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INTRODUCTION 
 

Cancer is characterized by remarkably high rates of 

morbidity and mortality globally. In addition, it poses 

substantial burden on healthcare systems worldwide and 

negatively affects the economy [1]. Different types of 

genetic mutations have been found in patients with 

cancer; thus, a pan-cancer analysis of specific genes is 

urgently required to investigate the close correlations 

between the underlying molecular mechanisms and 

potential clinical prognosis [2, 3]. Despite the 

availability of increasingly effective therapy options for 

cancer, including surgery, radiotherapy, chemotherapy, 

and immunotherapy, the survival rates of patients with 

several types of cancer remain unimproved [4]. 

Immunotherapy has achieved great progress in the field 

of oncology, particularly against hematologic tumors. 

However, the effects of immunotherapy, such as 

immune checkpoints inhibitors (ICIs) and chimeric 

antigen receptor (CAR) T-cell therapy, on solid tumors 

remain unsatisfactory. Therefore, a pan-cancer analysis 

is necessary for the identification of novel biological 
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ABSTRACT 
 

Cancer accounts for the highest rates of morbidity and mortality worldwide. RNA binding motif protein X-linked 
(RBMX) is a nuclear RNA-binding protein, associated with certain types of cancer by participating in the 
integration of sister chromatids and a combination of ribonucleoprotein complexes. However, the specific role 
of RBMX in cancer immunity remains unknown. This study presents the aberrant expression levels, single-cell 
distributions, effective prognostic roles, immune cell infiltration associations, and immunotherapy responses of 
RBMX as a biomarker in various types of cancer. Moreover, it validates the aberrant expression of RBMX in 
clinical cancer samples. Furthermore, we also evaluated the relationships between RBMX expression and 
myeloid-derived suppressor cells in clinical samples by immunofluorescent staining. The results showed that 
knockdown of RBMX can impair the proliferation, migration, and invasion of liver cancer cells. Finally, we 
indicated that RBMX may play an immunoregulatory role in cancer progression, affecting the therapeutic 
effects of immune checkpoint inhibitors in patients with cancer. 
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targets and biomarkers involved in carcinogenesis, 

cancer progression, and immunotherapy response. Such 

knowledge would improve the precision of cancer 

therapy. 

 

RNA-binding motif protein X-linked (RBMX) is a 

nuclear RNA-binding protein. It is the gene product of 

the X chromosome, maintaining genome stability 

during DNA splicing, DNA damage repair, and 

transcription [2, 5]. RBMX maintains the genomic 

stability by participating in the integration of sister 

chromatids and a combination of ribonucleoprotein 

complexes [6, 7]. It plays a crucial role in the regulation 

of cancer cell division and proliferation. Nonetheless, 

its role in cancer immunotherapy remains unclear. 

Recently, numerous research studies revealed the role of 

RBMX in cancer progression. For example, through 

network analysis of gene expression using abundant 

clinical data, Climente-Gonzalez et al. reported that 

RBMX mediated the essential drivers in tumorigenesis 

[8]. However, some studies revealed that RBMX may 

act as a tumor repressor. Mutations of RBMX found in 

patients with adenosquamous carcinoma suppressed the 

expression of RBMX, while tobacco-induced mutations 

of RBMX can increase the incidence of cancer among 

smokers [3, 9]. Moreover, Antonello et al. revealed the 

chromosomal abnormalities in vemurafenib resistance-

related papillary thyroid carcinoma due to RBMX 

mutations [10]. However, a comprehensive pan-cancer 

analysis of the role of RBMX has not been conducted 

thus far, and its functions in cancer immunity have not 

been described. 

 

In this study, we initially analyzed the transcriptional 

expression levels, genomic alterations, copy number 

variations, and DNA methylations of RBMX across 

different types of cancer using datasets from public 

databases. Subsequently, we verified the presence of 

aberrant RBMX protein levels in clinical liver 

hepatocellular carcinoma (LIHC), glioblastoma (GBM), 

and cholangiocarcinoma (CHOL) samples compared 

with adjacent tissues. Moreover, we applied single-cell 

RNA landscape analysis, prognostic analysis, and gene 

set enrichment analysis (GSEA) to unveil the potential 

clinical usage and explore the underlying biological 

functions of RBMX in different cancer types. 

Subsequently, we performed immune cell infiltration 

analysis/immune regulator correlation analysis and ICI 

response analysis to examine the cell infiltration 

associations and the predictive effect of RBMX in 

cancer immunotherapy response, respectively. Finally, 

by knocking down RBMX using short hairpin RNAs 

(shRNAs), we also validated the vital role of RBMX in 
maintaining the proliferative, migrative, and invasive 

capacities of liver cancer cells. The results revealed the 

significant efficiency of RBMX in predicting the 

immunotherapy response and providing a novel 

direction for the screening of effective prognostic 

biomarkers for cancer therapy. 

 

MATERIALS AND METHODS 
 

Data source 

 

We acquired the pan-cancer tissue transcriptional data 

and human normal sample data from the TCGA pan-

cancer dataset and GTEx datasets, respectively. These 

datasets were accessed from the UCSC Xena database 

(https://xenabrowser.net/datapages/). Moreover, the 

CNV data and methylation level of TSS data of 33 

cancer types were also downloaded from the UCSC 

Xena database (https://xenabrowser.net/datapages/). 

Immunofluorescence data of MCF7 and U-2 OS cell 

lines were obtained from the Human Protein Atlas 

(https://www.proteinatlas.org/). The protein interaction 

information of RBMX was obtained from the ComPPI 

(http://comppi.linkgroup.hu) [11]. The abbreviations  

of different types of cancer are presented in Sup-

plementary Table 1. 

