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INTRODUCTION 
 

Lactate, once considered a mere byproduct of glycolysis, 

is now acknowledged as a fundamental carbon source 

for cellular metabolism, influencing various aspects  

of carcinogenesis, immune evasion, angiogenesis, 

metastasis, and therapeutic response [1–3]. The 

metabolic phenomenon observed in cancer cells, where 

they predominantly utilize glucose as their primary 

energy source and produce significant amounts of lactate 

even in the presence of adequate oxygen, is commonly 

known as aerobic glycolysis or the Warburg effect. This 

term stems from Otto Warburg’s pioneering work on the 

metabolic characteristics of cancer cells [4]. During 

aerobic glycolysis and glutaminolysis, substantial 

quantities of lactic acid and hydrogen ions are released 

into the extracellular space, resulting in the acidification 

of the tumor microenvironment and the establishment of 

a reversed pH gradient [5, 6]. Consequently, lactate 

plays a pivotal role in both tumor development and the 

remodeling of the tumor microenvironment. Lactate 

dehydrogenases (LDHs) are a group of metabolic 

enzymes responsible for the reversible conversion of 

pyruvate to lactate. Two isoforms, LDHA and LDHB, 
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ABSTRACT 
 

A thorough assessment of lactate-related genes (LRGs) in different types of human cancers is currently lacking. 
To elucidate the molecular landscape of LRGs, we conducted a comprehensive analysis using genomic, mRNA, 
and microRNA expression profiles and developed a lactate score model using the least absolute shrinkage and 
selection operator (LASSO) algorithm. We found that our lactate score could be a prognostic marker instead of 
LDHA for several cancer patients who possess high-frequency variants in LRGs. The lactate score also 
demonstrated an association with CD8+ T cells infiltration in multiple cancer types. Furthermore, our findings 
indicate that the lactate score holds promise as a potential biomarker for immunotherapy in patients with 
bladder cancer (BLCA) and skin cutaneous melanoma (SKCM). Among the seventeen genes of the lactate score 
model, PDP1 showed the strongest positive correlation with lactate score and the potential as a standalone 
biomarker for prognosis. In general, our study has yielded crucial insights into the potential application of the 
lactate score as a predictive biomarker for both survival outcomes and the response to immunotherapy. By 
recognizing the prognostic significance of lactate metabolism, we open avenues for further investigations 
aimed at harnessing the therapeutic potential of lactate. 
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exist, each exhibiting a dual role in cancer metabolism 

[7]. The expression levels of LDHA are regulated by 

several factors, including HIF1α, MYC, and p53, and are 

associated with epithelial-to-mesenchymal transition, 

angiogenesis, and increased tumor cell invasion [8]. 

Conversely, the downregulation or loss of LDHB 

expression correlates with high proliferation, enhanced 

invasion, and poor survival [9, 10]. Remarkably, lactate 

has also been implicated in resistance to tyrosine kinase 

inhibitor therapies, such as the epidermal growth factor 

receptor inhibitor erlotinib [11]. Additionally, high 

lactate concentrations have been linked to radiotherapy 

resistance in nude mice xenografted with human head 

and neck cutaneous squamous cell carcinoma cell lines 

[12]. Collectively, these findings provide compelling 

evidence for the critical role of lactate in tumors, acting 

as both a metabolic fuel and a signaling molecule. 
 

Lactate levels in the extracellular environment can be 

detected by cancer cells and several immune cell  

types, including T cells, natural killing (NK) cells, 

dendritic (DC) cells, and macrophages, triggering 

intracellular signaling that regulates cellular behaviors 

and functions within the tumor microenvironment [2]. 

Notably, an extracellular pH range of 6.0–6.5 has been 

found to induce anergy in CD8+ T cells, resulting in 

reduced cytolytic activity and cytokine production [13]. 

