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INTRODUCTION 
 

Osteosarcoma is a prevalent malignant bone tumor  

that affects adolescents [1]. Osteosarcoma treatment 

includes complete surgical resection and multi-agent 
chemotherapy [1]. Although these treatments have 

improved survival in patients with osteosarcoma, the 

prognosis of unresectable or recurrent osteosarcomas is 

still unsatisfactory [2]. Therefore, it is urgently needed 

to seek novel biomarkers and elucidate the possible 

mechanisms involved in developing new therapeutic 

strategies and improving survival. 

 

Anoikis, a mode of programmed cell death induced by 

insufficient cell-matrix interactions, may prevent the 
invasion and metastasis of cancer cells [3]. Anoikis is 

attracting more and more attention from researchers 

since resistance to anoikis is similar to two features of 
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ABSTRACT 
 

Anoikis is essential for the progression of many malignant tumors. However, the understanding of anoikis’ roles 
in osteosarcoma remains scarce. This study conducted an extensive bioinformatics analysis to identify anoikis-
related genes (ARGs), developed ARGs modeles for predicting OS and RFS, and evaluated the effect of these 
ARGs on osteosarcoma cell migration and invasion. The GSE16088 and GSE28425 datasets provided the 
differentially expressed genes (DEGs). The prognostic significance and functions of these DEGs were 
systematically investigated using several bioinformatics techniques. Transwell assays were conducted to 
determine the effect of OGT on osteosarcoma cell migration and invasion. Seven genes were identified as hub 
genes, including FN1, CD44, HRAS, TP53, PPARG, CTNNB1, and VEGFA, while 71 ARGs were identified as DEGs. 
Four ARGs-BRMS, COL4A2, FGF2, and OGT-were used to develop an RFS-predicting model, whereas seven ARGs-
CD24, FASN, MMP2, EIF2AK3, ID2, PPARG, and PIK3R3-were used to develop an OS-predicting model in patients 
with osteosarcoma. In both the training and validation cohorts, high-risk group patients had significantly 
shorter OS and RFS duration than low-risk group patients. Furthermore, using the aforementioned ARGs, we 
developed clinically applicable nomograms for OS and RFS prediction. The proportion of tumor-infiltrating 
immune cells was significantly linked to risk scores. In vitro experiments revealed that knocking down OGT 
significantly inhibited the ability of MG63 and U2OS cells to invade and migrate. ARG-based gene signatures 
reliably predicted RFS and OS in osteosarcoma, and OGT showed promise as a potential biomarker. These 
findings contribute to a better understanding of ARGs’ prognostic roles in osteosarcoma. 
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tumor metastatic—anchorage-independent growth and 

epithelial-mesenchymal transition [4]. Anoikis is crucial 

in tumor progression. In Ewing sarcoma, the 

inactivation of IL1RAP triggered anoikis and inhibited 

the dissemination of tumor cells [5]. In gastric cancer, 

nuclear MYH9-induced CTNNB1 upregulation promoted 

cancer cell anoikis resistance and metastasis [6]. In 

hepatocellular carcinoma, IQGAP1 promoted anoikis 

resistance and metastasis through activation of Src/FAK 

signaling [7]. In lung cancer, SPIB promoted anoikis 

resistance via elevated autolysosomal process [8]. 

BMP4 enhanced anoikis resistance and chemoresistance 

of cancer cells in breast cancer through canonical BMP 

signaling [9]. These findings suggest that anoikis and 

anoikis-related genes (ARGs) are crucial for tumor 

progression and metastasis. ARGs also play important 

roles in osteosarcoma metastasis [10, 11], but we know 

only the tip of the iceberg. Therefore, a detailed 

investigation into the roles of ARGs and anoikis will aid 

in the development of new therapeutic approaches and 

prolong the survival duration of osteosarcoma patients.  

 

This study used the TCGA, TARGET, and GEO 

databases for obtaining clinical and mRNA expression 

data on osteosarcoma. Hub genes and differentially 

expressed genes (DEGs) were identified. This study 

then developed and validated ARG-based models for 

predicting relapse-free survival (RFS) and overall 

survival (OS). The link between the risk score and 

tumor immunity was investigated. Finally, this study’s 

findings were validated using in vitro experiments. 

