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INTRODUCTION 
 

Ovarian cancer (OC) stands as one of the most 

pernicious malignancies afflicting the female 

reproductive system. It is distinguished by an absence 

of discernible early symptoms and an insufficiency of 

reliable methods for early detection [1, 2]. Notwith-

standing notable strides in the treatment of OC, 

particularly in the burgeoning realm of immuno-

therapies, the outlook for OC patients remains 

disheartening, with an approximate 80% fatality rate 

among individuals afflicted by advanced ovarian 

cancer. 

 

The tumor microenvironment assumes a paramount role 

in the context of OC, with macrophages serving as a 
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ABSTRACT 
 

Ovarian cancer (OC) ranks as the second leading cause of death among gynecological cancers. Numerous 
studies have indicated a correlation between the tumor microenvironment (TME) and the clinical response to 
treatment in OC patients. Tumor-associated macrophages (TAMs), a crucial component of the TME, exert 
influence on invasion, metastasis, and recurrence in OC patients. To delve deeper into the role of TAMs in OC, 
this study conducted an extensive analysis of single-cell data from OC patients. The aim is to develop a new risk 
score (RS) to characterize the response to treatment in OC patients to inform clinical treatment. We first 
identified TAM-associated genes (TAMGs) in OC patients and examined the protein and mRNA expression levels 
of TAMGs by Western blot and PCR experiments. Additionally, a scoring system for TAMGs was constructed, 
successfully categorizing patients into high and low RS subgroups. Remarkably, significant disparities were 
observed in immune cell infiltration and immunotherapy response between the high and low RS subgroups. 
The findings revealed that patients in the high RS group had a poorer prognosis but displayed greater sensitivity 
to immunotherapy. Another important finding was that patients in the high RS subgroup had a higher IC50 for 
chemotherapeutic agents. Furthermore, further experimental investigations led to the discovery that THEMIS2 
could serve as a potential target in OC patients and is associated with EMT (epithelial-mesenchymal transition). 
Overall, the TAMGs-based scoring system holds promise for screening patients who would benefit from therapy 
and provides valuable information for the clinical treatment of OC. 
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significant constituent thereof. These macrophages, 

known as tumor-associated macrophages (TAMs), 

originate from peripheral blood mononuclear cells and 

infiltrate solid cancer tissues, making substantial 

contributions to their growth [3–5]. TAMs actively 

participate in various stages of ovarian cancer 

progression, including immune evasion, migration, 

metastasis, and angiogenesis. For instance, Mingzhu et 

al. conducted a study revealing that TAMs can 

accelerate spheroid formation and promote metastasis 

during the early stages of OC [6]. Additionally, TAMs 

secrete exosomes containing small RNA molecules, 

which can be internalized by ovarian cancer cells and 

enhance their resistance to drugs [7]. TAMs emerge as 

pivotal constituents of the OC microenvironment, 

conceivably holding sway over the clinical response to 

OC [8, 9]. They serve as vital factors in categorizing 

OC patients into “hot” and “cold” tumors. 

Consequently, further investigations focusing on TAMs 

in OC patients are warranted. 

 

In this study, our initial focus was on identifying TAM-

related genes (TAMGs) specific to OC through the 

analysis of single-cell data. Subsequently, we conducted 

further screening to pinpoint the key TAMGs. Building 

upon this, we developed a scoring system based on 

these genes to evaluate TAM-related activity and 

differentiate between OC patients. Remarkably, patients 

with high and low TAM scores exhibited substantial 

differences in their prognostic status and response to 

immunotherapy and drug chemotherapy. Acknow-

ledging the significant heterogeneity among cancer 

patients, our scoring system holds promise for 

facilitating more personalized treatment approaches. To 

illustrate the research workflow, please refer to Figure 1 

in our study. 
 

METHODS 
 

OC’s data collection and collation 
 

The Cancer Genome Atlas (TCGA) database, accessible 

at https://portal.gdc.cancer.gov/, afforded us access to a 

comprehensive repository comprising 379 samples 

procured from 376 OC patients. In order to establish an 

appropriate control group consisting of non-cancer 

patients, we harnessed data sourced from the Genotype-

Tissue Expression (GTEx) project, available at 

https://gtexportal.org/home [10, 11]. To facilitate 

uniformity in our analyses, we standardized the 

expression values across various datasets to Transcripts 

per Kilobase of exon models per Million mapped reads 

TPM) values [12, 13]. In addition, we applied the 

“ComBat” algorithm to effectively mitigate potential 

 

 
 

Figure 1. Flow chart. 

https://portal.gdc.cancer.gov/
https://gtexportal.org/home
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Table 1. qPCR primer sequences used in this study. 