 

Clinical sample collection 

 

Seven GBM samples, three CHOL samples, and seven 

LIHC samples with paired adjacent normal tissues were 

collected. Prior to sample collection, informed consent 

was provided by all inpatients who underwent the 

resection operation in the Second Affiliated Hospital of 

Nanchang University (NCUSAH; Nanchang, China) 

from 2020 to 2022. Following excision, all tissues were 

immediately transferred and stored in liquid nitrogen.  

 

Single-cell analysis of RBMX 

 

The TISCH web tool was utilized to perform single-

cell analysis of RBMX (Gene) in the major lineage 

(Cell-type annotation) of all types of cancer (Cancer 

type). We examined the expression levels of RBMX 

in the pan-cancer setting, and quantificationally 

illustrated the data using scatter diagrams, violin 

plots, and a heatmap. The protocols for data 

acquisition, data processing, and cell annotation 

procedures were obtained from the TISCH website 

(http://tisch.comp-genomics.org/documentation/) [12]. 

 

Prognostic analysis of RBMX in the pan-cancer 

setting 

 

Four prognostic indices were included in our prognostic 

analysis, namely DFI, DSS, OS, and PFI. These follow-

up data were downloaded from the UCSC Xena 

database (https://xenabrowser.net/datapages/). Univariate 

Cox proportional hazards regression and the Kaplan–

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
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Meier model were sequentially utilized to verify the 

essential role of RBMX in various types of cancer. 

Univariate Cox proportional hazards regression was 

applied to assess the importance of the continuous 

variable RBMX in predicting the prognosis of patients 

with cancer. Kaplan–Meier curve analysis was 

performed to assess the bivariate RBMX expression 

levels; the best cut-off value was selected using the 

“surv-cutpoint” function of the “survminer” R package 

(version 0.4.9).  

 

DEGs between the low- and high-RBMX subgroups 

 

The samples for each TCGA cancer type were divided 

into low- and high-RBMX subgroups according to the 

RBMX mRNA expression levels. The top 30% and 

bottom 30% were defined as the high-RBMX subgroup 

and the low-RBMX subgroup, respectively. Differential 

expression analysis was conducted using the “limma” R 

package [13] to calculate the log2 (fold change) value 

and the adjusted p-value of each gene in different cancer 

types. Genes with adjusted p-values < 0.05 were defined 

as DEGs (Supplementary Table 2). 

 

GSEA 

 

The “gmt” file of the hallmark gene set 

(h.all.v7.4.symbols.gmt) was downloaded from the 

Molecular Signature Database (MSigDB, https://www. 

gsea-msigdb.org/gsea/msigdb/index.jsp) [14], which 

contains a total of 50 hallmark gene sets. We used the 

“clusterProfiler” [15] package to perform the GSEA 

[16]. In addition, we calculated the normalized 

enrichment score and false discovery rate (FDR) for 

each hallmark gene in each cancer type using the 

DEGs obtained from the differential expression 

analysis.  

 

Immune cell infiltration analysis in TIMER2 

 

The quantification of immune cell infiltration in 

different types of cancer was carried out using the 

TIMER platform. The associations of immune cell 

infiltration with RBMX expression in the pan-cancer 

setting were assessed using the TIMER2 database 

(http://timer.cistrome.org/) [17]. The associations 

between RBMX expression levels and 21 immune cell 

subsets (i.e., cancer-associated fibroblasts, CD4+ T 

cells, lymphoid progenitor cells, monocyte progenitor 

cells, endothelial cells, myeloid progenitor cells, 

hematopoietic stem cells, follicular helper T cells, 

eosinophils, γ/δ T cells, Treg cells, NK T cells, B cells, 

neutrophils, monocytes, dendritic cells, macrophages, 
NK cells, CD8+ T cells, and mast cells) were assessed 

by Spearman correlation analysis, and visualized in a 

assembled heatmap.  

Fluorescence immunohistochemistry of clinical 

samples 

 

To gain insight into the correlation of RBMX with 

CD11b+ MDSC cell infiltration in LIHC, we performed 

fluorescence immunohistochemistry using three liver 

cancer samples obtained from the biological sample 

bank of the NCUSAH. We examined the correlation 

between the infiltration of CD11b+ MDSC and the 

expression levels of RBMX protein. The tumor tissues 

were embedded in paraffin and cut into slices 

(thickness: 5 μm) with a microtome. The slices were 

placed on glass slides and incubated in xylene solution 

for 15 min twice, 100% ethanol for 10 min, 85% and 

75% ethanol for 5 min deparaffinization; the antigen 

was recovered in ethylenediaminetetraacetic acid buffer 

(pH 8.0). To block the antigen, the slices were 

incubated with a 3% bovine serum albumin solution for 

30 min. Thereafter, the slices were incubated overnight 

with primary antibodies anti-CD11b (1:100) and anti-

RBMX (1:100). Residual primary antibody was washed 

with phosphate-buffered saline (PBS) solution, and the 

slices were incubated with Cy3 (1:300) and AF488 

(1:400) conjugated secondary antibodies for fluorescent 

labeling in the dark for 1 h. Finally, the nuclei were 

stained using 4’,6-diamidino-2-phenylindole dye for 

localization. The slides were observed and photo-

graphed with a fluorescence microscope. 

 

Immunotherapy prediction analysis 

 

The statistical association between RBMX and 

familiar immunotherapy biomarkers (e.g., MSI, TMB, 

and other well-established immune checkpoint or 

regulator genes in different types of cancer) was 

evaluated through Spearman correlation analysis. 

Four immune checkpoint blockade therapy cohorts 

obtained from the Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/gds) were utilized to 

examine the predictive ability of RBMX regarding the 

response of cancer to immunotherapy.  