 

MATERIALS AND METHODS 
 

Data processing 

 

The gene symbols for 434 ARGs were obtained from 

the study by Chen S et al. [12]. The gene expression 

profiles from GSE16088 [13] and GSE28425 [14] 

datasets were used to identify DEGs using the “limma” 

R package [15]. The “sva” and “limma” R packages 

were used to integrate and standardize the GSE16088 

and GSE28425 datasets. DEGs were defined as those 

with p <0.05 and log2|fold change| values >1. The 

“ggplot2” [16] and “pheatmap” [17] packages were 

used to generate volcano plots and heatmaps, 

respectively. 

 

Data for the OS model were obtained from the TCGA 

and TARGET databases for training cohorts, and the 

validation cohorts’ clinical data and gene expression 

profiles were obtained from the GSE16091 [13] and 

GSE21257 [18] datasets. Integration and standardi-

zation of GSE16091 and GSE21257 datasets were 

implemented using the “sva” and “limma” R packages. 

For the RFS model, the gene expression profiles and 

clinical information for the training cohort were 

extracted from the GSE39058 [19] dataset, while the 

validation cohorts were downloaded from the TARGET 

and TCGA databases.  

 

Identification of hub genes 

 

The previously described method [20] was used to 

identify hub genes. The STRING database [21] was 

used to retrieve data on DEG protein-protein 

interactions (PPI). Using Cytoscape 3.7.2 software, the 

PPI network was developed and visualized. Candidate 

hub genes were identified using the three methods, 

MCODE, degree, and betweenness, and the hub genes 

were identified based on the overlap of the three 

methods’ results.  

 

Prognostic model construction and validation 

 

First, the OS prognostic model was constructed and 

validated. TCGA and TARGET data on mRNA 

expression and clinical information were collated and 

combined. The “survival” package was then used to 

perform Kaplan-Meier (KM) analysis and generate 

survival curves. Candidate model genes were those with 

p <0.05. The “glmnet” R package was then used to 

perform the least absolute shrinkage and selection 

operator (LASSO) Cox regression analysis to construct 

the OS model. Each patient’s risk score was also 

calculated. The risk score formula was as follows: RS= 

∑Coefgenei x Expgenei. Patients were classified into high-

risk and low-risk groups based on their median risk 

scores. The survival curves of the two groups were 

plotted to compare OS. The “survivalROC” R package 

was used to plot the receiver operating characteristic 

(ROC) curve to evaluate the OS model’s predictive 

capability. Similarly, risk scores were calculated for 

patients in the validation (GSE16091 and GSE21257) 

cohort, and survival curves and ROC curves were 

visualized. 

 

We used the same methods as above to construct the 

RFS model. The training cohort was GSE39058, and the 

validation cohort was TCGA. Finally, we developed 

nomograms using the “rms” package to predict OS and 

RFS more intuitively and conveniently. 

 

GO enrichment, KEGG pathway, GSVA analysis 

and biological networks 

 

We used the ‘clusterProfiler” R package to conduct GO 

and KEGG pathway analyses to further investigate the 

potential functions and mechanisms of hub genes and 
prognosis-related genes [22]. Then, we performed 

GSVA analyses to explore the reasons for the different 

prognosis of patients with high or low risk as previously 
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described [23]. In addition, Transcription factor (TF)-

microRNA (miRNA) coregulatory networks of 

prognosis-related and hub genes were established using 

NetworkAnalyst 3.0. 

 

Immune scores and tumor-infiltrating immune cell 

analysis 

 
The ESTIMATE algorithm calculated immune and 

stromal scores for the training (TCGA-TAEGET) 

cohort and validation (GSE16091 and GSE21257) 

cohort samples. Tumor-infiltrating immune cells 

(TIICs) were assessed in the training (TCGA-TAEGET) 

cohort and validation (GSE16091 and GSE21257) 

cohort using the CIBERSORT online tool [24]. 

 

Cell culture and transfection 

 

From the Cell Bank of the Chinese Academy of 

Sciences (Shanghai, China), MG63 and U2OS cell lines 

were purchased. DMEM with 10% FBS (Biological 

Industries, Shanghai, China) was used to culture both 

cell lines. GeneChem (Shanghai, China) provided OGT-

targeting siRNA and negative control siRNA (si-nc). 

