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INTRODUCTION 
 

Lung cancer (LC) is a highly prevalent and lethal form  

of cancer worldwide, with an estimated 238,340 new 

cases and 127,070 deaths predicted in the United States 

in 2023 [1]. Among the various subtypes of LC, lung 

adenocarcinoma (LUAD) is considered a primary hypo-

type [2]. In the past few years, the molecular diagnostics, 

targeted therapies, and immunotherapies to LUAD has 

made significant progress [3]. For example, methyl-

transferase like 7B inhibitors can reverse tyrosine kinase 

inhibitors resistance in LUAD patients and serve as  

a feasible curative target [4]. Furthermore, USP7 was 

reported not only could take part in p38 MAPK path- 

way to influence tumor growth but also regulate PD- 

L1 expression in tumor and its growth environment [5]. 

And there are currently several tumor biomarkers and 

molecular markers that can are currently available to 
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ABSTRACT 
 

Background: The significance of long non-coding RNAs (lncRNAs) as pivotal mediators of histone acetylation 
and their influential role in predicting the prognosis of lung adenocarcinoma (LUAD) has been increasingly 
recognized. However, there remains uncertainty regarding the potential utility of acetylation-related lncRNAs 
(ARLs) in prognosticating the overall survival (OS) of LUAD specimens. 
Methods: The RNA-Seq and clinical information were downloaded from The Cancer Genome Atlas (TCGA). 
Through the differential analysis, weighted correlation network analysis (WGCNA), Pearson correlation test 
and univariate Cox regression, we found out the prognosis associated ARLs and divided LUAD specimens 
into two molecular subclasses. The ARLs were employed to construct a unique signature through the 
implementation of the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. Subsequently, the 
predictive performance was evaluated using ROC analysis and Kaplan-Meier survival curve analysis. Finally, 
ARL expression in LUAD was confirmed by quantitative real-time PCR (qRT-PCR). 
Results: We triumphantly built a ARLs prognostic model with excellent predictive accuracy for LUAD. Univariate 
and multivariate Cox analysis illustrated that risk model served as an independent predictor for influencing the 
overall survival OS of LUAD. Furthermore, a nomogram exhibited strong prognostic validity. Additionally, 
variations were observed among subgroups in the field of immunity, biological functions, drug sensitivity and 
gene mutations within the field. 
Conclusions: Nine ARLs were identified as promising indicators of personalized prognosis and drug selection for 
people suffering with LUAD. 
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forecast the OS of people suffering with LUAD  

[6, 7]. Despite advancements in diagnostic and thera-

peutic approaches, the prognosis of LUAD maintains 

unsatisfactory [8]. Consequently, there is a pressing 

need of identifying raw biomarkers of prognosis for 

predicting OS of LUAD. 

 

Histone acetylation and deacetylation plays an 

indispensable role in influencing chromatin adjustment 

and gene expression [9]. In general, histone acetylation 

increases chromatin flexibility and facilitates open 

conformation, which allows transcriptional machinery 

easier access to DNA [10]. Conversely, the process of 

histone deacetylation, which involves the removal of 

acetyl groups from histones is associated with compact-

ing DNA and repressing transcription through histone 

deacetylase activity [11]. Histone acetylation modulator 

proteins (HAMPs) which composed of histone acetyl-

transferases (writers), histone deacetylases (erasers) and 

proteins containing bromodomains (readers) are major 

protein families for regulation and identification of 

histone acetylation [12]. Numerous cancers have aberrant 

HAMPs activity which indicating that some HAMPs may 

become driver genes during malignant tumorigenesis 

[13–15]. Unfortunately, research involving all HAMPs 

in LUAD is limited. 

 
The long non-coding RNA (lncRNA) is a kind of non-

protein-coding RNA that contains longer than 200 bases 

[16]. In recent decades, extensive research has consis-

tently demonstrated the significant involvement of long 

noncoding RNAs (lncRNAs) in cancer development, as 

well as their contribute to plentiful biological processes 

like cell proliferation, differentiation, inflammation, and 

apoptosis [17–20]. For instance, lncRNA LINC01123 

which could interact with c-Myc has been implicated in 

LC growth and aerobic glycolysis, while this process 

can also be affect by MiR-199a-5p [21]. Furthermore, 

lncRNA PVT1 which do duty for an oncogene can 

activate the KAT2A acetyltransferase and stabilize  

HIF-1α to modulate nasopharyngeal darcinoma [22]. 