Furthermore, extracellular acidification suppresses the 

anti-tumoral activity of NK cells through mTOR 

inhibition [14]. Additionally, lactate exerts a positive 

influence on the metabolic profile of regulatory T (Treg) 

cells, promoting their survival and immunosuppressive 

functions [15]. Moreover, lactate plays a role in 

promoting the polarization of alternatively activated 

macrophages with an M2-like phenotype, contributing  

to angiogenesis, tissue remodeling, tumor growth,  

and invasion [16]. In recent years, immune checkpoint 

inhibitors (ICIs) have demonstrated significant 

improvements in patient outcomes and have become 

first-line therapies for several cancer types [17]. 

However, the response rate to ICIs as monotherapy is 

limited, with only 20% to 30% of patients exhibiting 

positive responses [18, 19]. Nonetheless, the relationship 

between lactate levels and immunotherapy response 

across different cancer types remains largely unexplored. 
 

The crucial role of lactate in both tumorigenesis  

and tumor immunity necessitates a comprehensive 

investigation of lactate levels across different cancer 

types. To address the gap of a pan-cancer analysis, we 

embarked on a study utilizing publicly available 

databases, including the Cancer Genome Atlas (TCGA) 

and Gene Expression Omnibus (GEO). Our primary 

objectives were to construct and validate a prognostic 

model encompassing a wide range of cancers based on 

lactate-related genes (LRGs). Furthermore, we aimed to 

explore the potential associations between this model 

and survival outcome, immune infiltration as well as the 

response to immunotherapy. 

 

Given the pivotal role of lactate in both tumorigenesis 

and tumor immunity, it is imperative to thoroughly 

investigate lactate levels across different types of 

cancer. However, such investigations have been lacking 

in the scientific literature. To address this gap, our study 

was designed to utilize publicly available databases, 

such as TCGA and GEO. We constructed and validated 

a prognostic model based on lactate-related genes that 

encompasses multiple cancer types. Moreover, we 

sought to explore the correlation between our lactate 

score model and immune infiltration, as well as its 

potential implications for immunotherapy response. By 

adopting this approach, we aim to enhance our 

understanding of the significant role of lactate in cancer 

biology and pave the way for clinical applications in the 

management of cancer patients. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

The work has been reported in line with the REMARK 

criteria [20]. The clinical and mRNA expression data  

of 33 cancer types involving 10,251 patients from  

The Cancer Genome Atlas (TCGA) was downloaded 

from https://xenabrowser.net/datapages/. The detailed 

information of the used datasets is displayed in 

Supplementary Table 1. Out of the 33 cancer types, all 

had mRNA and microRNA profiles, and 24 cancer  

types had mutation information. Microarray datasets  

of GSE14764 and GSE140082, involving 456  

patients with ovarian cancer, were downloaded from  

the Gene Expression Omnibus database (GEO, 

https://www.ncbi.nlm.nih.gov/geo/) [21, 22]. The results 

of the analysis of one single-cell dataset of ovarian 

cancer, GSE151214, were obtained through an online 

website called Tumor Immune Single-cell Hub 2 

(TISCH2, http://tisch.comp-genomics.org/home/) to 

study the distribution in cell subpopulations [23]. The 

immunotherapy response datasets involving 253 patients 

were downloaded from GSE91061, IMvigor210 and 

PRJEB23709 [24–26]. 

 

Depiction of the lactate-related genes 

 

A total of 230 genes were identified as Lactate-related 

Genes (LRGs) and acquired from the Molecular 

Signatures Database (MSigDB; https://www.gsea-

msigdb.org) according to five pathways, namely GOBP 
Lactate Metabolic Process, HP Abnormal Lactate 

Dehydrogenase Levels, HP Increased CSF lactate, HP 

Increased Serum Lactate, HP Increased Circulating 

https://xenabrowser.net/datapages/
https://www.ncbi.nlm.nih.gov/geo/
http://tisch.comp-genomics.org/home/
https://www.gsea-msigdb.org/
https://www.gsea-msigdb.org/
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Lactate Dehydrogenase Concentration. The characteristics 

of the lactate-related genes were depicted in the 24 cancer 

types from the TCGA cohort. The somatic single-

nucleotide variation of these genes was calculated via R 

package “maftools” based on sequencing results [27]. 