 

The Gide2019 cohort included 32 patients with 

melanoma who received anti-CTLA4/anti-PD-1 therapy 

[18]; the Raiz2017 cohort included 26 patients with 

melanoma who received anti-PD-1 therapy [19]. In 

addition, the Lauss2017 cohort included 25 patients 

with melanoma who received adoptive T cell therapy 

[20]; and the Vanallen2015 cohort included 42 patients 

with melanoma treated with anti-CTLA4 therapy. 

 

Cell lines and cell culture 

 
HCCLM3 and SK-HEP1 cell lines were purchased from 

the American Type Culture Collection (Manassas, VA, 

USA), and cultured using Dulbecco’s Modified Eagle’s 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://timer.cistrome.org/
https://www.ncbi.nlm.nih.gov/gds
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medium supplemented with 10% fetal bovine serum 

(FBS; Gibco, USA) and 1 unit/ml penicillin and 1 

mg/ml streptomycin (Gibco, USA) in 37° C incubator 

with 5% CO2 and 100% humidity. 

 

Plasmid constructs 

 

Human RBMX targets (shRBMX-1: 5’-

GGGCTTAATACGGAAACAAAT-3’, shRBMX-2: 5’-

CCTCTCGTAGAGATGTTTATT-3’ shRBMX-3: 5’-

CACCACCACCACGAGATTATA-3’) were designed 

and constructed by Service Company (Tianjin, China). 

The FV263 construct (U6-MCS-CMV-EGFP-hPGK-

PuroR) was used to express the shRNAs. All plasmids 

were transfected using Lipofectamine 3000 

Transfection Reagent (catalog number [Cat. No.] # 

L3000015; ThermoFisher, USA), and the transfected 

cells were used in subsequent cell assays after 

puromycin selection (2 µg/ml).  

 

Western blotting assay 

 

The total protein of liver cancer cell lines was extracted 

using radioimmunoprecipitation assay lysis buffer (Cat. 

No. R0010; Solarbio, China), and the concentration of 

protein samples was quantified by a bicinchoninic acid 

kit (Cat. No. PC0020, Solarbio, China) on ice. Western 

blotting assay was conducted according to our previous 

publication [21]. The antibodies used were purchased 

from Proteintech Company (Wuhan, China), including 

RBMX2 polyclonal antibody (1:2,000 diluted, Cat. No. 

17994-1-AP), glyceraldehyde-3-phosphate dehydro-

genase (GAPDH) polyclonal antibody (1:5,000 diluted, 

Cat. No. 10494-1-AP), and horseradish peroxidase-

conjugated Affinipure Goat Anti-Rabbit IgG(H+L) 

(1:5,000 diluted, Cat. No. SA00001-2). 

 

Cell proliferation assays 

 

In the colony formation assay, we seeded 500 liver 

cancer cells from each group into each well of a six-

well plate, together with 2 ml of complete medium; the 

culture medium was replaced once every 5 days for 3 

weeks. After removing the culture medium, we fixed 

the cells with 4% formaldehyde for 10 min and stained 

them with 1% crystal violet for 30 min. Subsequently, 

the cell plates were rinsed with PBS five times. Finally, 

we photographed the wells and calculated the number of 

cell colonies in each well. 

 

In the Cell Counting Kit-8 assay, liver cancer cells were 

seeded into a 96-well plate (2,000 cells per well in 100 µl 

of culture medium). Following the adherence of cells to 
the plate, we added 10 µl of CCK-8 reagent (Beyotime, 

Shanghai, China) to each well. Thereafter, the plate was 

placed in the incubator for 1 h to calculate the growth rate 

of cells. For this purpose, the absorbance in each well was 

measured at 450 nm wavelength, and the OD450 was 

recorded every 24 h to reflect the growth rates. 

 

Cell migration and invasion assays 

 

Cells were seeded into a six-well plate. When the cells 

reached complete confluence, we removed the complete 

medium and performed a scratch using a sterile pipette 

tip. Next, we washed the six-well plate using PBS and 

added FBS-free medium for further culture of cells. 

Images of the scratch were captured at 0 h and 24 h. 

 

Regarding the Transwell invasion assay, the pre-cool 

Matrigel matrix (Cat. No. 354263; Corning, USA) was 

equally spread in the upper chamber of 24-well 

Transwell plates. Next, the plates were incubated at 

37° C for 2 h to solidify the Matrigel matrix. 

Subsequently, 20,000 liver cancer cells were seeded 

onto the solidified Matrigel matrix in FBS-free medium 

and co-cultured in the lower chamber with medium 

containing 10% FBS. After 12 h, invading cells that 

crossed the solidified Matrigel matrix and Transwell 

membrane were retained and stained with 1% crystal 

violet. 

 

Statistical analysis 

 

The Wilcoxon rank-sum test was performed to compare 

RBMX expression between normal tissues and tumor 

tissues. A paired t-test was performed to calculate the 

statistical significance based on the RBMX 

immunohistochemistry score of paired clinical cancer 

and adjacent tissues. The Kaplan–Meier method and 

univariate Cox proportional hazards regression analysis 

were used to evaluate the prognostic value of RBMX 

expression in various types of cancer. Spearman 

correlation analysis was conducted to determine the 

correlation between RBMX and relevant factors. A chi-

squared test was performed to calculate the responding 

ratio of an ICI-therapy responder and a non-responder 

between the low- and high-RBMX subgroups. 

 

Data availability statement 

 

The original data used in this project can be downloaded 

from the UCSC (https://xenabrowser.net/datapages/) 

website. 