Genes Forward primer Reverse primer 

TREM2 ACTACTCTGCCTGAACAC GCTAAATATGACAGTCTTGGA 

MAFB GTGCAGGTATAAACGCGTCC CACCTCCTGCTTAAGCTGCTC 

KLF2 CCAAGAGTTCGCATCTGAAGGC CCGTGTGCTTTCGGTAGTGGC 

EPB41L3 AAAGAGGCCAAAGAGCAGCA GCAAGCTAAGTTATTCCTCTGGTA 

THEMIS2 ATGTCTTGGTTTGTCAGCGG TCAGATCTGCCAGGCTGTAG 

CD14 ACTGACTCTTGAAAACCTCG AGCGCTAAAACTTGGAGGGT 

EPB41L2 CCAGTTTGCCCCTACTCAGA TGTCCACACCTTCTGAGTCC 

GAPDH GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA 

 

(batch effects stemming from non-biotechnology-

related biases inherent to the datasets. 

 

For our investigation of single-cell RNA sequencing 

data, we curated datasets GSE115007 and GSE118828 

from the Geo database, which can be accessed at 

https://www.ncbi.nlm.nih.gov/geo/ [14, 15]. Further-

more, we incorporated the GSE63885 dataset as an 

auxiliary resource and validation set for the TCGA data. 

The GSE63885 dataset encompasses gene expression 

profiles derived from 101 surgical samples of ovarian 

cancer [16]. 

 

To bolster our analysis, the Cancer Immunome 

Database (TCIA), available at https://tcia.at/home, 

furnished us with the Immunophenoscore (IPS). The 

IPS, a robust predictive tool for assessing the 

responsiveness to immunotherapy targeting CTLA-4 

and PD-1, played a pivotal role in our study [17]. 

 

Cell culture and transfection 

 

The IOSE-80 human normal ovarian cell line was 

obtained from Yaji Biological (Shanghai, China), while 

the A2780 and SKOV-3 cell lines were procured from 

Procell (Wuhan, China). A2780 cells were cultured in 

RPMI-1640 medium (Procell) supplemented with 2 mM 

glutamine (Sangon Biotech, Shanghai, China) and 10% 

fetal bovine serum (FBS, Gibco). IOSE-80 and SKOV-

3 cells were cultured in RPMI-1640 medium containing 

10% FBS. All cells were maintained in a CO2 incubator 

at 37°C. siRNAs targeting human THEMIS2 (siRNA A: 

caauguguacagcaagauu, siRNA B: gaucccgucuacgcug 

gauu) were procured from Dharmacon (Epson, UK). 

Transfection of cells was carried out using Lipo-

fectamine RNAiMAX (Invitrogen, USA) in accordance 

with the manufacturer's instructions. 

 

Identification of TAMGs 

 
In Tumor Immune Single-cell Hub 2 (TISCH2), tumor 

immunology and microenvironment are addressed 

through a scRNA-seq database [18]. To identify key 

TAMGs, we first screened for shared genes by 

extracting TAMGs from two independent OC single-

cell data (GSE115007 and GSE118828) via the TISCH2 

database. We then performed further screening on these 

genes’ expression levels and prognosis in OC (TCGA-

OV and GSE63885). TAMGs were genes with 

significant dysregulation and significant correlation 

with prognosis in the OC group compared to the 

normal group. In addition, two different algorithms 

(EPIC and TIMER) were used to further validate the 

association of genes with TAMs. The GEPIA database 

was used to validate the mRNA expression levels of 

TAMGs between the normal and OC groups [19]. 

TAMG protein expression levels were investigated 

further using the Human Protein Atlas (HPA) database 

[20, 21]. 

 

Quantitative real-time PCR (qRT-PCR) 

 

Total RNA was extracted from the cells using Trizol 

(Invitrogen, USA) according to the manufacturer’s 

protocol. The extracted RNA was then reverse-

transcribed into cDNA using the Reverse Transcription 

kit from Promega (USA). For real-time PCR, two 

microliters of synthesized cDNA were utilized along 

with the Quantitect SYBR Green PCR Kit from Qiagen 

(USA). The PCR reactions were conducted using the 

LightCycler PCR device from Roche (Switzerland). The 

primers used in this study are shown in Table 1. 