The gene-level CNV information was extracted from the 

sequencing results and utilized for calculation of 

amplification and deletion frequencies. The oncoprint  

of the variants was done using the R package 

ComplexHeatmap [28]. miRNA prediction for PDP1 

using the R package multiMiR, upset map using the R 

package UpSetR [29, 30]. 

 

Evaluation of lactate score 

 

We employed the two algorithms to build Cox 

proportional-hazards regression model, namely 

random forest (RF) and least absolute shrinkage and 

selection operator (LASSO). The models of lactate 

scores were trained and validated in TCGA-OV 

patients by R package “randomForestSRC” and 

“glmnet” were employed [31–33]. When performing 

the estimation of RF-built models, the candidates 

associated with overall survival were selected and then 

put into the machine learning to get the different 

importance for the models. Then the twenty most 

important genes were pick for the training of the RF 

models using Cox proportional-hazards regression. 

When performing the estimation of LASSO-built 

models, a total of 230 LRGs were put into the model 

training and the penalty parameter was selected by 

cross-validation to avoid the overfitting. The models 

with highest concordance(c)-index were chosen as the 

best RF model and the best LASSO model. The 

receiver operating characteristic (ROC) curves of the 

two models in predicting 5-year survival of ovarian 

cancer were implemented by R package “survival 

ROC”. The corresponding area under curves (AUC) of 

the two models were compared for the performances 

of the model building methods. 

 

With the signature constructed by LASSO Cox 

regression, samples were assigned with lactate score 

and divided into high-, middle- and low lactate score 

groups according to the tertiles of lactate score. Kaplan-

Meier curves were carried out to compare the survival 

time differences by the “survival” and “survminer” R 

package [34, 35]. The 5-year ROC curves and the ROC 

curves were compared to predict the survival status with 

the “timeROC” R packages [36]. Besides, ROCs and 

AUCs of the signature illustrating its performance in 

predicting 1-, 3-, and 5-year survival were presented for 

further verification. Validation by external datasets 

were carried in GSE4764 and GSE140082 cohorts, with 

the locked model and redefined cut-off values by the 

tertiles of lactate score. 

Drug sensitivity prediction and immune infiltration 

 

The GDSC2 database contains IC50 and transcriptomic 

data for 167 drug-treated cell lines using the R package 

oncoPredict, which predicts drug IC50 for each patient 

of TCGA-OV based on transcriptomic data [37]. 

Pearson correlation was calculated using the R package 

Hmisc, the heatmap using the R package pheatmap, 

scatter plot and boxplot using the R package ggpubr 

[38–40]. The codes of cibersort absolute were used to 

estimate the infiltration levels of immune cells [41, 42]. 

The infiltration levels were compared among high, 

middle, and low lactate score groups. We further 

investigated the correlation between lactate score and 

response to immunotherapy using eleven datasets with 

immunotherapy response. 

 

Statistical analysis 

 

All statistical analyses were performed using R 

language (https://www.r-project.org/). Wilcox test was 

used to compare continuous variables between two 

groups. Pearson coefficient was calculated to measure 

the correlation between two continuous variables. Detail 

parameters were described in the corresponding 

analysis. P-value <0.05 was considered to be 

statistically significant if not otherwise stated. 