 

RESULTS 
 

Comprehensive landscape of RBMX in different 

types of cancer 

 

The workflow was included in the Figure Abstract to 

better understand the content of this study. Initially, we 

https://xenabrowser.net/datapages/
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sought to determine the role of RBMX in various types 

of cancer. Thus, we extracted data from The Cancer 

Genome Atlas (TCGA) and Genotype-Tissue 

Expression (GTEx) databases, and compared the 

RBMX transcriptional expression levels between the 

tumor and normal samples. Higher RBMX expression 

was found in 13 cancer types, including colon 

adenocarcinoma (COAD), CHOL, GBM, esophageal 

carcinoma (ESCA), kidney renal clear cell carcinoma 

(KIRC), head and neck squamous cell carcinoma 

(HNSC), etc. In contrast, RBMX expression was 

downregulated in acute myeloid leukemia (LAML), 

ovarian serous cystadenocarcinoma (OV), skin 

cutaneous melanoma (SKCM), thyroid carcinoma 

(THCA), uterine corpus endometrial carcinoma 

(UCEC), uterine carcinosarcoma (UCS), etc. The 

expression levels of RBMX were almost equal in breast 

invasive carcinoma (BRCA) and kidney renal papillary 

cell carcinoma (KIRP) (Figure 1A). Across all cancer 

types, RBMX expression was most significantly 

upregulated in CHOL compared with normal tissues 

(Figure 1B). Next, we applied genomic alteration 

analysis. We detected the highest rate of alteration of 

RBMX in UCS, with > 6% of patients carrying 

mutations as well as deep deletion (Figure 1C). 

Furthermore, we analyzed the correlations between 

copy number variation (CNV) and transcriptional 

expression in various types of cancer. The most 

remarkable correlation was observed in thymoma 

(THYM) (Figure 1D). Analysis of transcription start site 

(TSS) methylation showed a significant correlation 

between the TSS methylation level and RBMX 

expression in THCA (Figure 1E). Nevertheless, 

immunofluorescence images obtained from the Human 

Protein Atlas revealed that the RBMX protein was 

initially localized in the nucleus of the MCF7 and U-2 

OS tumor cell lines (Figure 1F). Finally, we constructed 

a protein–protein interaction (PPI) network using 

sample data extracted from the compartmentalized PPI 

database (ComPPI website). The analysis illustrated the 

subcellular localization of proteins that closely 

interacted with RBMX. These proteins were distributed 

in the mitochondria, nucleus, cytosol, secretory 

pathway, extracellular space, and membrane (Figure 

1G). Our analysis of immunohistochemical specimens 

also validated that RBMX protein was overexpressed in 

CHOL (n = 3), LIHC (n = 7), and GBM (n = 7) tissues 

compared with their adjacent tissues (Figure 1H–1M). 

 

Single-cell analysis of RBMX in the pan-cancer 

setting 

 

To further analyze the distribution of RBMX-expressing 
cells in tumor microenvironments, we applied the 

single-cell analysis of RBMX using the Tumor Immune 

Single-cell Hub (TISCH) webtool. The heatmap 

illustrated that the immune cells (particularly dendritic 

cells [DC] and T prolif) accounted for most RBMX 

expression in the majority of tumor types (Figure 2A). 

Moreover, we examined the GSE120575 dataset 

containing 16,291 cells from 32 patients with 

metastatic SKCM who received treatment with ICIs. 

The results revealed that RBMX was widely expressed 

in the plasma and immune cells, including DC, 

monocytes/macrophages, T prolif, CD8T, CD8Tex, 

CD4Tconv, regulatory T (Treg), natural killer (NK), 

and B cells (particularly in T prolif cells) (Figure 2B, 

2C). Next, we analyzed the distribution of RBMX 

expression in the glioma microenvironment using the 

data of GSE131928, which includes 7,930 cells from 28 

patients with glioma. The analysis indicated that RBMX 

was highly expressed in malignant cells and 

monocytes/macrophages (Figure 2D, 2E). These results 

revealed the abnormal expression of RBMX in different 

types of infiltrating immune cells. Therefore, higher 

RBMX expression may be involved in the immune 

defense, immune surveillance, and immune clearance of 

tumor cells in the tumor microenvironment, thus 

affecting tumor progression.  

 

Prognostic analysis of RBMX in the pan-cancer 

setting 

 

Initially, we performed Kaplan–Meier and univariate 

Cox proportional hazards regression analyses in each 

cancer type to further explore the clinical application 

potential of RBMX in the prediction of cancer 

prognosis. The patients with low- and high-RBMX 

expression in the Kaplan–Meier survival analysis were 

divided into groups using the “surv-cutpoint” function 

of the “survminer” R package (0.4.9) to obtain the most 

significant cut-off value. The results were visualized in 

a heatmap (Figure 3A), showing the high relevance of 

RBMX and its prognostic value in the majority of 

cancer types. Overall survival (OS) analysis revealed 

that RBMX was a protective factor in patients suffering 

from cervical squamous cell carcinoma and 

endocervical adenocarcinoma (CESC), KIRC, rectum 

adenocarcinoma (READ), THYM, UCS, and uveal 

melanoma (UVM). In contrast, it was identified as a 

risk factor in BRCA, ESCA, kidney chromophobe 

(KICH), HNSC, KIRP, lung adenocarcinoma (LUAD), 

LIHC, prostate adenocarcinoma (PRAD), sarcoma 

(SARC), pheochromocytoma and paraganglioma 

(PCPG), and SKCM. Subsequently, we performed 

progression-free interval (PFI) analysis to evaluate the 

role of RBMX in tumor death, recurrence, and 

metastasis. The findings indicated that RBMX was a 
protective factor in COAD, KIRC, THYM, and UCEC. 