 

Establishment and validation of TAMGs-related 

models 
 

In this study, statistical significance for genes 

significantly associated with overall survival in the 

training set was determined using univariate Cox 

regression in R software, with p-values < 0.05 

considered statistically significant. For the multivariate 

Cox regression analysis in the training cohort, gene 

expression levels (expr) and regression coefficients 
(coef) were utilized to construct the TAMGs risk model. 

The risk score (RS) for each patient was calculated 

using the following formula: 

https://www.ncbi.nlm.nih.gov/geo/
https://tcia.at/home
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RS = expr_gene_1 × coef_gene_1 + expr_gene_2 × 

coef_gene_2 + ... + expr_gene_n × coef_gene_n. 

 

To visualize the prognostic signatures, heatmaps were 

generated using the “pheatmap” package in R software. 

Survival curves based on TAMGs-related prognostic 

scores were plotted using the “survival” package. 

Receiver operating characteristic (ROC) curve analyses 

were performed using both the training and test sets, 

and the area under the curve (AUC) was calculated for 

the model using the R package “survivalROC”. The 

training set comprised TCGA-OV data, while the 

validation set consisted of GSE63885 data [22, 23]. 

 

Western blot 

 

For total protein extraction, RIPA lysis buffer 

(Beyotime, China) containing protease inhibitors was 

used to lyse the cells. The lysates were then denatured, 

and the protein samples were separated using 10% 

sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis (SDS-PAGE). Subsequently, the proteins were 

transferred onto a polyvinylidene difluoride membrane 

(Millipore, USA). To block non-specific binding sites, 

the membrane was incubated with 5% skim milk. 

Primary antibodies against STK17B, E-Cadherin, 

Vimentin, and N-Cadherin were then added to the 

membrane and incubated overnight at 4°C. Afterward, 

the membrane was washed three times with Tris-

buffered saline with Tween (TBST). Then, the 

membrane was incubated with horseradish peroxidase-

conjugated secondary antibodies for 1 hour at room 

temperature. After an additional three washes with 

TBST, the protein bands were visualized using an 

electrochemiluminescence kit (Beyotime, China). 

Antibodies used were ab238099 (1:1000), ab98952 

(1:1000), ab236975 (1:2000), and ab137321 (1:2000) 

(1:2000). The specific procedure can be found in the 

previously published publications [24–26]. 

 

Migration assay and Transwell assay 

 

For the wound healing assay, ovarian cancer cells were 

seeded in 6-well plates and allowed to reach 90% 

confluence before transfection with STK17B siRNA. A 

clean line was created in the middle of the well using a 

sterilized 200-μL pipette tip, and the wells were washed 

with PBS to remove any floating cells [27, 28]. Images 

of the cell migration were captured at 0 and 24 hours 

after creating the wound to evaluate the healing ability 

of the cells. In the Transwell assay, cell invasion was 

measured using Transwell chambers coated with 

Matrigel (Corning, USA). A total of 5 × 104 cells 
suspended in 100 μL of serum-free medium were added 

to the upper chamber, while the bottom chamber was 

filled with 500 μL of Dulbecco’s modified Eagle’s 

medium containing 20% FBS. After 48 hours of 

incubation, cells that had invaded through the Matrigel 

and migrated to the lower surface of the membrane 

were fixed and stained with 0.1% crystal violet. 

 

Statistical analysis 

 

All statistical analyses were performed using R 

software, specifically version 4.1.2. To assess 

differences between two independent groups, Student’s 

t-tests (unpaired, two-tailed) were utilized. For data 

involving more than two groups, one-way analysis of 

variance (ANOVA) and Kruskal-Wallis tests were 

applied as appropriate. Differentially expressed genes 

(DEGs) were identified using the “limma” R package. 

Mutation status in ovarian cancer patients was 

calculated using the “maftools” R package. The 

fractions of immune cell types were determined using 

the “CIBERSORT” R package. To explore biological 

differences between subtypes, GSVA (Gene Set 

Variation Analysis) enrichment analysis was conducted 

using the “GSVA” R package [29, 30]. Volcano plots 

and heatmaps were generated using the “ggplot2” 

package [31]. The significance level was set at P < 0.05, 

unless otherwise specified. 