 

RESULTS 
 

The genetic landscape of LRGs in pan-cancer 

 

After excluding a microRNA, we collected a total of 

fifteen lactate-related genes (LRGs) within the GOBP 

Lactate Metabolic Process pathway. The oncoprint 

analysis visually represents the mutation, amplification, 

and deletion frequencies of these fifteen genes. Among 

them, TP53 exhibited the highest variation rate at 

41.2%, followed by PARK7 at 13.8% and PER2 at 

12.7%. Conversely, LDHA, LDHC, LDHAL6B, and 

LDHB displayed the lowest variation frequencies, 

ranging from 5.2% to 6.1% (Figure 1A). Notably, most 

LRGs demonstrated variations in gene amplification 

and deletion, with the exception of TP53. To further 

investigate this, we examined the distribution of copy 

number variations (CNVs), including amplifications  

and deletions, across thirty-three different cancers. 

Interestingly, the frequency of CNVs varied significantly 

among the different cancer types (Figure 1B, 1C). Kidney 

chromophobe (KICH), kidney renal clear cell carcinoma 

(KIRC), kidney renal papillary cell carcinoma (KIRP), 

acute myeloid leukemia (LAML), pheochromocytoma 

and paraganglioma (PCPG), prostate adenocarcinoma 

(PRAD), thyroid carcinoma (THCA), and thymoma 

(THYM) exhibited lower rates of amplification or 

deletion events. Conversely, ovarian cancer (OV), 

https://www.r-project.org/
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breast invasive carcinoma (BRCA), lung squamous  

cell carcinoma (LUSC), sarcoma (SARC), uterine 

carcinosarcoma (UCS), and esophageal carcinoma 

(ESCA) showed a higher frequency of copy number 

variants in lactate-related genes. These variations can 

potentially lead to significant abnormalities in mRNA 

and protein expression, indicating the crucial regulatory 

role of lactate in these particular cancer types. 

 

 
 

Figure 1. Genetic and transcriptional alterations of LRGs in 33 cancers. (A) The frequencies of total genetic variations for 15 LRGs 

from the pathway of GO_BP Lactate Metabolic Process in pan-cancer. Red bars mean copy number amplification, blue bars mean copy 
number deep deletion, yellow bars mean gene mutation. (B) The frequency of copy number amplification for 15 LRGs in each cancer. The 
numbers in the boxes refer to the percentage of patients with any gene copy number amplification variant compared to all patients in each 
cancer. (C) The frequency of copy number deep deletion for 15 LRGs in each cancer. The numbers in the boxes refer to the percentage of 
patients with any gene copy number amplification variant compared to all patients in each cancer. LRGs: lactate-related genes; GO_BP: gene 
ontology biological process. 
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Survival analysis of LDHA copy number variation 

(CNV) 

 

In our study, we focused on lactate dehydrogenase A 

(LDHA), the primary metabolic enzyme responsible for 

the conversion of pyruvate to lactate along with NAD+. 

To investigate the impact of LDHA copy number 

variation (CNV) on patient prognosis, we performed 

CNV and survival analyses across twenty-four different 

cancer types using data from the TCGA project. We 

observed variations in LDHA CNV rates among patients 

with different tumor types. To further analyze the 

association between LDHA CNV and patient prognosis, 

we examined the number of patients with LDHA 

amplification or deletion in each cancer type  

(Figure 2A). Among the cancer types, BRCA exhibited 

 

 
 

Figure 2. Copy number variation (CNV) distribution of LDHA across cancers. (A) The frequencies of LDHA copy number amplification 
and deletion across cancers. Red bars mean copy number amplification, blue bars mean copy number deep deletion. (B) The KM plot of 
patients with LDHA copy number amplification and deep deletion in BRCA. (C) The KM plot of patients with LDHA copy number amplification 
and deletion in LUSC. (D) The KM plot of patients with LDHA copy number amplification and deletion in OV. (E) The KM plot of patients with 
LDHA copy number amplification and deletion in BLCA. (F) The KM plot of patients with LDHA copy number amplification and deletion in 
LUAD. (G) The KM plot of LDHA copy number amplification and deletion all patients. LDHA: lactate dehydrogenase A; KM: Kaplan-Meier 
curves; BRCA: breast invasive carcinoma; LUSC: lung squamous cell carcinoma; OV: ovarian cancer; BLCA: bladder urothelial carcinoma; 
LUAD: lung adenocarcinoma. 
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the highest number of LDHA CNV variants, with forty-

nine patients showing LDHA amplification and twenty-

nine patients displaying LDHA deletion (Figure 2A, 2B). 