Supplementary Table 1 provides comprehensive details 

about the si-1 and si-2 sequences. Lipofectamine 3000 

(Invitrogen, Carlsbad, CA, USA) was used to transfect 

the cells with the siRNAs. 

 

Quantitative real-time PCR (RT-PCR) and Western 

blotting (WB) 

 

Quantitative RT-PCR and WB were carried out as 

previously described [20]. RT-PCR reagents were 

purchased from Accurate Biology (Changsha, China), 

which included the SYBR Green Premix Pro Taq HS 

qPCR Kit, AG RNAex Pro Reagent, and Evo M-MLV 

RT Premix Kit. Supplementary Table 1 shows the 

primer sequences. Beyotime Biotechnology (Shanghai, 

China) provided WB reagents, such as BeyoECL Plus 

and RIPA buffer Kit. Proteintech (Wuhan, China) 

supplied anti-OGT (11576-2-AP) and anti-GAPDH 

(10494-1-AP) antibodies. 

 

Cell migration and invasion assays 

 

Transwell assays were performed as previously 

described [25] to assess the effects of OGT expression 

on MG63 and U2OS cell migration and invasion. 

Finally, cells that migrated into the lower chamber were 

counted using a microscope in five different fields. 

 

Statistical analysis 

 

Most bioinformatics and statistical analyses in this 

study were performed using R software (version 4.0.0), 

including integration and normalization of mRNA 

expression data, LASSO Cox regression analysis, 

survival analysis, ROC analysis, CIBERSORT, and 

ESTIMATE. The mean ± standard deviation of three 

independent experiments was used to represent all 

quantitative data obtained from in vitro experiments. 

GraphPad Prism 8.0 (GraphPad, La Jolla, CA, United 

States) was used to analyze differences across three 

groups using one-way ANOVA. p <0.05 denoted a 

statistical significance level.  

 

Data availability statement 

 

All datasets presented in this study are included in the 

article Supplementary Material. 

 

RESULTS 
 

DEGs and hub genes in osteosarcoma 

 

The GSE16088 and GSE28425 datasets of normal bone 

and tumor tissues were used to identify differentially 

expressed ARGs. Figure 1A, 1B show the Volcano plot 

and heatmap of ARGs in GSE16088 and GSE28425, 

respectively. Finally, 71 ARGs out of 434 ARGs were 

identified as DEGs (Supplementary Table 2). 

 

After mapping the 71-DEG PPI network with STRING, 

the Cytoscape MCODE plug-in was used to reconstruct 

the network (Figure 1C). The first 10 genes were 

chosen, and the degree and betweenness topological 

approaches were used to construct the associated PPI 

network (Figure 1D, 1E). Seven genes—FN1, CD44, 

HRAS, TP53, PPARG, CTNNB1, and VEGFA—were 

shown to be hub genes by crossing the three methods’ 

results (Figure 1F).  

 

Prognostic model construction and validation  

 

First, we conducted KM analysis to investigate how 

DEGs affected the training (TCGA-TARGET) cohort’s 

OS before analyzing ARGs’ effects on osteosarcoma 

patients’ prognoses. The results revealed that OS was 

substantially correlated with nine candidate ARGs 

(Supplementary Figure 1). Subsequently, the OS model 

was constructed using LASSO regression analysis. 

Figure 2A shows the corresponding confidence interval 

for each lambda and each gene’s lambda-valued 

coefficient trajectory. Seven signature genes were 

chosen for the OS model. The following formula was 

used to calculate the risk score: (0.106*Exp CD24) + 

(0.135*Exp FASN) + (-0.206*Exp MMP2) + 

(0.272*Exp EIF2AK3) + (0.029*Exp ID2) + (-

0.569*Exp PPARG) + (-0.243*Exp PIK3R3). The 

training cohort’s median risk score classified patients 

into low- and high-risk groups. According to the KM 
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analysis results, patients in the high-risk group had 

considerably worse (p <0.001, Figure 2B). We next 

performed ROC analyses to evaluate aforementioned 

ARGs’ predictive capabilities. The outcomes showed 

that the OS predictive model’s area under the ROC 

curve (AUC) values were 0.838, 0.832, and 0.83 over 3, 

5, and 7 years, respectively (Figure 2B). The GSE16091 

and GSE21257 datasets were then used for verification 

 

 
 

Figure 1. Differentially expressed genes and hub genes. (A) Volcano plot of 434 ARGs in GSE16088 and GSE28425 datasets.  