 

Data availability statement 
 

The datasets presented in this study can be found in 

online repositories. The names of the repository/ 

repositories and accession number(s) can be found in 

the article. 

 

RESULTS 
 

Identification of TAMGs in ovarian cancer 

 

To identify potential TAMGs in ovarian cancer, we 

conducted an analysis of two independent single-cell 

sequencing datasets using the TISCH2 platform (Figure 

2A, 2D). We extracted the TAMGs from these datasets 

and identified 484 genes that were common between the 

two. Functional analysis revealed that up-regulated 

TAMGs in ovarian cancer were predominantly associated 

with PPAR signaling, oxidative phosphorylation, B cell 

receptor signaling, chemokine signaling pathways, nod-

like receptor signaling pathways, T cell receptor 

signaling pathways, TOLL-like receptor signaling 

pathways, and MAPK signaling pathways (Figure 2B, 

2E). Conversely, down-regulated TAMGs were mainly 

related to apoptosis, allograft rejection, TOLL-like 

receptor signaling pathway, ECM receptor interaction, 

and P53 signaling pathway (Figure 2C, 2F). 
 

To enhance the size and reliability of our study, we 

merged mRNA expression profiling data of ovarian 
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Table 2. TMAGs with potential prognostic value. 

Id HR HR.95L HR.95H p-value km 

THEMIS2 1.165885269 1.057295 1.285629 0.002092 3.93E-06 

TREM2 1.16430442 1.044744 1.297547 0.005928 3.03E-06 

EPB41L2 1.130252781 1.0205 1.25181 0.018808 9.72E-05 

MAFB 1.159319928 1.022011 1.315076 0.021534 8.00E-05 

KLF2 1.124067024 1.011062 1.249702 0.030504 0.012992 

CD14 1.131449513 1.010191 1.267263 0.032739 5.48E-05 

EPB41L3 1.113665904 1.006001 1.232853 0.037958 8.83E-06 

 

cancer from the TCGA and GEO databases. 

Consequently, we identified 7 genes with significantly 

different expression levels between the normal and 

tumor groups, all of which were associated with 

ovarian cancer risk (Figure 2G; Table 2). Additionally, 

an important finding was the potential positive 

correlation between the expression levels of these 

genes (Figure 2G). We employed two different 

algorithms (EPIC and TIMER) to further validate the 

association of these 7 genes with TAMs, and the 

results demonstrated a significant correlation between 

them (Table 3). 

 

 
 

Figure 2. Identification of TMAGs in ovarian cancer. Ovarian cancer single-cell data analysis based on the GSE115007 dataset. (A) 

UMAP plots with cells colored by cell type are displayed. Heatmap showing enriched up- (B) or down-regulated (C) pathways identified 
based on differential genes in each cell type. Ovarian cancer single-cell data analysis based on the GSE118828 dataset. (D) UMAP plots with 
cells colored by cell type are displayed. Heatmap showing enriched up- (E) or down-regulated (F) pathways identified based on differential 
genes in each cell type. (G) Identification of key genes. 
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Table 3. Correlation Analysis of Genes and TAMs. 

Genes Cancer Method Correlation P 

THEMIS2 OC 
EPIC 0.731 <0.05 

TIMER 0.151 <0.05 

TREM2 OC 
EPIC 0.34 <0.05 

TIMER 0.334 <0.05 

EPB41L2 OC 
EPIC 0.171 <0.05 

TIMER 0.246 <0.05 

MAFB OC 
EPIC 0.401 <0.05 

TIMER 0.534 <0.05 

KLF2 OC 
EPIC 0.158 <0.05 

TIMER 0.209 <0.05 

CD14 OC 
EPIC 0.898 <0.05 

TIMER 0.321 <0.05 

EPB41L3 OC 
EPIC 0.625 <0.05 

TIMER 0.408 <0.05 

 

Validation of expression levels of key TAMGs 

 

We identified 7 key TAMGs in OC based on single-gene 

sequencing data. To validate their expression levels, we 

utilized the GEPIA2 database, which confirmed that their 

expression levels were significantly dysregulated in tumor 

patients (Supplementary Figure 1). Furthermore, immuno-

histochemistry results provided additional confirmation, 

demonstrating significant changes in protein levels of 

these TAMGs in tumor tissues (Supplementary Figure 2). 