Moreover, the data obtained from the disease-free 
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Figure Abstract. The workflow of our study. 
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Figure 1. Comprehensive landscape of RBMX. (A) Transcriptional expression levels of RBMX in cancer based on TCGA and GTEx 

cohorts. (B) Different expression levels of RBMX between CHOL and normal cholecyst tissues. (C) Analysis of RBMX alteration 
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frequency in different types of cancer using data from the cBioPortal database. (D) Pearson correlations between RBMX expression 
and RBMX copy number variation in each type of cancer. (E) Pearson correlations between RBMX expression and RBMX 
transcriptional start site (TSS) methylation in each type of cancer. (F) Immunofluorescence images of RBMX protein, nucleus, 
endoplasmic reticulum (ER), microtubules, and merged images in MCF7 and U2-OS cell lines. (G) The protein–protein interaction  
(PPI) network displayed interaction between the proteins and RBMX. (H–M) RBMX expression between clinical tumor samples  
and related normal samples in CHOL (H, I), LIHC (J, K), and GBM (L, M). CHOL, cholangiocarcinoma; GBM, glioblastoma; GTEx, 
Genotype-Tissue Expression; LIHC, liver hepatocellular carcinoma; RBMX, RNA binding motif protein X -linked; TCGA, The Cancer 
Genome Atlas. 

 

 
 

Figure 2. Single-cell analysis of RBMX in different types of cancer. (A) Heatmap exhibiting a comprehensive landscape of RBMX 

expression in 33 cell types based on 28 single-cell datasets (the number indicates the expression levels of RBMX). (B, C) Distribution of various 
cells in SKCM based on the GSE120575 database. (D, E) Distribution of various cells in glioma based on the GSE131928 database. RBMX, RNA 
binding motif protein X-linked; SKCM, skin cutaneous melanoma. 
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interval (DFI) analysis suggested that RBMX is a 

protective factor in BRCA, brain lower grade glioma 

(LGG), READ, stomach adenocarcinoma (STAD), and 

THCA. The disease-specific survival (DSS) analysis 

indicated such as role for RBMX in CESC, KIRC, 

THYM, and UVM. Nevertheless, RBMX was mostly 

recognized as a risk factor. Notably, RBMX was 

identified as a high-risk factor in adrenocortical 

carcinoma (ACC), KIRP, and LIHC, while it played a 

protective role in KIRC and THYM. We performed 

univariate Cox proportional hazards regression to 

further analyze the relationship between RBMX and the 

prognosis of patients with 32 types of cancer. The forest 

plot revealed that the expression of RBMX was 

upregulated and the OS time was prolonged in READ 

(hazard ratio [HR]: 0.264, 95% confidence interval 

[CI]: 0.112–0.623, p = 0.002) and KIRC (HR: 0.578, 

95% CI: 0.457–0.733, p < 0.01). This tendency was 

reversed in LIHC (HR: 1.543, 95% CI: 1.167–2.040, p 

= 0.002), SARC (HR: 1.637, 95% CI: 1.153–2.363, p = 

0.008), KIRP (HR: 1.735, 95% CI: 1.102–2.973, p = 

0.045), and ACC (HR: 3.811, 95% CI: 1.757–8.267, 

 

 
 

Figure 3. Prognostic analysis of RBMX in the pan-cancer setting. (A) Heatmap based on the univariate Cox proportional hazards 
regression and Kaplan–Meier models. The heatmap summarizes the correlation between RBMX expression and disease-specific survival 
(DSS), overall survival (OS), progression-free interval (PFI), and disease-free interval (DFI). Red and blue represent the risk and protective 
roles, respectively, in the prognosis of cancer. (B) Prognostic role of RBMX in the pan-cancer setting, illustrated by a forest plot based on the 
univariate Cox proportional hazards regression method. Red indicates the types of cancer for which RBMX was identified as significant risk 
factor. (C–F) Kaplan–Meier analysis indicated that higher RBMX expression was associated with worse clinical prognosis in LIHC (C) and KIRP 
(D). However, higher RBMX expression was predictive of better prognosis in KIRC (E) and READ (F). KIRC, kidney renal clear cell carcinoma; 
KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; RBMX, RNA binding motif protein X-linked; READ, rectum 
adenocarcinoma. 
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p <0.001) (Figure 3B). The Kaplan–Meier survival 

analysis based on OS data showed that patients with 

different types of cancer could be classified into two 

subgroups with distinct prognoses based on RBMX 

expression. For example, higher RBMX expression was 

associated with poorer prognosis for patients with LIHC 

and KIRP (Figure 3C, 3D), whereas it was linked to better 

prognosis for patients with KIRC and READ  

(Figure 3E, 3F). 

 

GSEA of RBMX in the pan-cancer setting 

 

We sought to gain insight into the role of RBMX in the 

biological processes of various types of cancer. Therefore, 

we conducted GSEA to distinguish the cancer hallmarks 

of RBMX based on differentially expressed genes (DEGs) 

between the low- and high-RBMX subgroups in 33 types 

of cancer. The results indicated a significant correlation 

between RBMX expression and immune-related 

pathways, particularly tumor necrosis factor alpha 

(TNFA) signaling via nuclear factor kappa B (NFKB), 

interferon gamma (IFNG) response, interferon alpha 

(IFNA) response, and inflammatory in bladder urothelial 

carcinoma, COAD, diffuse large B-cell lymphoma 

(DLBC), lung squamous cell carcinoma, and STAD. 

Based on this evidence, RBMX may affect the tumor 

microenvironment by regulating the interaction between 

malignant tumor cells and immune cells (Figure 4). 