Other cancer types such as LUSC, OV, bladder 

urothelial carcinoma (BLCA), and lung adenocarcinoma 

(LUAD) also had a significant number of patients with 

LDHA CNV variants (Figure 2A, 2C–2F). To assess the 

impact of LDHA CNV on patient survival, we 

categorized patients into amplification and deletion 

groups in five cancer types that had sufficient sample 

sizes. However, our analysis did not reveal a significant 

association between LDHA CNV and overall survival 

(OS) in these cancer types (p > 0.05, Figure 2G). These 

results indicate that LDHA CNV status alone may not be 

suitable for prognostic prediction in these specific 

cancers. 

 

Survival analysis of LDHA mRNA 

 

We performed Cox correlation analysis to evaluate the 

relationship between LDHA expression levels and OS in 

various cancer types. The results, presented in the forest 

plot (Figure 3A), demonstrated that LDHA mRNA  

levels could serve as a prognostic molecular marker  

in patients with adrenocortical carcinoma (ACC), 

cervical squamous cell carcinoma and endocervical 

adenocarcinoma (CESC), Brain lower grade glioma 

(LGG), LIHC, LUAD, and pancreatic adenocarcinoma 

(PAAD). However, in cancers with high copy number 

variants of lactate-related genes (BRCA, OV, LUSC, 

BLCA, as shown in Figures 1, 2), LDHA expression was 

not associated with survival prognosis. For instance, 

both BRCA and OV showed log-rank p-values greater 

than 0.05 (Figure 3B, 3C), indicating that individual 

LDHA gene expression alone may not be suitable for 

prognostic prediction in these specific cancers. 

 

Construction of the lactate score in ovarian cancer 

 

Using lactate-related genes in five signaling pathways, 

we utilized TCGA-OV as the training set to compare 

the performance of two different algorithms in 

constructing prognostic models based on lactate score. 

Figure 4A illustrates that the model generated by the 

 

 
 

Figure 3. The prognostic value of LDHA in pan-cancers. (A) The expression of LDHA did not significantly correlate with overall survival 
in some cancers with high-frequency mutations in LRGs. (B) The KM plot of patients with high, middle and low LDHA in BRCA. (C) The KM plot 
of patients with high, middle and low LDHA in OV. In each cancer patients were equally divided into three groups of high, middle and low 
according to their LDHA expression. BRCA: breast invasive carcinoma; OV: ovarian cancer. 
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Figure 4. Construction and validation of the lactate score in ovarian cancer. (A) ROC curve of different models constructed by two 

algorithms LASSO and RF. (B) LASSO coefficient profiles of the 230 LRGs, which come from the pathways named lactate metabolic process, 
abnormal lactate dehydrogenase levels, increased CSF lactate, increased serum lactate, increased circulating lactate dehydrogenase 
concentration. (C) The risk model consists of 17 genes and their coefficient. (D) The KM plot of high, middle and low lactate score patients in 
training set. (E) The KM plot of high, middle and low lactate score patients in GSE14764 dataset. (F) The KM plot of high, middle and low 
lactate score patients in GSE140082 dataset. (G) ROC curve of the risk model in training set. (H) ROC curve of the risk model in GSE14764 
dataset; (I) ROC curve of the risk model in GSE140082 dataset. ROC: receiver operating characteristic; LASSO: least absolute shrinkage and 
selection operator; RF: random forest. LRGs: lactate-related genes. 
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LASSO algorithm (AUC=0.817) outperformed the 