However, the function of lncRNAs in regulating histone 

acetylation during LUAD remains ambiguous. The value 

of acetylation-relevant lncRNAs act as a prognostic 

model for people suffering with LUAD has never been 

systematically elucidated. 

 
In this study, we triumphantly built a ARLs prognostic 

model with excellent predictive capability for LUAD. 

The results of univariate and multivariate Cox analysis 

illustrated that risk model was an isolated predictor  

for affecting the OS of LUAD. A nomogram reproved 

robust prognostic validity. There were also diversities 

between subgroups in the field of immunity, biological 

functions, drug sensitivity and gene mutations. In  

a word, this model may function as a biomarker and 

therapeutic target to forecast and prolong the prognosis 

of people suffering with LUAD. 

 

MATERIALS AND METHODS 
 

Data collection and preprocessing 

 

The RNA-Seq information for LUAD and matching 

clinical data were obtained from the TCGA database, 

including 501 LUAD specimens and 56 matching para-

neoplastic tissue specimens. We screened 437 LUAD 

specimens and 51 paraneoplastic tissue specimens 

according to these criteria: (1) specimens containing 

thorough clinical information and RNA-Seq data; (2) 

specimens with OS ≥30 days. These data were taken 

using the form of raw STAR read counts, before  

it was transformed by log2 and standardized in R 

v1.38.1. The transcriptomic data of TCGA-LUAD were 

separated into 3065 lncRNAs and 18158 mRNAs. 

Subsequently, a total of 437 LUAD samples were 

randomly allocated into a training cohort consisting  

of 306 samples and a testing cohort (131 samples) at  

a ratio of 7:3. Additionally, TCGA data pertaining to 

simple nucleotide variations (SNVs) and Copy number 

variation (CNV) were also obtained. 

 

lncRNA sifting 

 

First of all, the DESeq2 R package was conducted  

to designate the differentially expressed lncRNAs 

(DElncRNAs) between LUAD specimens and matching 

paraneoplastic tissues. P < 0.05 and |log2FC|>1 was 

applied as screening cutoff. We used ggplot2 R 

package to depict the DElncRNAs by a volcano plot 

and heatmap. Next, WGCNA was adopted to select the 

most associated modules for LUAD. MinModuleSize 

was 50. Then, we searched the literature and pooled 

HAMPs so that obtaining a total 73 genes [23] 

(Supplementary Table 1). The Pearson correlation  

was used to determine the associations between all 

lncRNAs and HAMPs. As a result, we got 1065 ARLs 

with |correlation coefficient| >0.3 and P < 0.01. At 

last, the 55 intersecting lncRNAs of the three sets were 

filtrated for further investigation. 

 

Molecular subgroup construction 

 

At the beginning, univariate Cox regression analysis was 

applied to choose 11 prognostics associated ARLs based 

on the previously intersecting lncRNAs. Subsequently, 

the ConsensusClusterPlus package was exploited to 

divide LUAD patients into two molecular subgroups. 

Principal component analysis was then conducted to 

assess the ability of these subgroups to effectively 

differentiate LUAD specimens. With the survival and 

survminer R packages, association between subgroups 
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and survival condition was explored. Employing  

the maftools package (20), we compared the tumor 

mutation burden (TMB) values of subgroups. In the end, 

CIBERSORT arithmetic was applied to evaluate tumor 

immune microenvironment of subgroups. 

 

Building and verification of the ARLs prognostic 

model 

 

The training cohort was exploited to develop the ARLs 

prognostic model, and the entire cohort and the testing 

cohort were utilized to sustain this model. LASSO 

analysis was subsequently executed to set up the optimal 

prognostic risk model based on the glment R package. As 

a result, a 9 ARLs prognostic model was ultimately set up. 

Based on the formula below, a risk score was assessed: 

 
 ris kscore iExpi coefi=   

 

where Expi denoted lncRNA expression, and coefi 

represents the correlation of lncRNAs with overall 

survival. Through the average risk score, train queues 

were split into low-risk and high-risk groups. Survival 

analysis was performed to contrast survival rates 

between the two groups. ROC curve was conducted  

and area under the curve (AUC) at various time nodes 

were estimated for evaluating the prognostic worth of 

risk model by using the survivalROC R package. 

 

Differentially expressed genes (DEGs) between 

groups at high and low risk 

 

Next, we analyzed distinctions in gene expression 

between high- and low-risk subgroups in train queues 

by DESq2 R package. P-value < 0.05 and |log2FC|>0.5 

were served as screening cutoff to select the DEGs. 