 

 
 

Figure 4. GSEA of RBMX in the pan-cancer setting. Heatmap illustrating the results of the GSEA for RBMX in the pan-cancer setting. The 
circle size indicates the enrichment of the false discovery rate (FDR) value in the pan-cancer setting. Red represents an increase in the 
normalized enrichment score (NES) in the pan-cancer setting; blue indicates the reverse. GSEA, gene set enrichment analysis; RBMX, RNA 
binding motif protein X-linked. 
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Immune cell infiltration analysis 

 

Analysis of immune cell infiltration in the pan-cancer 

setting was conducted to further assess the association 

between RBMX and cancer immunity using Spearman 

correlation analysis. Data were extracted from the 

Tumor IMmune Estimation Resource 2 (TIMER2) 

database. The results revealed the infiltration levels of 

CD4+ T cells, cancer-associated fibroblasts, lymphoid 

progenitor cells, myeloid progenitor cells, endothelial 

cells, eosinophils, hematopoietic stem cells, follicular 

helper T cells, γδ T cells, NK T cells, Treg cells, 

myeloid-derived suppressor cells (MDSC), neutrophils, 

monocytes, B cells, DC, macrophages, mast cells, NK 

cells, and CD8+ T cells in the pan-cancer setting. The 

infiltration levels of progenitor cells and MDSC were 

positively correlated with RBMX in most TCGA cancer 

types (Figure 5). 

 

 
 

Figure 5. TIMER immune cell infiltration analysis. Heatmap illustrating the correlations of RBMX expression with the infiltration levels 

of CD4+ T cells, CAF, progenitor, Endo, Eos, HSC, Tfh, gdT, NKT, regulatory T cells (Tregs), B cells, neutrophils, monocytes, macrophages, 
dendritic cells, NK cells, mast cells, and CD8+ T cells in the pan-cancer setting. Red and blue squares indicate positive and negative 
correlations, respectively. CAF, cancer-associated fibroblasts; Endo, endothelial cells; Eos, eosinophils; gdT, γ/δT cells; HSC, hematopoietic 
stem cells; NK, natural killer; NKT natural killer T; RBMX, RNA binding motif protein X-linked; TIMER, Tumor IMmune Estimation Resource; 
Tfh, follicular helper T cells. 
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The infiltration level of MDSC with remarkably 

upregulated RBMX expression was high in ACC, 

LIHC, KIRP, and SKCM. In ACC, KRIP, and LIHC, 

RBMX was identified as a significant risk factor. These 

results suggested that overexpression of RBMX may 

promote tumor progression in ACC, LIHC, KIRP,  

and SKCM. MDSC are viewed as a heterogeneous 

population of myeloid cell precursors, immature 

granulocytes, monocytes, and DC, also termed im-

mature immunosuppressor cells [22].  

 

Previous studies suggested that MDSC can perform an 

immunosuppressive function in several types of cancer 

through a variety of pathways and mechanisms, thereby 

indirectly inhibiting cancer immune response [23]. Our 

results suggested that upregulated RBMX expression 

may affect the occurrence, prognosis, and treatment of 

cancer, and it is highly correlated with infiltrating 

MDSC. However, further investigation is warranted to 

determine the regulatory mechanism underlying this 

relationship. 

 

Correlations between RBMX and immune tumor 

mutation burden (TMB), microsatellite instability 

(MSI), and regulators 

 

The correlations between RBMX and immune 

regulators in the pan-cancer setting are illustrated in a 

heatmap (Figure 6A). The results showed remarkable 

positive relationships between RBMX and immune 

regulators in HNSC, KICH, LIHC, and pancreatic 

adenocarcinoma, as well as negative relationships in 

GBM, SARC, and testicular germ cell tumors (TGCT). 

Moreover, RBMX was significantly positively 

associated with CD200, CD276, and butyrophilin like 2 

(BTNL2) expression in most types of cancer. According 

to these data, RBMX may act as an immune-related 

RNA-binding protein-coding gene in numerous types of 

cancer.  

 

Consequently, we assessed the predictive role of RBMX 

in cancer patients treated with ICIs. We examined the 

correlations between RBMX expression and TMB, as 

well as MIS with deep insight across various types of 

cancer. RBMX was positively correlated with MSI in 

UCEC, TGCT, STAD, SARC, READ, and ESCA. It 

was also positively correlated with TMB in PRAD, 

LGG, LAML, HNSC, DLBC, and STAD. In contrast, 

RBMX was negatively correlated with TMB in THCA, 

THYM, THCA, KIRC, and BRCA (Figure 6B, 6C). 

 

RBMX predicted the efficacy of immunotherapy in 

the pan-cancer setting 

 

We sought to further explore the predictive role of 

RBMX for the efficacy of immunotherapy in the pan-

cancer setting. For this purpose, we utilized four cohorts 

of patients with melanoma who received ICI therapy. 

The results showed that the low-RBMX group had a 

better survival rate and time than the high-RBMX 

group. In the Gide2019 cohort, the response rate to anti-

cytotoxic T-lymphocyte associated protein 4 (anti-

CTLA-4) and anti-programmed cell death-1 (anti-PD-1) 

therapy was significantly higher in the low-RBMX 

group versus the high-RBMX group (83.33% vs. 

12.50%, respectively) (Figure 6D). Moreover, Lauss et 

al. reported that the response rate to adoptive cell 

transfer therapy was 47.37% higher in the low-RBMX 

group (Figure 6E). Analysis of the other two cohorts 

revealed a similar trend; the low-RBMX group was 

associated with a higher OS probability (Figure 6F, 6G). 

The results indicated the important role of RBMX in 

predicting the efficacy of ICIs in the treatment of 

melanoma. 

 

RBMX correlated with CD11b+ MDSC infiltration 

in LIHC 

 

CD11b is a biomarker of human MDSC [23]. We 

demonstrated that RBMX is overexpressed in LIHC 

samples, correlates with the prognosis of patients with 

LIHC, and is highly associated with MDSC infiltration 

in LIHC. Therefore, we conducted a fluorescence 

immunohistochemistry assay to detect RBMX and 

CD11b in three liver cancer samples. RBMX and 

CD11b were highly co-expressed in liver tumors 

compared with adjacent regions (Figure 7A). These 

results showed a potential relationship between RBMX 

and CD11b+ MDSC in liver cancer.  