random forest model (AUC=0.795) in predicting the 5-

year survival rate of ovarian cancer patients. Therefore, 

we selected the LASSO model as the final 

computational model for the lactate score, which 

comprised the mRNA expression levels of 17 genes 

(Figure 4B, 4C). The calculation of the lactate score 

was determined as follows: Lactate score = (PDP1 * 

0.217) + (PC * 0.083) + (MVK * 0.080) + (RB1 * 

0.079) + (AIFM1 * -0.004) + (MRPL3 * -0.014) + 

(NDUFC2 * -0.015) + (CF1 * -0.029) + (HPDL * -

0.038) + (DAG1 * -0.038) + (NARS2 * -0.048) + 

(RARS2 * -0.052) + (HIBCH * -0.102) + (JAK2 * -

0.118) + (NDUFV2 * -0.142) + (STAT4 * -0.177) + 

(RHAG * -0.249). Patients in the training set (TCGA-

OV) and validation sets (GSE14764 and GSE140082) 

were categorized into high, middle, and low groups 

based on the triple quantile of the lactate score (Figure 

4D–4F). In the TCGA training group, patients with high 

lactate scores exhibited significantly worse overall 

survival prognosis compared to patients with low lactate 

scores (log-rank p for trend <0.001; HR, 4.82; 95% CI, 

3.44-6.74; median overall survival, mOS, 45.1 vs 93.7; 

Figure 4D). These findings were consistent with the 

results obtained from the validation sets GSE14764 and 

GSE140082 (Figure 4E, 4F). The ROC curves of the 

training set demonstrated AUC values of 0.725, 0.761, 

and 0.817 for predicting the 1-, 3-, and 5-year survival 

rates of ovarian cancer patients, respectively (Figure 

4G). The AUC values for predicting the 1-, 3-, and 5-

year survival rates in the GSE14764 validation group 

were 0.856, 0.790, and 0.834, respectively, while for the 

GSE140082 validation group, the AUC values were 

0.709 and 0.775 for predicting the 1- and 3-year 

survival rates, respectively (Figure 4H, 4I). Using the 

single sample gene set enrichment analysis (ssGSEA), 

we scored the activity of each of the five lactate-related 

pathways in TCGA-OV patients and observed 

significant differences in activity scoring among the 

high, middle, and low patient groups based on the 

lactate score (Figure 4J). These results collectively 

indicate the robustness of the novel lactate score in 

predicting overall survival. 

 

Survival analysis of the lactate score in pan-cancer 

 

We conducted Cox correlation analysis to assess the 

relationship between the lactate score and OS across 

various cancers. Figure 5A demonstrates that the lactate 

score can serve as a prognostic marker for overall 

 

 
 

Figure 5. The prognostic value of lactate score in pan-cancers. (A) Lactate score correlated with overall survival in BRCA, LIHC, MESO, 

OV, SARC and SKCM. (B) The KM plot of patients with high, middle and low lactate score in BRCA. (C) The KM plot of patients with high, 
middle and low lactate score in MESO. BRCA: breast invasive carcinoma; LIHC: liver hepatocellular carcinoma; MESO: mesothelioma; OV: 
ovarian cancer; SARC: sarcoma; SKCM: skin cutaneous melanoma. 
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survival in BRCA, LIHC, Mesothelioma (MESO), OV, 

SARC, and SKCM. Notably, BRCA, OV, and SARC 

are characterized by high-frequency copy number 

variants in lactate-related genes. In these cancers, 

neither copy number variants nor mRNA expression 

levels of LHDA can be utilized as prognostic markers 

for overall survival. Specifically, in BRCA, patients 

with high lactate scores exhibited significantly worse 

overall survival prognosis compared to those with low 

lactate scores (log-rank p for trend = 0.011; HR, 1.60; 

95% CI, 1.10-2.33; mOS, 122.3 vs 215.2; Figure 5B). 

Similarly, in MESO, patients with high lactate scores 

demonstrated a significantly poorer overall survival 

prognosis than those with low lactate scores (log-rank p 

for trend = 0.001; HR, 2.40; 95% CI, 1.32-4.35; mOS, 

13.5 vs 24.7; Figure 5C). 