 

Functional enrichment analysis 

 

Furthermore, the clusterProfiler R package was 

employed to perform GO, KEGG and Reactome 

enrichment analyses were employed to identify the 

differentially expressed genes (DEGs). A functional 

comment is considered remarkably gathered when the 

p-adjust worth is less than 0.05. Then the top 15 

enrichment analysis results were visualized by using  

bar and bubble plots. To further understand how the 

different biological processes engaged in subgroups. 

We used the clusterProfiler, enrichplot, as well as 

GseaVis R packages to perform gene set enrichment 

analysis GSEA on each sample in train cohort. 

 

Immunogenomic landscape analyses 

 

The interrelationship between risk score and immune 

checkpoint was visualized by using the ggstatsplot 

package. The immunotherapy responses were also 

explored by using Tumor Immune Dysfunction and 

Exclusion (TIDE) website. We applied the CIBERSORT 

arithmetic to determine the quantity of 22 types of tumor-

infiltrating immune cells (TIICs) in LUAD. Adopting 

the R package ggplot2, we displayed the diversities in 

tumor immune microenvironment between high-risk 

and low-risk teams. The StromalScore, ImmuneScore 

and ESTIMATEScore were calculated and showed by 

estimate package and ggstatsplot package. 

 
Drug sensitivity analysis 

 

The Genomics of Drug Sensitivity in Cancer (GDSC) 

website was applied to acquire the drug-sensitivity 

information and the oncoPredict R package was 

utilized to predict whether high-risk and low-risk 

groups have distinct drug sensitivities. The diffe- 

rence between groups was presented using ggplot2 

package. 

 
Tumor somatic mutation 

 

We examined the disparity in SNV between high- and 

low-risk subgroups of LUAD. In waterfall plots, the 

Top 20 mutation genes were shown. The amount of 

gene mutations in all tumor samples in train cohort were 

also calculated to determine the TMB. The subsequent 

procedure involved conducting an analysis to investigate 

the relationship between TMB and risk score. Survival 

analysis was conducted to compare survival rates 

between the high and low TMB groups. Finally, CNV 

information was exploited to estimate copy number 

alterations of 9 risk lncRNAs. 

 
Building and proving a predictive nomogram 

 
Multivariate and univariate Cox regression analyses 

were applied to inspect if the ARLs prognostic 

signature was an isolated element when we brought 

other clinical characteristics into consideration in the 

patients with LUAD. Then a prognostic nomogram 

was built in R. The validity of the nomogram signature 

was evaluated with the calibration curve and C-index 

curve. 

 
Cell culture and quantitative real-time polymerase 

chain reaction (qRT-PCR) 

 
Human LUAD cell lines (A549) and bronchial 

epithelial cells (HBE) were gathered from the American 

Type Culture Collection (ATCC, USA), and cultured  

in Dulbecco’s Modified Eagle Medium (DMEM; Gibco, 

USA). After extracting total RNA from cells by the 

Trizol reagent, qRT-PCR experiments were conducted 

to prove the model lncRNAs. 
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Availability of data and materials 

 

In the TCGA database (https://portal.gdc.cancer.gov/), 

you can find the data supporting the research's results. 

On reasonable demand, the author may provide all data 

utilized in this study as well as all data supporting its 

findings. 

 

RESULTS 
 

Identification and screening of acetylation-related 

differentially expressed lncRNAs 

 

After filtering with criteria of |log2FC|>1 and P- 

value < 0.05, 297 down expression lncRNAs and  

415 up expression lncRNAs were selected between 

LUAD and adjoining normal tissues (Figure 1A, 1B). 

Then, we performed WGCNA and acquired 67 brown 

module lncRNAs which were the most associated  

with LUAD (Figure 1C–1E). Next, 1065 lncRNAs 

whose |correlation coefficient| >0.3 and P < 0.01 were 

prominently linked the acetylation modulator genes. 

Finally, 55 lncRNAs were filtrated for the next studies 

in total as the Venn diagram showed (Figure 1F) 

and their correlations with HAMPs were displayed in 

Figure 1G. 

 

ARLs molecular subgroups construction 

 

For the purpose of selecting prognostic-related lncRNAs 

from ARLs, the univariate cox regression analysis  

was used and 11 ARLs (p < 0.05) were screened out 

(Figure 2A). After that, two distinct subgroups were 

identified by consensus cluster analysis (Figure 2B, 2C). 