 

RBMX regulated the proliferation, migration, and 

invasion of liver cancer cells in vitro 

 

We also aimed to determine the potential biological 

functions of RBMX in liver cancer cells. Hence, we 

designed three shRNA plasmids to knock down the 

expression of RBMX in HCCLM3 and SK-HEP1 cell 

lines, and validated the efficiency of each shRNA in 

those cell lines (Figure 7B). We selected the shRBMX-

2 and shRBMX-3 plasmids for subsequent cell function 

analysis because of their higher knockdown effects. Cell 

colony formation assays were performed using 

HCCLM3 and SK-HEP1 cell lines. The results showed 

that the ability of the two liver cancer cell lines for 

colony formation was significantly decreased following 

the knockdown of RBMX expression (Figure 7C, 7D). 

Consistent with these findings, the Cell Counting Kit-8 

assays also revealed that the proliferative ability of 

HCCLM3 and SK-HEP1 cell was weakened by RBMX 
knockdown (Figure 7E, 7F). In addition, the results of 

Transwell invasion and wound-healing assays 

highlighted the prominent role of RBMX in regulating 
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Figure 6. Predictive role of RBMX and its relationships with immune regulators, TMB, and MSI. (A) Correlations of RBMX 
expression with 47 types of immune regulators in the pan-cancer setting, illustrated by the Spearman correlation analysis. Red and blue 
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squares represent positive and negative correlations, respectively. (B) Correlations between RBMX expression and MSI in the pan-cancer 
setting. (C) Correlations between RBMX expression and TMB in the pan-cancer setting. (D) Low- and high-RBMX subgroups distinguished 
based on the Kaplan–Meier curves in the Gide2019 cohort (anti-CTLA-4 and anti-PD-1, melanoma). Proportion of patients with melanoma 
who responded to anti-CTLA-4 and anti-PD-1 therapy in the low- and high-RBMX subgroups of the IMvigor210 cohort. (E) Low- and high-
RBMX subgroups distinguished based on the Kaplan–Meier curves in the Riaz2017 cohort (anti-PD-1, melanoma). Proportion of patients with 
melanoma who responded to anti-PD-1 therapy in the low- and high-RBMX subgroups of the IMvigor210 cohort. (F) Low- and high-RBMX 
subgroups distinguished based on the Kaplan–Meier curves in the Lauss2017 cohort (ACT, melanoma). Proportion of patients with melanoma 
who responded to ACT therapy in the low- and high-RBMX subgroups of the IMvigor210 cohort. (G) Low- and high-RBMX subgroups 
distinguished based on the Kaplan–Meier curves in the Vanallen2015 cohort (anti-CTLA-4, melanoma). Proportion of patients with melanoma 
who responded to ACT therapy in the low- and high-RBMX subgroups of the IMvigor210 cohort. *p < 0.05, **p < 0.01, and ***p < 0.001 
indicate statistical significance. ACT, adoptive cell transfer therapy; CTLA-4, cytotoxic T-lymphocyte associated protein 4; MSI, microsatellite 
instability; PD-1, programmed cell death-1; RBMX, RNA binding motif protein X-linked; TMB, tumor mutation burden. 

 

the mobility of LIHC cells. RBMX knockdown 

observably impaired the ability of HCCLM3 and SK-

HEP1 cells to cross the Matrigel matrix in the Transwell 

system (Figure 7G, 7H), and inhibited cell mobility in in 
vitro two-dimensional culture (Figures 7I–7L). 

 

DISCUSSION 
 

Cancer poses a major threat to modern society. 

Immunotherapy has emerged as a novel option for the 

treatment of cancer [24]. Nevertheless, research on 

immunotherapy is currently hampered by the need to 

overcome the occurrence of adverse events related to 

the regulation of the immune system, including 

autoimmunity and nonspecific inflammation. How-

ever, despite its effectiveness in the pan-cancer 

setting, only a small proportion of patients can benefit 

from checkpoint blockade [25]. Therefore, additional 

research on the immune checkpoint may improve the 

clinical therapy of cancer [26]. In a recent study, 

RBMX (acting as a protein connector) was strongly 

correlated with T-cell lymphoma progression and 

chemotherapy response [27]. Nonetheless, it has also 

been identified as a potential suppressive factor in 

lung cancer and oral squamous carcinoma [9, 28–30]. 

In the present study, we performed a comprehensive 

analysis of RBMX in the pan-cancer setting, and 

verified its effective role in the prediction of 

immunotherapy response. Furthermore, our results 

provided clues for further investigating the involve-

ment of RBMX in cancer progression and immuno-

therapy. 

 

Initially, we extracted data from TCGA and GTEx 

databases to detect differences in the expression levels 

of RBMX between tumor and normal tissues. The 

analysis revealed that RBMX is highly expressed in 

most cancer types. CNV level analysis indicated a 

remarkable correlation between RBMX and THYM, 

while TSS methylation level analysis showed a 

significant correlation between RBMX and TSS 

methylation in THCA. These results revealed a potential 

mechanism through which the upregulation of RBMX 

expression affects tumor progression by influencing 

RNA homeostasis. 

 

Next, we conducted single-cell analysis for the 

expression of RBMX in the pan-cancer setting. The data 

demonstrated that RBMX was highly expressed in 

immune cells and plasma. Analysis of the glioma 

microenvironment indicated high expression of RBMX 

in malignant cells and monocytes/macrophages. 

Previous studies showed that RBMX plays an essential 

role in the progression of LUAD through combination 

with miR-19b-3p [31]. According to our results, may 

RBMX mediate the immune microenvironment by 

binding to certain RNA. 