To further investigate their mRNA expression levels, we 

performed PCR experiments on common OC cell lines. 

The results were consistent with the findings from the 

public data analysis. Specifically, genes THEMIS2, 

TREM2, MAFB and CD14 exhibited significantly higher 

expression levels in OC, while genes EPB41L2, KLF2, 

and EPB41L3 showed significantly lower expression 

levels in OC (Figure 3). 

 

TAMGs-based identification of ovarian cancer 

subtypes 

 

In order to gain a more comprehensive insight into the 

prospective applicability of TAMGs in the context of 

OC, we conducted a comprehensive analysis of pivotal 

TAMGs, contingent upon their expression profiles with 

the patient. This analysis harnessed data sourced from 

TCGA-OC and GSE63885. By increasing the clustering 

variable (k) from 2 to 9, we observed that when k = 2, the 

intra-group correlation was the highest and the inter-

group correlation was the lowest. This indicates that OC 

patients can be effectively divided into two distinct 

subtypes (Figure 4A–4C). Furthermore, the expression 
levels of TAMGs exhibited significant differentiation 

between these two subtypes, as demonstrated by the PCA 

plot (Figure 4D). Kaplan-Meier analysis revealed that 

patients in the MCluster A group had a better prognosis 

compared to those in the MCluster B group (P = 0.047; 

Figure 4E). Consistently, the heat map analysis showed 

significantly lower levels of TAMG expression in 

MCluster A compared to MCluster B (Figure 4F). 

 

Further comparison between the two subtypes revealed 

that the MCluster B group was enriched with various 

immune cells, including B cells, CD4 T cells, CD8 T 

cells, dendritic cells, immature B cells, macrophages, 

mast cells, monocytes, natural killer cells, and others 

(Supplementary Figure 3A). Additionally, functional 

enrichment analysis identified significant functional 

differences between the subtypes. Signaling pathways 

such as B cell receptor signaling, T cell receptor 

signaling, neurotrophin signaling, TOLL-like receptor 

signaling, ERBB signaling, chemokine signaling, and 

FC epsilon RI signaling were found to be significantly 

enriched in the MCluster B group (Supplementary 

Figure 3B). 

 

Construction and validation of a prognostic 

signatures model of TAMGs 

 

We formulated a prognostic model that incorporates 

signatures based on TAMGs to assess their prognostic 

relevance in OC. In both the training cohort (P < 0.001; 

Figure 5A) and the validation cohort (P = 0.003; Figure 

5D), a high RS exhibited a statistically significant 

association with an unfavorable prognosis. The patient 

data for the training group were sourced from TCGA-

OV, while data for the validation group were derived 

from the GSE63885 dataset. 
 

To evaluate the specificity and accuracy of the model, 

time-dependent ROC curves were generated, showing 
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AUC values of 0.806, 0.663, and 0.632 for the 1-, 3-, 

and 5-year predictions, respectively, for the three risk 

signatures (Figure 5B). The validation model exhibited 

good predictive performance for this risk signatures at 

1-, 3-, and 5-years, as depicted in Figure 5E. 

Furthermore, principal component analysis (PCA) and 

t-distributed stochastic neighbor embedding (t-SNE) 

analyses demonstrated that our constructed feature 

model could effectively differentiate ovarian cancer 

patients based on their RS (Figure 5C, 5F). 

 

TAMGs-based RS to predict the immune landscape 

of ovarian cancer patients 

 

In our subsequent investigation, we focused on 

exploring the immune function (Figure 6A) and 

immune cell enrichment (Figure 6B) differences 

between the high- and low-RS groups using the 

ssGSEA algorithm. Our findings revealed that the high 

RS group exhibited higher immune cell enrichment and 

displayed increased activity in immune-related 

functional pathways. Notably, functional pathways such 

as APC co-inhibition, MHC class I, T cell co-inhibition, 

Type I IFN Response, Type II IFN Response, B cell, 

Neutrophils, pDCs, TIL, and Treg showed significant 

enrichment in the high RS group. We also observed a 

correlation between RS and the immune classification 

of ovarian cancer patients, with the high RS group being 

categorized as C4 (lymphocyte depletion) type, while 

the low RS group belonged to the C1 (wound healing) 

type (Figure 6C). Moreover, an analysis of immune cell 

enrichment in the high and low RS groups (Figure 6D) 

 

 
 

Figure 3. The mRNA expression levels of 7 TMAGs. Expression data were normalised to the reference genes (GAPDH), and are 

presented relative to the “calibrator” (IOSE-80). *P < 0.05, **P < 0.01, and ***P < 0.001. 
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further supported the differences in immune cell 

composition between the two groups. Furthermore, we 

found positive correlations between RS and resting NK 

cells (Figure 6E) as well as macrophage M2 (Figure 

6G), indicating a potential association between RS and 

these immune cell subsets. Conversely, there was a 

negative correlation between RS and activated NK cells 

(Figure 6F). 