According to PCA, these 11 ARLs had the capacity to 

distinguish LUAD samples precisely (Figure 2D). The 

KM curve demonstrated that C1 subgroup had longer 

OS in general (Figure 2E). In order to gain a more 

comprehensive understanding of variation of these two 

hypotypes, a comparison was made between the TMB 

values observed in C1 and C2. We found that mutation 

levels were higher in C2 (Figure 2F). Moreover,  

the immune cell infiltration was estimated though 

CIBERSORT, the outcomes revealed that C1 group had 

remarkably more infiltration in Dendritic cells activated, 

Dendritic cells resting, Macrophages M2, Mast cells 

resting, Monocytes as well as T cells CD4 memory 

resting. While C2 group had more T cells regulatory 

(Tregs), T cells CD4 memory activated, Plasma cells and 

Macrophages M0 (Figure 2G). 

 

Prognostic model establishment and verification of 

ARLs for LUAD 

 

For the purpose of further examining the value of  

ARLs in prognosis of LUAD, LASSO was exercised  

to produce the optimal prognostic model (Figure  

3A, 3B). As a result, nine ARLs of 11 potential survival 

indicators were prognostic lncRNA independently related 

with OS in the train cohort and were performed as a risk 

signature. The formula used to evaluate the risk scores 

of patients with LUAD was as follows: 

 
Risk scores = 0.32965 × (WWC2-AS2) −0.18679 × 

(LINC00639) −0.01187 × (LINC00968) + 0.07564 × 

(CYP4F26P) −0.12918 × (AF131215.6) −0.09382 × 

(MIR99AHG) + 0.14922 × (LINC00622) −0.23000 × 

(MIR22HG) −0.04040 × (ADAMTS9-AS2). 

 

The LUAD samples, in the training cohort, testing 

cohort and total cohort, were distributed into two risk 

groups using the median value of the risk scores 

(Figure 3C–3H). KM survival analysis manifested that 

the OS time of the low-risk group was remarkably 

longer than in the high-risk group (p < 0.0001 in the 

train cohort, p = 1.384e−02 in the test cohort and p = 

1.398e−09 in the total cohort.), suggesting that the risk 

model of the 9 ARLs has a good prognostic worth 

(Figure 4A–4C). Finally, for the purpose of verifying 

the accuracy of the prognostic prediction of this model, 

the ROC curves were performed and the area under the 

ROC curves (AUC) was 0.764, 0.706 and 0.700 for  

1-, 3-, and 5-years survival in the train set, separately 

(Figure 4D). As for the test cohort, the 1-, 3-, and  

5-years survival AUC was 0.830, 0.672 and 0.665 

(Figure 4E). Furthermore, the AUC of the total cohort 

was 0.780, 0.693, 0.666 for 1-, 3-, and 5-years survival 

(Figure 4F). In short, it indicated outstanding prediction 

ability of the 9-ARLs signature. Following that, we 

determined how the 9 ARLs are expressed in different 

subgroups and found that excepting CYP4F26P, other 

ARLs have higher rates in the low-risk group than  

in the high-risk group (Figure 4G). Additionally, to 

delve deeper into the correlation among the 9 ARLs,  

a Spearman analysis was performed, revealing a 

noteworthy co-expression association as depicted in 

Figure 4H. 

 
Differential expression and enrichment analysis 

 

To comprehend the differences between various risk 

groups, differential expression analysis was undertaken. 

Based on the filtering criteria of | log2FC | greater than 

0.5 and P < 0.05, 2200 DEGs (consisting of 1085 

increasing and 1115 decreasing genes) in various risk 

groups in the training cohort were acknowledged. 

Afterwards, GO, KEGG and Reactome enrichment 

analyses were conducted to reveal the changes in 

biological functions. The enrichment of MFs and CCs 

are mainly related to the immunity, such as MHC class 

II protein complex and MHC protein complex in MFs, 

immune receptor activity and MHC class II protein 

https://portal.gdc.cancer.gov/
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complex binding in CCs (Figure 5A). While, from the 

outcomes of BPs, we discovered that these DEGs had a 

tight association with cell cycle because they could take 

part in nuclear division, mitotic nuclear division and 

sister chromatid segregation. In addition, several KEGG 

and Reactome pathways revealed that the distinction in 

risk subgroups may have relationships with Neuroactive 

ligand−receptor interaction, Asthma, Amplification of 

 

 

 
Figure 1. LncRNA sifting. (A, B) Heat map and volcano plot depicting differentially expressed lncRNAs. (C–E) WGCNA selected the most 

associated modules of LUAD. (F) A Venn graph of intersecting lncRNAs. (G) A Sankey diagram displays 55 acetylation-related lncRNAs. 



www.aging-us.com 1281 AGING 

signal from the kinetochores as well as Activation  

of ATR in response to replication stress (Figure 5B, 

5C). Then, a Gene Set Enrichment Analysis (GSEA) 

was conducted, revealing the potential involvement  

of asthma, cell adhesion molecules (CAMs) and cell 

cycle in the observed differences between the groups 

(Figure 5D). 