(B) Heatmap of DEGs in GSE16088 and GSE28425 datasets. (C) Protein-protein interaction (PPI) network of 71 DEGs and the critical module. 
Identifying the first 10 ARGs and constructing the corresponding PPI network using the degree (D) and betweenness (E) topological method. 
(F) Venn calculation is applied to identify seven hub ARGs. 
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Figure 2. Development and validation of the OS-prediction model for osteosarcoma. (A) The least absolute shrinkage and 
selection operator (LASSO) method of ARGs is associated with prognosis. Survival curve and ROC curve for low- and high-risk subgroups in the 
training cohort (TCGA-TAGET) (B) and the validation cohort (GSE16091 and GSE21257) (C).  
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analysis. Patients at high risk had shorter OS duration, 

in line with the findings of the training cohort (p <0.05, 

Figure 2C). Over 3, 5, and 7 years, the OS model’s 

AUCs were 0.653, 0.647, and 0.561, respectively 

(Figure 2C).  

 

We used the same method to construct the RFS 

predictive model. GSE39058 sets were used as the 

training cohort. Eight candidates’ ARGs were strongly 

related to RFS, according to KM analysis 

(Supplementary Figure 2). The RFS model was 

constructed using LASSO regression analysis. Figure 

3A shows the corresponding confidence interval for 

each lambda and each gene’s lambda-valued coefficient 

trajectory. Four signature genes were chosen for 

developing the RFS model. The following formula 

calculated the risk score: (0.416*Exp BRMS1) + 

(0.295*Exp COL4A2) + (-0.032*Exp FGF2) + 

(0.372*Exp OGT). The training cohort’s median risk 

score divided patients into low- and high-risk groups. 

According to the KM analysis results, patients in the 

high-risk group had considerably worse RFS (p <0.001, 

Figure 3B). Over 3, 5, and 7 years, the RFS model’s 

AUCs were 0.875, 0.805, and 0.867, respectively 

(Figure 3B). The validation cohort was then created 

using the TCGA-TARGET sets. Patients in the high-

risk group had shorter RFS duration, which was 

consistent with the training cohort results (p =0.009, 

Figure 3C). Over 3, 5, and 7 years, the OS model’s 

AUCs were 0.741, 0.803, and 0.678, respectively 

(Figure 3C). The risk score and clinical parameters’ 

prognostic value were also assessed using univariate 

and multivariate Cox analyses. The findings revealed 

that patients in the TCGA-TARGET dataset had an 

independent risk score for OS (Supplementary Figure 

3A) and RFS (Supplementary Figure 3B). In summary, 

osteosarcoma patients’ outcomes were accurately 

predicted by the OS and RFS models. 

 

Building predictive nomograms 

 

Nomograms (Figure 4A, 4B) were constructed to enable 

us to better predict osteosarcoma patients’ OS and RFS 

using prognosis-related ARGs. Each gene was assigned 

a corresponding point on the point scale. According to 

each patient’s predicted 3-, 5-, and 7-year survival rates, 

the points were then added up to determine the total 

score for each patient. 

 

Potential functions and mechanisms 

 

GO and KEGG analyses of the hub and prognosis-

related ARGs were carried out using the 
“clusterProfiler” R package to investigate their 

functions and possible mechanisms in osteosarcoma. As 

shown in Figure 5A, for GO enrichment analysis, the 

seven hub ARGs were enriched in cell growth, 

fibroblast proliferation, transcription regulator complex, 

protein-C terminus binding, and phosphatase binding. 