 

RS-Based prediction of immunotherapy response 

 

In the context of OC patients, the prognostic 

implications of TAMGs-related RS exhibit marked 

significance and exert discernible effects on the TME. 

Our investigation delves deeper into the potential of RS 

as a predictive marker for the efficacy of immuno-

therapy. To this end, we conducted a comprehensive 

analysis of the expression profiles of PD1 and CTLA4, 

which represent pivotal immune checkpoint genes. 

Notably, we observed that the high RS group 

demonstrated elevated expression levels of these genes, 

and a consistent, positive correlation between them  

was established, as visually represented in Figure 7A, 

7B. 

 

In our endeavor to assess the role of RS in 

prognosticating immunotherapeutic response, we 

undertook an examination of Immune Prognostic Score 

(IPS) data obtained from ovarian cancer patients, 

employing the TCIA database (Figure 7C). Our findings 

unveil a statistically significant elevation in the median 

IPS value for patients within the high RS group as 

compared to their low RS counterparts. This outcome 

signifies a heightened probability of favorable respon-

siveness to immunotherapy in the cohort with an 

elevated RS. 

 

Functional enrichment analysis provided further 

insights into the biological pathways associated with 

high and low RS groups. The low RS group showed 

enrichment in functional pathways such as Olfactory 

transduction, Metabolism of xenobiotics by cytochrome 

 

 
 

Figure 4. TMAGs-based identification of ovarian cancer subtypes. (A) Patients in two cohorts were grouped into two clusters 

according to the consensus clustering matrix (k = 2). (B) CDF curves of the consensus score (k = 2–9) in the two cohorts. (C) Relative change 
in the area under the CDF curve (k = 2–9) in the two cohorts. (D) PCA plot for OSCC patients based on the Mcluster. (E) Kaplan–Meier 
survival analyses of the patients with Mcluster A and Mcluster B. (F) Heatmap showing the distribution of expression of genes in the model. 
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p450, Drug metabolism cytochrome p450, Ribosome, 

cardiac muscle contraction, and Oxidative 

phosphorylation. In contrast, the high RS group 

exhibited substantial enrichment of functional 

pathways related to cancer and immune cells. These 

pathways included circadian rhythm mammals, FC 

gamma r mediated phagocytosis, FC epsilon ri 

signaling pathways, JAK-STAT signaling pathways, 

Toll-like receptor signaling pathways, B cell receptor 

signaling pathways, T cell receptor signaling path-

ways, Apoptosis, Gnrh signaling pathways, Cancer 

pathways, MAPK signaling pathways, Neurotrophin 

signaling pathways, MTOR signaling pathways, Notch 

signaling pathways, and more (Figure 7D). These 

findings suggest that the high RS group may possess a 

more active and immunogenic TME, potentially 

contributing to increased responsiveness to immuno-

therapy. 

 

THEMIS2 is a potential target in ovarian cancer 

patients and is associated with EMT 

 

To further illuminate the potential implications of the 

three genes incorporated into our model in the context 

of OC, we conducted supplementary investigations that 

encompassed both bioinformatics analyses and in vitro 

experiments. Our findings underscore that heightened 

expression levels of EPB41L2 (P = 0.00062; Figure 8B) 

and THEMIS2 (P = 0.023; Figure 8C) were 

significantly associated with an adverse prognosis 

among OC patients. In contrast, TREM2 (P = 0.061; 

Figure 8A) did not exhibit a noteworthy correlation with 

 

 
 

Figure 5. Construction and validation of a prognostic signatures model of TMAGs. (A) Kaplan-Meier survival curves for the 

training set. (B) ROC analysis of the training set. (C) PCA (above) and t-SNE (below) analysis of the training set. (D) Kaplan-Meier survival 
curves for the validation set. (E) ROC analysis of the validation set. (F) PCA (above) and t-SNE (below) analysis of the validation set. 
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patient prognosis. Moreover, the results from univariate 

and multivariate Cox analyses lent support to the notion 

that THEMIS2 might function as an independent 

prognostic factor in the realm of OC, as visually 

represented in Figure 8D. 