Immunity analysis among different risk groups 

 

Considering the significance of immunotherapy 

according to checkpoints, we estimated the correlation 

of risk scores with immune checkpoints performing  

the Pearson test and discovered that risk scores  

were obviously related with CTLA4 (p = 3.24e-04), 

 

 
 

Figure 2. Molecular subgroup construction. (A) Prognosis related ARLs by univariate Cox regression. (B, C) Identification of two 

molecular subgroups. (D) PCA of subgroups (E) Kaplan-Meier survival analysis in C1, C2. (F) TMB levels of LUAD patients in C1 and C2. (G) 
Tumor immune microenvironment of subgroups. 
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HAVCR2 (p = 1.14e-05) (Figure 6A, 6B). In addition, 

both of the two checkpoints are at higher levels in low-

risk group, implying that immunotherapy aiming at 

them may be more effective for these individuals.  

Then, we estimated the effect of immunotherapy in 

various subgroups, and the TIDE of them had striking 

variation (p < 0.0001) (Figure 6C). Next, the correlation 

between risk score and StromalScore, ImmuneScore and 

ESTIMATEScore implied that high risk score means 

malignant progression of LUAD (Figure 6E–6G). 

In order to investigate the potential correlation between 

the nine ARLs signature and tumor-infiltrating immune 

cells, we utilized the CIBERSORT package in R to 

examine the association between the risk groups and  

the 22 distinct types of immune cells in LUAD (Figure 

6D). As the Figure 6D demonstrates, the high-risk group 

contained more Macrophages M1 (p < 0.05), Plasma 

cells (p < 0.0001) and T cells regulatory (Tregs) (p < 

0.05) than the low-risk groups. While the low-risk 

group displayed more Dendritic cells resting (p < 0.05), 

 

 

 
Figure 3. Establishment of ARLs prognostic model. (A, B) The LASSO of training cohort based on 11 prognoses related ARLs. (C–H) 

PCA and distribution of two risk groups in training testing and total cohort. 
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Mast cells resting (p < 0.05), T cells CD4 memory 

resting (p < 0.0001) and Monocytes (p < 0.01). In 

conclusion, these results implied that this prognostic 

model possibly have association with immune response 

by influencing immune cells. 

Significance of risk model in drug sensitivity 

 

To predict whether there are statistically significant 

different sensitivities between various risk groups to 

chemotherapeutic drugs, we employed the oncoPredict 

 

 

Figure 4. Verification of ARLs prognostic model. (A–C) Kaplan-Meier curve in training, testing and total cohort. (D–F) ROC curve of 
training, testing and total cohorts. (G) The expression patterns of the 9 ARLs in different subgroups. (H) The correlation of 9 ARLs in various 
groups. 
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package and Wilcoxon test to evaluate the discrepancy. 

As a result, we filtrated 17 drugs which showed a 

significantly lower IC50 level in the low- risk group 

(Figure 7A). The Figure 7B–7F illustrated that 5 of 17 

drugs with IC50 <10, including Camptothecin_1003, 

PD0325901_1060, Gemcitabine_1190, Topotecan_1808 

and Mitoxantrone_1810, which meant there was a 

higher likelihood that these chemotherapeutic drugs 

 

 
 

Figure 5. Enrichment analysis. (A) GO analysis on the biological processes (BP), cellular components (CC), and molecular functions (MF).  
(B, C) KEGG and Reactome enrichment pathway analysis in various subgroups. (D) GSEA (gene set enrichment analysis) in different subgroups. 
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would have better responses in low-risk LUAD 

patients. Then, according to the screening criteria for 

IC50 <1, Camptothecin_1003 was selected out, which 

indicated that the Camptothecin_1003 can possess a 

powerful inhibitory effect on LUAD. The results 

revealed that this ARLs risk signature may predict 

drug resistance and guide clinical treatment in LUAD 

patients. 

