagnostic model via using the “rms” 

package in R software, nomogram construction is 

critical for clinical OA diagnosis [58]. The predictive 

ability and clinical practicability of the nomogram 

model were evaluated by calibration curve and decision 

curve analysis (DCA), respectively [59]. Receiver 

operating characteristic (ROC) curves were plotted 

using the “pROC” packages of R to assess the levels of 

hub aging-related genes distinguishing between healthy 

and OA individuals, Furthermore, the expression levels 

and diagnostic value of the hub aging-related genes 

were validated with a separate external data set 

GSE169077. 

 

Patients’ samples 

 

The human cartilage samples were obtained from  

ten OA patients who underwent total knee arthroplasty 

and the normal cartilage samples were collected from 

six patients with anterior cruciate ligament rupture. All 

patients signed informed consent and samples were 

collected, processed, and analyzed under the guidance 

of the ethics committee of the Guangzhou Red Cross 

Hospital of Jinan University (Ethics number 2018–292). 

 

qRT-PCR 

 

The hub DEARGs were validated using quantitative 

real-time PCR. Total RNA was reverse-transcribed to 

cDNA according to the manufacturer’s instructions 

using the PrimeScript RT reagent Kit (TaKaRa, Japan). 

GAPDH was used as the housekeeping gene and 

relative mRNA expression levels were determined  

using the 2−ΔΔCt comparative method from the mean  

of triplicate treatments averaged from 3 replicate  

PCR reactions. The primer sequences are as follows.  

GAPDH Forward: 5′-ACACCCACTCCTCCACCTTT-

3′; Reverse: 5′-TTACTACTTGGAGGCCATGT-3′; 

HMGB2 Forward: 5′-CCGGACTCTTCCGTCAA 

TTTC-3′; Reverse: 5′-GTCATAGCGAGCTTTGTC 

ACT-3′; CDKN1A Forward: 5′-GGCATTCTGGGAGC 

TTCATCT-3′; Reverse: 5′-AGGGTGCCCTTCTTC 

TTGTG-3′; JUN Forward: 5′-TCCAAGTGCCG 

AAAAAGGAAG-3′; Reverse: 5′-CGAGTTCTGA 
GCTTTCAAGGT-3′; DDIT3, Forward strand: 5′-

GGAAACAGAGTGGTCATTCCC-3′; Reverse: 5′-

CTGCTTGAGCCGTTCATTCTC-3′. 

Statistical analysis 

 
R project (version 4.1.0) was used for our data 

processing and analysis. The data of qRT-PCR were 

analyzed using the SPSS 22 (IBM SPSS Statistics, 

USA). Differences between experimental and control 

groups were calculated using an unpair t-test as the 

statistical method. p value < 0.05 was considered as 

statistically significant. Data were presented as mean ± 

standard deviation (SD). 

 
Data availability 

 
All data, models, and code developed or utilized during 

the study are available from the corresponding author 

upon reasonable request. 
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Please browse Full Text version to see the data of Supplementary Tables 1–3. 

 

Supplementary Table 1. Results of GO function enrichment analysis. 

 

Supplementary Table 2. Results of KEGG function enrichment analysis. 

 

Supplementary Table 3. The detailed information of 307 aging-related genes. 

 