 

Subsequent research unveiled a significant positive 

correlation between THEMIS2 expression and markers 

associated with epithelial-mesenchymal transition 

(EMT), suggesting its involvement in the EMT pathway 

(Figure 9A, 9B). To investigate this further, we 

performed in vitro experiments wherein THEMIS2 was 

silenced in ovarian cancer cells. The knockdown of 

THEMIS2 resulted in the suppression of N-cadherin 

and vimentin expression, while promoting E-cadherin 

expression, indicating a reversal of the EMT process in 

these cells (Figure 9C). Moreover, the inhibition of 

THEMIS2 significantly impeded the migration and 

invasion of ovarian cancer cells (Figure 9D, 9E). These 

findings provide compelling evidence for the 

involvement of THEMIS2 in EMT within the context of 

ovarian cancer. The suppression of THEMIS2 

expression not only disrupts EMT-associated molecular 

markers but also hampers the migratory and invasive 

capabilities of ovarian cancer cells. These results shed 

light on the functional role of THEMIS2 in EMT and 

suggest its potential as a therapeutic target for inhibiting 

EMT-driven processes in ovarian cancer. 
 

DISCUSSION 
 

OC is a highly lethal gynecological tumor with a low 5-

year survival rate, highlighting the urgent need for new 

biomarkers and therapeutic strategies [31–33]. In the 

 

 
 

Figure 6. Predict the immune landscape of ovarian cancer patients. (A) Analysis of immune function between high- and low-RS. (B) 
Immune cell enrichment analysis between high- and low-RS. (C) The relationship between RS and immune subtypes. (D) The bar plot 
showing the proportion of infiltrated immune cells calculated by the CIBERSORT algorithm. (E) RS has a positive correlation with NK cells 
resting. (F) RS has a negative correlation with NK cells activated. (G) RS has a positive correlation with Macrophages M2. 
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tumor microenvironment of OV, TAMs are among the 

most abundant immune cells. TAMs can originate from 

circulating monocytes that are recruited to the tumor site 

by chemotactic signals released by cancer cells and the 

surrounding stroma. Once at the tumor site, TAMs 

undergo functional polarization and can exhibit both pro-

tumor and anti-tumor properties, depending on the 

specific microenvironmental cues. TAMs, as important 

components of the OC microenvironment, play a 

significant role in the regulation of OC progression, 

invasion, metastasis, and drug resistance. Studies have 

shown that TAMs contribute to the adaptive immune 

response and antitumor development during chemo-

therapy in OC [34]. Wang et al. showed that targeting 

TAM is a promising strategy for altering the immuno-

suppressive tumor microenvironment and improving 

cancer immunotherapy [35]. In addition, TAM recruit-

ment and activation have been reported to be closely 

associated with OV development and metastasis [36]. 

 

Within the context of OC, TAMs frequently adopt an 

M2-like phenotype, which is notably associated with 

immunosuppressive and tumor-promoting effects. 

These M2-like TAMs release anti-inflammatory 

cytokines, such as interleukin-10 (IL-10) and trans-

forming growth factor-beta (TGF-β), which collectively 

contribute to the dampening of the immune response 

against cancer cells [37–40]. Additionally, they play  

a pivotal role in fostering angiogenesis, tissue 

remodeling, and the creation of an immunosuppressive 

milieu within the tumor. Consequently, the targeting of 

TAMs in the context of OC has emerged as an active 

and promising realm of investigation, aimed at the 

formulation of novel therapeutic strategies. 

 

In this article, we performed a comprehensive analysis 

of TAMGs in OC patients. Initially, we screened 

TAMGs using two independent single-cell datasets 

from OC patients. We then validated these TAMGs by 

selecting those associated with OC prognosis and 

exhibiting dysregulated expression in OC-related genes. 