 

 
 

Figure 6. Immunity analysis among different risk groups. (A, B) The association between risk scores and immune checkpoints based 

on the Pearson test. (C) The TIDE levels between two risk groups. (D) Tumor-infiltrating immune cells in different risk groups based on 
CIBERSORT. (E–G) The association between StromalScore, ImmuneScore, ESTIMATEScore and risk score. 
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Association between the risk signature and tumor 

mutation status 

 

To analysis the panorama mutation data in LUAD, 

maftools package in R was utilized. Detailed mutation 

information in high- and low- groups was displayed in 

Figure 8A, 8B. Missense mutation always accounted  

for the highest frequency among all types of mutations 

in LUAD patients in various groups. Furthermore, C > 

A was the most general of SNV and single-nucleotide 

polymorphism (SNP) occurred more frequently than 

INS or DEL. Subsequently, we generated a waterfall 

plot to visualize the top 20 gene with mutation rate in 

LUAD (Figure 8C). In the field of TMB scores analysis, 

with the increasing of risk scores, TMB scores showed 

an obviously rise trend (Figure 8D), indicating that  

the ARLs risk signature is tightly related with TMB. 

Moreover, we further explored the association between 

TMB levels and prognosis but there was no apparently 

discrepancy (p = 0.4781) (Figure 8E). Next, copy 

number alterations of 9 risk lncRNAs were exhibited in 

Figure 8F. 

Independent prognostic worth of the ARLs model and 

establishment of a nomogram for LUAD patients 

 

We applied univariate and multivariate Cox regression 

analyses to find out the isolating prognostic elements  

in the train cohort for LUAD patients. Seven factors 

were included in this study, and they are risk score, age, 

gender, T, N, M and stage, respectively. The risk score 

was highly correlated with patient OS as shown in 

Figure 9A, 9B, which meant that it was an isolating 

prognostic element in patients with LUAD. In detail, 

according to the univariate Cox regression, risk scores 

are significantly associated with worse prognoses (HR = 

1.600, p < 0.001), and the same outcome was figured 

out in multivariable Cox regression (HR = 1.557, p < 

0.001). Then we built a nomogram for 1-, 3-, and 5- 

year OS combining the clinical characteristics and  

risk score to forecast the OS of LUAD patients (Figure 

9C). The prognostic signature was further evaluated 

through calibration curves and C-index, which demons- 

trated the predictive capability of this particular model 

(Figure 9D, 9E). In conclusion, the prognostic nomogram 

 

 
 

Figure 7. Drug sensitivity analysis. (A) Drugs with significantly different sensitivity between various groups. (B–F) The drug with IC50 <10. 
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consists of the clinical characteristics and risk score has 

a satisfactory manifestation in forecasting the OS of 

people suffering with LUAD. 

 

Expression verification of model lncRNAs 

 

We compared the expression of model lncRNAs 

between normal bronchial epithelial cells (HBE)  

and LUAD cells (A549) by qRT-pPCR experiment.  

As a result, apart from CYP4F26P, all lncRNAs were 

downregulated in tumor which was consistent our 

expectations (Figure 10) and the primer sequences were 

displayed in Supplementary Table 2. 
 

DISCUSSION 
 

LUAD characterized by high mortality and 

discouraging prognosis is the primary subtype of lung 

 

 
 

Figure 8. Association between the risk signature and tumor mutation status. (A) Mutation information in high-risk group. (B) 

Mutation information in low-risk group. (C) The top 20 mutation-rate genes in LUAD. (D) TMB score analysis based on risk score. (E) Kaplan-
Meier curve in high TMB and low TMB groups. (F) Copy number alterations of 9 risk lncRNAs. 
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cancer [24]. It is additionally a disease  

with heterogeneous molecular and histopathological 

characteristics [25]. Although it is recognized that 

LUAD has significantly improved in terms of surgical 

techniques and integrated therapies, five years survival 

rates are still low [26–28]. Thus, finding molecular  

and therapeutic targets related to LUAD prognosis in 

patients is a significant research area. The HAMPs play 

 

 

 
Figure 9. Independent prognostic worth of the ARLs model and establishment of a nomogram for people suffering with 
LUAD. (A, B) Univariate and multivariate Cox analyses of the risk score and clinical features. (C) Construction of a nomogram to predict OS 

for LUAD patients of the train cohort. (D, E) Calibration curve and c-index curve for nomogram. 
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a major role in the happening and progression of 

numerous diseases, such as cancer [29, 30], and several 

drugs targeting HAMPs have been used clinically [31]. 

However, the investigation of lncRNAs associated with 

all HAMPs in the context of lung adenocarcinoma 

(LUAD) remains limited. It is becoming increasingly 

evident that lncRNAs play a crucial role in cancer 

prognosis [32, 33]. Nevertheless, the specific lncRNA(s) 

associated with HAMPs as a prognostic model in 

LUAD has yet to be fully elucidated. 