The prognosis-related ARGs were enriched in lipid 

metabolic process and smooth muscle cell proliferation 

(Figure 5B). For KEGG pathway analysis, the seven 

hub ARGs were enriched in virus infection and some 

cancers (Figure 5A). The prognosis-related ARGs were 

enriched in AGE-RAGE, AMPK, and Relaxin signaling 

pathways. (Figure 5B). Then, GSVA analyses were 

performed to explore the reasons for the different 

prognosis of patients with high or low risk. For OS 

model, the Ribosome pathway was activated primarily 

in high-risk patients, whereas low-risk patients mainly 

activated other pathways, such as leukocyte trans-

endothelial migration, natural killer cell mediated 

cytotoxicity, and complement and coagulation cascades 

(Figure 5C). For RFS model, high-risk subgroups 

mainly activated cytokine- cytokine receptor interaction 

pathway, chemokine signaling pathway, NOD like 

receptor signaling pathway and TOLL like receptor 

signaling pathway, whereas low-risk subgroups mainly 

activated lysine degradation pathway (Figure 5D). 

Furthermore, the TF-miRNA coregulatory network of 

the seven hub ARGs (Figure 5E) and prognosis-related 

ARGs (Figure 5F) was constructed using 

NetworkAnalyst.  

 

Immune infiltration differences between risk groups 

 

Because the tumor microenvironment (TME) influences 

malignant tumor progression [26], we used the 

ESTIMATE and CIBERSORT tools to assess the 

differences between risk groups in immune cells and 

immune infiltration. Both the validation (GSE16091 

and GSE21257) and training (TCGA-TARGET) cohorts 

showed that the high-risk group had lower immune and 

stromal scores than the low-risk group, according to the 

ESTIMATE results (Figure 6A). Low immune scores 

correspond with low survival rates (Figure 6B). We 

then compared TIIC differences between risk groups. 

Results from the TCGA-TARGET cohort revealed that 

the high-risk group had considerably fewer infiltrating 

T cells CD4 memory activated than the low-risk group 

(Figure 6C). GSE16091 and GSE21257 cohort results 

showed that the high-risk group had significantly fewer 

infiltrating T cells gamma delta and M2 than the low-

risk group, whereas the high-risk group had 

substantially higher T cells follicular helper, mast cells 

activated, plasma cells, and infiltrating B cells naïve 

(Figure 6D). Differences in immune checkpoint gene 

expression between risk groups were also investigated. 

In the TCGA-TARGET cohort (Figure 6E), the high-
risk group had significantly lower mRNA levels of 

RGMB, CTLA4, CD96, CD274, HAVCR2, LAG3, 

TIGIT, CD28, and PDCD1LG2 than the low-risk group. 
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Figure 3. Development and validation of the RFS-prediction model for osteosarcoma. (A) The least absolute shrinkage and 

selection operator (LASSO) method of ARGs is associated with prognosis. Survival curve and ROC curve for low- and high-risk subgroups in the 
training cohort (GSE39058) (B) and the validation cohort (TCGA-TAGET) (C). 
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Moreover, the seven OS-related ARGs were associated 

with different TIICs infiltrating (Figure 6F). 

 

OGT knockdown inhibited the invasion and 

migration capability of osteosarcoma cells 

 

Although O-linked N-acetylglucosamine transferase 

(OGT) has been identified as an ARG associated with 

patient prognosis, its functions in osteosarcoma remain 

unclear. Therefore, OGT’s effects on osteosarcoma cells 

were investigated in vitro. Compared to normal bone 

tissues, tumor tissues had higher OGT mRNA expression 

levels (Figure 7A and Supplementary Table 2). RT-PCR 

was used to measure OGT mRNA expression in various 

osteosarcoma cell lines (Figure 7B). The mRNA level of 

OGT was high in multiple osteosarcoma cell lines. 

siRNAs (si-1, si-2, and si-nc) were then used to transfect 

MG63 and U2OS cells. (Figure 7C). Subsequently, 

transwell assays revealed that OGT knockdown decreased 

MG63 (Figure 7D) and U2OS (Figure 7E) cell migration 

and invasion. OGT-related pro-tumor mechanisms were 

also investigated using KEGG pathway analysis (Figure 

7F). In summary, OGT promoted osteosarcoma metastasis 

and might be a prognostic biomarker. 

DISCUSSION 
 

Anoikis plays an essential role in cancer progression 

and has piqued the interest of cancer researchers. 

Studies on anoikis’ effects on cancer are becoming 

more common [27, 28], and these studies have allowed 

us to better understand anoikis’ potential in cancer 

treatment. ARGs and anoikis have not been thoroughly 

studied about osteosarcoma. Therefore, a thorough 

investigation of the functions that anoikis and ARGs 

exert will aid in the development of novel, 

individualized osteosarcoma therapy approaches and 

improve patient prognoses. 