Ultimately, we identified seven key TAMGs: 

THEMIS2, TREM2, EPB41L2, MAFB, KLF2, CD14, 

and EPB41L3. To further confirm the expression of 

 

 

 
Figure 7. RS-Based prediction of immunotherapy response. (A) Correlation analysis between RS and PD1. (B) Correlation analysis 

between RS and CTLA4. (C) RS-Based Prediction of Immunotherapy Response. (D) Functional enrichment analysis between high- and low-RS 
groups. *P < 0.05, **P < 0.01, and ***P < 0.001. 
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Figure 8. The relationship between key genes in TMAGs model and prognosis of OC. (A) TREM was not significantly associated 

with the prognosis of OC patients. (B) High expression of EPB41L2 was associated with poor prognosis in OC patients. (C) High expression of 
THEMIS2 was associated with poor prognosis in OC patients. (D) Univariate and multivariate COX analysis results showed that A was an 
independent prognostic factor for OC patients. 

 

 
 

Figure 9. Knockdown of THEMIS2 in OC cells inhibits cell migration and invasion. (A) THEMIS2 was positively correlated with 

EMT-related markers. (B) EMT-related pathways were significantly enriched in highly expressed THEMIS2. (C) The expression of EMT-
related proteins was significantly affected after THEMIS2 knockout. (D) The invasion ability of OC cells was significantly reduced after 
THEMIS2 knockdown. (E) The migratory ability of OC cells was significantly reduced after THEMIS2 knockdown. 



www.aging-us.com 219 AGING 

these TAMGs, we verified their protein expression levels 

through WB and mRNA expression levels through PCR 

experiments. Our results demonstrated consistent 

dysregulation of these TAMGs in OC patients, sup-

porting their potential significance in the disease. 

 

Based on the expression patterns of these seven 

TAMGs, we were able to effectively categorize OC 

patients into two subtypes: MCluster A and MCluster B. 

Patients belonging to MCluster A exhibited a better 

prognosis compared to MCluster B. However, we 

observed that MCluster A patients had lower immune 

cell infiltration enrichment and were less sensitive to 

immunotherapy compared to MCluster B patients. 

Moreover, we developed a prognostic feature model 

using a scoring system consisting of three genes 

(EPB41L2, THEMIS2, and TREM2). The accuracy of 

this model was validated using independent external 

data, further supporting its potential clinical utility. 

Notably, patients with higher risk scores in the model 

had a poorer prognosis. Another significant finding of 

our study was the predictive value of TAMGs-based 

risk scores for immunotherapy response in OC patients. 

Patients characterized by higher RS demonstrated 

heightened sensitivity to immunotherapeutic inter-

ventions, suggesting that TAMGs may serve as 

prospective predictive biomarkers for the assessment of 

immunotherapeutic outcomes. While prognostic models 

in the context of OC have received considerable 

research attention, the development of predictive 

models for characterizing TAMs in OC remains a 

notably unresolved aspect [41–44]. This article offers a 

valuable source of information that can potentially 

enhance the understanding of TAMs in OC and provide 

a foundation for further study in this area. 

 

Moreover, our in vitro experiments revealed potential 

key genes in the model. We observed significant 

overexpression of THEMIS2 in OC, which was 

correlated with poorer prognosis. Further investigations 

demonstrated that THEMIS2 was associated with EMT, 

and silencing THEMIS2 in OC cells resulted in a 

significant inhibition of cell migration and proliferation. 

In a recent study conducted by Huang et al., it was 

discovered that the expression of THEMIS2 exhibited a 

noteworthy increase in breast and ovarian cancer stem 

cell lines [45]. The researchers identified THEMIS2 as 

a novel regulator of cancer stemness and chemo-

resistance by disrupting the interaction between PTP1B 

and p-MET, thus promoting MET signaling in cancer 

cells. These findings suggest that THEMIS2 could serve 

as a promising target in OC patients, offering potential 

therapeutic value. 

 

These findings collectively highlight the importance of 

TAMGs in OC prognosis, immunotherapy response, 

and the underlying tumor microenvironment. Further 

studies are needed to validate these findings in clinical 

settings and explore the molecular mechanisms 

underlying the observed associations. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Gene expression levels of GEPIA2-based key TMAGs in ovarian cancer and normal. 
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Supplementary Figure 2. Key TMAGs protein expression levels in ovarian cancer and normal. Figure modified from HPA. 
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Supplementary Figure 3. Differential identification between subtypes. (A) Analysis of immune infiltrating cells between MCluster 

A and MCluster B. (B) Heat mapping was used to visualize the biological process by GSVA analysis in the 2 clusters. *P < 0.05, **P < 0.01, and 
***P < 0.001. 

 

 