 

According to the published literatures [23], 73 HAMPs 

were considered for this study. Based on these  

HAMPs, we screened out 11 prognoses related ARLs 

by bioinformatics analysis and distinguished two 

subgroups which represented appreciably distinctions  

in survival condition, mutation status and immune 

microenvironment. Then we randomly divided 437 

LUAD patients into train cohort and test cohort in a  

7:3 ratio. Prognostic models were constructed using the 

train cohort, and validation models were constructed 

using the test cohort and total cohort. Next, a prognostic 

model was establishment based on the 9 ARLs iden-

tified through univariate Cox regression and LASSO.  

In order to assess the accuracy of the ARLs model,  

we employed ROC curves and Kaplan-Meier survival 

analysis on the train cohort. At last, we confirmed the 

prognostic worth of the ARLs signature in both the test 

and entire sets. 

Using these 9 ARLs, we developed an acetylation-

associated prognostic signature. Among them, all ARLs 

are crucial in many ways. For instance, there is an 

association between WWC2-AS2 and the prognosis of 

multiple cancer types, such as LUAD [34], cervical 

cancer [35] and colon cancer [36]. Due to this, WWC2-

AS2 is believed to be crucial to cancer develop- 

ment. Appealingly, ADAMTS9-AS2 has been widely 

investigated [37, 38]. Recent research showed that 

ADAMTS9-AS2 could restrict the deterioration of 

esophageal cancer and it also has the ability to func- 

tion as a prognostic lncRNA in LUAD [39]. As to 

LINC00622, it is tightly associated with transcriptional 

factor androgen receptor and essential neuroblastoma 

progression [40]. Notably, MIR99AHG not only can 

influence the epithelial-mesenchymal transition in 

LUAD but also encourage the differentiation of bone 

marrow mesenchymal stem cells [41, 42]. There is 

evidence showing that the reduction of LINC00968  

can enhance the progression of breast cancer [43]. 

Appealingly, MIR22HG can affect DNA damage  

and breast cancer growth in recent study [44, 45]. 

Intriguingly, LINC00639, CYP4F26P as well as 

AF131215.6 can fill the role of prognostic biomarker in 

many diseases [46–48]. 

 

For the purpose of clarifying the discrepancies  

in functional mechanism between high- and low- 

risk groups, GO, KEGG and Reactome analysis were 

 

 
 

Figure 10. Expression verification of model lncRNAs in normal and LUAD cells. 
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applied. The high-risk groups exhibited involvement in 

pathways potentially linked to LUAD immunity, such 

as MHC protein complex and immune receptor activity. 

These findings suggest the higher risk scores is strongly 

correlated with immunity. 
 

Several studies have demonstrated that immuno-

therapy shows clinical activity in LUAD [49, 50].  

In this research, the risk scores are highly cor- 

related with immune checkpoint expression, including  

HAVCR2 and CTLA4. When it comes to autoimmunity, 

HAVCR2 exhibits potential protection, but it is rarely 

expressed, while when it comes to cancer and chronic 

viral infections, it is often over expressed [51]. In 

additionally, CTLA4, the first widely used immune 

target in clinical practice, is mainly expressed on T 

cells and influences the immunocompetence of T cells 

[52]. The low-risk group demonstrated higher levels  

of these immune checkpoints, which implying that 

immunotherapy may be more effective in these patients. 

Likewise, TIDE result indicates there is significant 

variation between subgroups in terms of immuno-

therapy. Interestingly, StromalScore, ImmuneScore  

and ESTIMATEScore are negatively correlated with 

risk score. Furthermore, high-risk group have higher 

percentages of Macrophages M1, Plasma cells and  

T cells regulatory (Tregs). The number of Dendritic 

cells resting, Mast cells resting, T cells CD4 memory 

resting and Monocytes are higher in low-risk group.  

In summary, the observed variations in prognostic 

outcomes among individuals with different risk scores 

in LUAD can be partially explained by the relationship 

between risk scores and immune responses. 
 