 

Subsequently, we analyzed the prognostic value of 

RBMX in the pan-cancer setting. For this purpose, we 

assessed the OS, PFI, DFI, and DSS. The results 

consistently showed that RBMX was closely associated 

with the prognosis of cancer. Previous research verified 

that low RBMX expression is related to poor prognosis 

in endometrial cancer [32, 33] and bladder cancer [34]. 

However, high expression of RBMX has also been 

associated with poor prognosis in hepatocellular 

carcinoma (HCC) [35]. The conclusions of the present 

study are consistent with those of previous inves-

tigations. 

 

Next, we performed GSEA of RBMX, which 

demonstrated a significant correlation between RBMX 

expression and immune-related pathways, in particular 

TNFA signaling via NFKB, IFNG response, IFNA 

response, and inflammation. These results prompted us 

to investigate the correlations between RBMX and 

response to cancer immunotherapy. 

 

Moreover, immune cell infiltration analysis revealed that 

the infiltration levels of progenitor cells and MDSC were 

positively related to RBMX expression in most cancer 

types. MDSC acted as protectors of cancer, preventing the 

exposure of cancer cells to the immune system and 

enhancing resistance to immunotherapy [36]. Research 

studies showed that MDSC suppressed the function of NK 
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cells in cancer cell infiltration of the immunosuppressive 

tumor microenvironment [37]. Our findings emphasized 

the correlations between RBMX and MDSC in the tumor 

microenvironment, as well as the role of RBMX as a 

predictor of response to immunotherapy. Based on this 

evidence, RBMX might influence the infiltration of 

MDSC to promote tumor progression and suppress the 

sensitivity of cancer cells to ICI therapy. 

 

 
 

Figure 7. Detection of CD11b+ cells and RBMX through fluorescence immunohistochemistry assay, and in vitro validation of 
the functions of RBMX in regulating the proliferative, migrative, and invasive abilities of LIHC cells. (A) Co-fluorescence 
immunohistochemical analysis of RBMX and CD11b in tumor regions and adjacent normal tissues in three LIHC samples. (B) Western blots 
showing the RBMX knockdown effects of the three shRNAs in HCCLM3 and SK-HEP1 cells. (C, D) RBMX knockdown reduced the ability of 
HCCLM3 and SK-HEP1 cell lines for cell colony formation. (E, F) CCK8 assay also validated that RBMX knockdown can reduce the proliferation 
of HCCLM3 and SK-HEP1 cells. (G–L) Downregulation of RBMX also inhibited the invasive (G, H) and migratory (I–L) abilities of HCCLM3 and 
SK-HEP1 cells in vitro. CCK8, Cell Counting Kit-8; LIHC, liver hepatocellular carcinoma; RBMX, RNA binding motif protein X-linked; shRNAs, 
short hairpin RNAs. 
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Intriguingly, RBMX was significantly linked to immune 

regulators and positively associated with CD200, 

CD276, and BTNL2. Subsequently, we confirmed the 

robust predictive role of RBMX in terms of outcome of 

ICI therapy. We evaluated the predictive role of RBMX 

in four cohorts of patients with cancer who received 

immunotherapy. The results showed that patients 

expressing low levels of RBMX had better survival rate 

and time than those expressing high levels of RBMX. 

This finding is consistent with the hypothesis that 

RBMX may affect the tumor suppressive immune 

microenvironment by regulating MDSC infiltration 

through an unrevealed mechanism. 

 

Admittedly, the present study was characterized by 

several limitations. The pan-cancer research data were 

obtained from online open databases. Currently, there is a 

lack of large-scale clinical cohort data to support the 

present conclusions. Moreover, further experiments 

should be conducted to identify the specific mechanism 

underlying the regulatory effect of RBMX on tumor 

progression, particularly in terms of regulating the 

proliferation, migration, and invasion of cancer cells. 

 

In conclusion, we performed an integrated analysis of 

RBMX, revealing its effective role in predicting cancer 

prognosis and response to immunotherapy. Abnormal 

expression of RBMX is associated with immune 

regulation, prognosis, the tumor microenvironment, 

immune cell infiltration, MSI, and TMB. The results of 

this study indicated that RBMX may play an 

independent role in clinical diagnosis and prediction. In 

the future, targeting of RBMX may be a novel method 

in cancer therapy. 
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Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Abbreviations of cancers in the TCGA-pancancer 
cohort. 

Abbr Unabbreviated form 

ACC Adrenocortical carcinoma 

AML Acute Myeloid Leukemia 

BLCA Bladder Urothelial Carcinoma 

BRCA Breast invasive carcinoma 

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 

CHOL Cholangiocarcinoma 

COAD Colon adenocarcinoma 

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 

ESCA Esophageal carcinoma 

GBM Glioblastoma multiforme 

HNSC Head and Neck squamous cell carcinoma 

KICH Kidney Chromophobe 

KIRC Kidney renal clear cell carcinoma 

KIRP Kidney renal papillary cell carcinoma 

LAML Acute Myeloid Leukemia 

LGG Brain Lower Grade Glioma 

LIHC Liver hepatocellular carcinoma 

LUAD Lung adenocarcinoma 

LUSC Lung squamous cell carcinoma 

MESO Mesothelioma 

OV Ovarian serous cystadenocarcinoma 

PAAD Pancreatic adenocarcinoma 

PPGL Pheochromocytoma and Paraganglioma 

PRAD Prostate adenocarcinoma 

READ Rectum adenocarcinoma 

SARC Sarcoma 

SKCM Skin Cutaneous Melanoma 

STAD Stomach adenocarcinoma 

TGCT  Testicular Germ Cell Tumors 

THCA  Thyroid carcinoma 

THYM Thymoma 

UCEC Uterine Corpus Endometrial Carcinoma 

UCS Uterine Carcinosarcoma 

UVM Uveal Melanoma 

 

Supplementary Table 2. Differential expressed genes between low- and high RBMX expression in each cancer 
type. 