 

Initially, we identified 71 differentially expressed ARGs 

from 434 ARGs. Cytoscape also identified seven hub 

genes: FN1, CD44, HRAS, TP53, PPARG, CTNNB1, and 

VEGFA. FN1 [29], CD44 [30], HRAS [31], TP53 [32], 

CTNNB1 [33], PPARG [34], and VEGFA [35] genes have 

been shown to affect osteosarcoma progression.  
 

We then examined the prognostic significance of these 

differentially expressed ARGs. Nine ARGs were linked 

to OS, and eight were linked to RFS, according to KM 

 

 

 

Figure 4. The nomograms for predicting 3-, 5-, and 7-year OS and RFS of the training cohort. (A) Nomogram for predicting 3- and 

5-year OS in the training cohort (TCGA-TAGET) and calibration plots. (B) Nomogram for predicting 3- and 5-year RFS in the training cohort 
(GSE39058) and calibration plots. 
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Figure 5. Function enrichment analysis. GO function enrichment and KEGG pathway analysis of hub genes (A) and prognosis-related 

ARGs (B). GSVA analysis for OS (C) and RFS (D) in low- and high-risk subgroups of TCGA cohort. Transcription factor-miRNA coregulatory 
network of hub genes (E) and prognosis-related ARGs (F). 



www.aging-us.com 674 AGING 

 
 

Figure 6. Immune infiltration between risk groups. (A) Comparisons between the high- and low-risk groups in terms of stromal score 
and immune score in the TCGA-TARGET cohort and GSE16091 + GSE21257 cohort. (B) The Sankey diagram of risk score, immune score, and 
survival status. Violin plot comparing the proportions of TIICs associated with low- and high-risk scores designated by the OS-prediction 
model for the training cohort (TCGA-TARGET) (C) and the validation cohort (GSE16091 and GSE21257) (D). (E) Differences in expression of 
immune checkpoint genes between low- and high-risk groups in TCGA-TARGET cohort. (F) Correlation heatmap of prognostic ARGs and TIICs.  
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analysis. LASSO regression analysis identified CD24, 

FASN, MMP2, EIF2AK3, ID2, PPARG, and PIK3R3 

genes as OS prediction model features, and BRMS, 

COL4A2, FGF2, and OGT genes as RFS prediction 

model features. Based on the ROC analysis, the validation 

cohort confirmed the OS and RFS prediction models’ 

ability in identifying osteosarcoma patients. Moreover, 

univariate and multivariate Cox analyses revealed that RS 

was an independent OS and RFS risk factor for patients in 

the TCGA-TARGET dataset. All these findings indicated 

the clinical value of both models. Finally, we developed 

OS and RFS prediction nomograms that aid in the more 

accurate prediction of patient survival. 

 

We then examined hub and prognosis-related ARGs’ 

potential roles in osteosarcoma and their mechanisms. 

GO enrichment analysis revealed that the seven hub 

ARGs were primarily enriched in fibroblast proliferation, 

cell growth, the transcription regulator complex, protein-

C terminus binding, and phosphatase binding, while the 

prognosis-related ARGs were mainly enriched in lipid 

metabolic process and smooth muscle cell proliferation. 

KEGG pathway analysis indicated that the seven hub 

ARGs primarily participated in virus infection and some 

cancers, while the prognosis-related ARGs were enriched 

in the AMPK, AGE-RAGE, and Relaxin signaling 

pathways. In addition, GSVA analyses suggested that the 

Ribosome pathway and lysine degradation pathway were 

the main reasons for the different prognosis of patients 

with high- and low-risk. 