Predictions of drug sensitivity for LUAD patients  

were also made for different risk groups. People with 

LUAD in the high-risk group were more tolerant  

to Camptothecin_1003, PD0325901_1060, Gemcitabine 

1190, Topotecan_1808 and Mitoxantrone_1810. While 

camptothecin has demonstrated a certain amount of 

effect in clinical tests of non-small cell lung cancer [53] 

and melanoma was inhibited when camptothecin 

combined with an HDAC inhibitor [54]. Interestingly, 

Gemcitabine combined with cisplatin has been proved 

as a practical treatment [55]. On the one hand, the 9 

ARLs may be used as biomarkers to measure the 

effectiveness of targeted therapies. On the other hand, 

these findings may help in selecting clinical drugs for 

LUAD patients. Furthermore, there were also a positive 

association between TMB and risk score. TMB rates 

tend to be higher in groups at high risk. In some  

cases, this may elucidate the variation in prognosis 

between subgroups. Importantly, our univariate and 

multifactorial Cox regression analyses revealed that the 

risk model was an isolating prognostic element. It also 

improved the accuracy of forecasting the prognosis of 

people suffering with LUAD through the establishment 

of a nomogram. 

 
There are, of course, some deficiencies to our research. 

At first, we explored how functional enrichment affects 

various risk groups, but the precise mechanisms in 

impacting acetylation remain to be figure out. Secondly, 

despite confirmation in the TCGA data, we also proved 

the 9 ARLs’ expression in LUAD cells with qRT-PCR. 

It is still necessary to externally and practically validate 

the prediction signature developed in our research to 

determine its applicability to clinical situations. 

 
CONCLUSIONS 

 
In general, we shaped a robust predictive signature for 

lncRNAs associated with acetylation. It may function  

as a biomarker and therapeutic target to forecast  

and prolong the prognosis of people suffering with 

LUAD. Additionally, the model helps scientists better 

comprehend the relationship between acetylation and 

tumorigenesis. Moreover, future immunotherapies for 

antitumor may be explored because of this study. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Supplementary Table 1. Histone acetylation modulator proteins. 

HAMPs 

ASH1L 

ATAD2 

ATAD2B 

ATAT1 

BAZ1A 

BAZ1B 

BAZ2A 

BAZ2B 

BPTF 

BRD1 

BRD2 

BRD3 

BRD4 

BRD7 

BRD8 

BRD9 

BRDT 

BRPF1 

BRPF3 

BRWD1 

BRWD3 

CECR2 

CLOCK 

CREBBP 

ELP3 

EP300 

GTF3C4 

HAT1 

HDAC1 

HDAC10 

HDAC11 

HDAC2 

HDAC3 

HDAC4 

HDAC5 

HDAC6 

HDAC7 

HDAC8 

HDAC9 
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KAT2A 

KAT2B 

KAT5 

KAT6A 

KAT6B 

KAT7 

KAT8 

KIAA2026 

KMT2A 

NCOA1 

NCOA3 

PBRM1 

PHIP 

SIRT1 

SIRT2 

SIRT3 

SIRT4 

SIRT5 

SIRT6 

SIRT7 

SMARCA2 

SMARCA4 

SP100 

SP110 

SP140 

SP140L 

TAF1 

TAF1L 

TRIM24 

TRIM28 

TRIM33 

TRIM66 

ZMYND11 

ZMYND8 

 

  



www.aging-us.com 1297 AGING 

Supplementary Table 2. Primer sequences. 

Primer name Primer sequences 

ADAMTS9-AS2 F AAGACCCACGAACGACAGC 

ADAMTS9-AS2 R CTTTCAGCCAGACATCAGGGTT 

AF131215.6 F GTGAGGATTCAAGAACCCAGGC 

AF131215.6 R GGAGGTGAGTGGAAGTGGGT 

CYP4F26P F GCTGGTTATGCTTTATGACCTGTG 

CYP4F26P R AGGGTCCATAGAGGGAGCAGAA 

LINC00622 F CCAGACATTCCCTATGCTGTTGAG 

LINC00622 R ATTTCTCACTTTCTTTAGGGCTTTTA 

LINC00639 F CTCTGATGGCGAATGTGGTCTG 

LINC00639 R CCTGAGTCCTGAAGAAGAGCACA 

LINC00968 F CATCCCATTGAGAACCAAAGAAG 

LINC00968 R CGAAAGGCTGGAAGTGTCATTAG 

MIR22HG F CAGTGATTTGCTCCCCCTCG 

MIR22HG R AGCCCATTTCTGTCACCTTCCA 

MIR99AHG F GGACAACCATAGGCAAAACTGAA 

MIR99AHG R AGTGTGCTATTTTCTGCCCCTG 

WWC2-AS2 F CGCTTTGACCGCATTTAGGG 

WWC2-AS2 R ACCAGGGCGTCTCATTCCA 

GAPDH F CTGACTTCAACAGCGACACC 

GAPDH R TGCTGTAGCCAAATTCGTTGT 

 