 

Given immune microenvironment’s involvement in 

tumors, we further investigated the ARGs-based risk 

score’s effect on tumor immunity. By comparing the 

 

 
 

Figure 7. OGT knockdown inhibits the migration and invasion capability of osteosarcoma cells. (A) OGT expression in normal 
bone tissues and osteosarcoma tissues (GSE16088 and GSE28425). (B) OGT mRNA expression level in osteosarcoma cells. (C) OGT knockdown 
in MG63 and U2OS cells was confirmed using RT-PCR and WB. (D, E) Migration and invasion capability of MG63 and U2OS cells were 
significantly weakened by the downregulation of OGT expression (**p <0.01, ***p <0.001). (F) KEGG pathway analysis of OGT in 
osteosarcoma. 
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high-risk group’s stromal and immune scores to those of 

the low-risk group, ESTIMATE showed that the high-

risk group had considerably attenuated immune 

responses. Results of CIBERSORT suggested that risk 

score affected the infiltration proportions of M2, T cells 

CD4 memory activated, and plasma cells, which were 

strongly linked to the prognosis of patients with 

malignant tumors [20, 36, 37]. Macrophages are the 

primary immune cell in the microenvironment of 

osteosarcoma [38]. Thus, regulating macrophages in the 

TME is critical for improving osteosarcoma prognosis. 

We also found that PPARG expression was negatively 

associated with M0 and positively associated with M2. 

Moreover, PPARG promoted macrophage polarization 

to the M2 phenotype while inhibiting polarization to the 

M1 phenotype [39, 40]. As a hub ARG and a prognosis-

related ARG, the effect of PPARG on macrophages in 

osteosarcoma remains unclear and is worth exploring 

further. Furthermore, CD24 is a novel target for cancer-

related immunotherapy [41]. According to this study, 

CD24 is upregulated in tumor tissues and is associated 

with OS. Previous research has shown that CD24 is 

primarily expressed in tumor cells and promotes 

osteosarcoma invasion and metastasis [42, 43]. 

Therefore, targeting CD24 in osteosarcoma is a 

promising therapeutic strategy.  

 

Among these prognosis-related ARGs, the roles and 

mechanisms of several genes in osteosarcoma have 

been identified. But the role of OGT in osteosarcoma 

remains unknown. We showed that OGT knockdown 

inhibited osteosarcoma cell invasion and migration in 
vitro. KEGG analysis suggested that OGT was 

enriched in focal adhesion, p53, and TGF-β signaling 

pathways strongly, which are linked to tumor 

metastasis [44, 45]. The mechanism of the oncogenic 

effect of OGT in osteosarcoma remains to be further 

verified. Nevertheless, OGT has the potential to serve as 

an osteosarcoma prognostic biomarker.  

 

Our study, however, had some limitations. First, this 

study focused primarily on mRNA levels, however, 

protein levels may significantly impact cancer 

occurrence and progression. Second, the mechanism of 

action of OGT has not yet been elucidated. 

 

In conclusion, we thoroughly investigated the 

prognostic significance of ARGs and their link to 

tumor immunity in osteosarcoma. The OS and RFS 

prediction models were developed and validated to 

predict the prognosis of patients with osteosarcoma 

accurately. We identified hub and prognosis-related 

ARGs and explored their underlying mechanisms. 

OGT may serve as a novel target to develop new 

therapeutic approaches and enhance the prognoses of 

osteosarcoma patients. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Kaplan-Meier analysis of differentially expressed ARGs for OS in TCGA-TARGET. 
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Supplementary Figure 2. Kaplan-Meier analysis of differentially expressed ARGs for RFS in GSE39058. 
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Supplementary Figure 3. Univariate and multivariate Cox analyses for OS (A) and RFS (B) in TCGA-TARGET. 
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Supplementary Tables 
 

Supplementary Table 1. The sequences of primer and siRNA 
oligonucleotides. 

OGT 
F 5’- TCCTGATTTGTACTGTGTTCGC -3’ 

R 5‘- AAGCTACTGCAAAGTTCGGTT -3’ 

GAPDH 
F 5′‐CGACCACTTTGTCAAGCTCA‐3’ 

R 5’-GGTTGAGCACAG GGTACTTTATT-3’ 

si-1  5′- UAUUUGGAGGUAGUAGUACAA -3′ 

si-2  5′- UGCAUAAGGUGAGAAGUAGGA -3’ 

 

Supplementary Table 2. Differentially expressed ARGs. 

Gene logFC AveExpr P.Value 

ITGA3 -2.465898786 6.113783476 0.00000000000000011 

SPP1 6.902439143 11.05799052 0.00000000000000107 

TLN1 -2.251123286 7.263180143 0.00000000000000112 

OCLN -1.245569071 5.026531762 0.00000000000000598 

HMGA1 -2.817400857 6.881310619 0.00000000000147 

FGF2 -1.430950357 5.027533381 0.00000000000414 

EIF2AK3 2.518235429 7.62467319 0.0000000000137 

QSOX1 -1.556304071 7.836194524 0.0000000000161 

HRAS -2.189618571 7.507511857 0.0000000000597 

NQO1 -2.764201857 7.500085619 0.000000000131 

PLK1 -1.814372357 7.072995571 0.000000000153 

CXCR4 2.932619286 8.121584952 0.000000000235 

ARHGDIA -1.003356357 7.691321905 0.000000000466 

CTNNB1 2.029151357 10.013856 0.0000000014 

FN1 1.438834429 9.618805952 0.00000000488 

SNAI2 3.218966786 9.351329143 0.00000000829 

TUBB3 -1.639763143 9.693211143 0.0000000136 

MMP9 5.012096214 11.62029619 0.0000000159 

FADD -1.760714429 7.823750095 0.0000000176 

SATB1 2.278084071 7.506011 0.0000000233 

BRMS1 -1.107130286 7.677278286 0.0000000524 

BDNF -1.434814929 5.661685286 0.0000000616 

PIK3R3 1.257319429 6.691640667 0.0000000696 

MMP2 2.742156357 9.746927524 0.000000246 

PIK3R1 1.443707357 6.869808 0.000000318 

CDKN2A 1.8287975 6.899833619 0.000000391 

ZEB2 2.18047 6.788587381 0.00000065 

FASN -1.039120571 7.49877681 0.000000704 

CAV1 -2.043785714 8.664928048 0.000000752 

OGT 1.3462075 7.679012952 0.000000951 

ARHGDIB 2.196897786 9.578011667 0.00000139 

PIK3C2B 1.339768286 7.115673429 0.00000153 

HTRA1 2.940662929 9.721752381 0.00000162 

S100A4 2.498585714 11.29989838 0.0000019 

PPARG -1.439115929 6.189688952 0.00000201 
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SERPINE1 -2.181896929 6.826633619 0.0000023 

TNC 2.953049714 9.317173381 0.00000232 

ID2 1.409741929 8.227120381 0.00000276 

CDKN3 -1.849537714 8.312781714 0.00000278 

LGALS3 1.438387143 9.974514619 0.00000287 

VEGFA 1.855724429 8.161938333 0.00000307 

CD24 2.703499071 8.175575571 0.00000372 

TP53 -1.408055643 5.80863981 0.00000435 

PDGFRB 1.772347286 8.673447 0.00000527 

TFDP1 -2.144229 8.82953 0.00000624 

PRDX4 1.154507357 11.17791057 0.00000779 

MMP13 4.048848071 8.890155333 0.0000134 

TWIST1 2.904488 8.616746762 0.0000177 

TNFSF10 1.447986857 6.320476571 0.0000205 

IFI27 2.892314643 9.11628019 0.0000286 

ITGAV 1.488104643 9.616141048 0.0000407 

GSK3B -1.110349357 7.996281238 0.0000408 

RHOB 1.162412929 9.141598524 0.0000418 

KDR 1.211653071 6.197537857 0.0000562 

MTDH 1.142134143 8.96726719 0.0000893 

BSG 1.288856286 9.129787667 0.000111583 

INHBB 1.4292265 7.336986238 0.000113616 

LAMB3 -1.244247143 5.92900219 0.000118277 

CDKN1B 1.025396429 8.705005905 0.000124414 

CD36 1.936409786 7.407610857 0.000245353 

UBE2C -1.017923429 9.383675524 0.000247511 

YAP1 -1.002773214 6.590675381 0.000271862 

CD44 -1.131310571 7.854753095 0.000274192 

SFN -1.500931857 7.158165476 0.000302139 

PRPF4B 1.0970545 7.460391238 0.000344657 

PBK -1.576046643 7.686079381 0.00051086 

ANGPTL2 1.468309143 8.121412333 0.000683007 

COL4A2 1.056079786 9.235457619 0.002313379 

CSPG4 1.066916643 7.449595619 0.002932988 

TPM1 -1.061697786 9.346862476 0.003099409 

HMOX1 1.137150643 8.249676857 0.005940539 

 