 

The impact of the sex on the lactate scores and the 

prognosis in pan-caner has been analyzed in 

Supplementary Figure 1. In most cancers, there were no 

significant differences in lactate scores between male and 

female patient groups (Supplementary Figure 1A–1Z 

except for 1B, 1I, 1O, 1Q). And only in bladder urothelial 

carcinoma (BLCA), kidney chromophobe (KICH), lung 

adenocarcinoma (LUAD), and mesothelioma (MESO), 

there are significantly different lactate scores between 

male and female patients (Supplementary Figure 1B, 1I, 

1O, 1Q). However, there was no significant difference in 

overall survival between male and female patients in 

BLCA, KICH, LUAD and MESO (Supplementary 

Figure 1B, 1I, 1O, 1Q). 

 

The impact of the age on the lactate scores and the 

prognosis in pan-caner has been analyzed in 

Supplementary Figure 2. In most cancers, there were no 

significant differences in lactate scores between patients 

aged >65 and <65 years old (Supplementary Figure 2A–

2G2 except for 2H, 2U, 2B2). And only in esophageal 

carcinoma (ESCA), pancreatic adenocarcinoma 

(PAAD), and testicular cancer (TGCT), there are 

significantly different lactate scores between patients 

aged >65 and <65 years old (Supplementary Figure 2H, 

2U, 2B2). However, there was no significant difference 

in overall survival between patients aged >65 and <65 

years old in ESCA, PAAD and TGCT (Supplementary 

Figure 2H, 2U, 2B2). 

 

Association between the lactate score and clinical 

therapy in pan-cancer 

 

We investigated the relationship between the lactate 

score and drug sensitivities based on the cellular 

response to drugs obtained from the GDSC database. 
Among the 16 cancers studied, we identified the two 

drugs with the highest absolute correlation coefficient 

for each cancer, resulting in a selection of 29 unique 

drugs (Figure 6A). EPZ004777 demonstrated the 

strongest positive correlation with the lactate score, as 

illustrated in Figure 6B, which depicts its correlation 

with the lactate score in ESCA and LGG. Our findings 

suggest that patients with higher lactate scores may 

exhibit a more favorable response to EPZ004777 in most 

cancer types, as indicated by lower IC50 values  

(Figure 6C). Additionally, parallel analysis was conducted 

on Ibrutinib, which exhibited the strongest negative 

correlation with the lactate score (Figure 6D, 6E). 

 

Immune infiltration analysis and prediction of 

immunotherapy response 

 

We conducted a comprehensive investigation to assess 

the relationship between the lactate score and the relative 

fraction of different immune cell types. Pearson 

correlation analysis was performed to explore this 

association in each cancer type. Our analysis revealed a 

significant correlation between lactate scores and 

immune cell infiltration, as computed by the Absolute 

CIBERSORT algorithm, in the majority of cancers 

(Figure 7A). Specifically, in COAD, HNSC, KIRC, 

LUAD, STAD, UCEC, and UCS, both CD8+ T cells and 

activated NK cells showed a significant and negative 

association with lactate scores (Figure 7A). Furthermore, 

we compared the infiltrations of CD8+ T cells among 

high, middle, and low lactate score groups across 

different cancers. Consistently, our results demonstrated 

higher immune infiltration of CD8+ T cells in the low 

lactate score group compared to the high and middle 

lactate score groups in CESC, COAD, HNSC, LGG, 

LUSC, OV, STAD, UCEC, and UCS (Figure 7B). These 

findings highlight a notable association between the 

lactate score and tumor immunity. We also investigated 

the correlation between the lactate score and the response 

to immunotherapy in BLCA and SKCM. Remarkably, 

the successively ranked immunotherapy response rates 

were higher in the low-score group than in the high 

lactate score group in the BLCA IMvigor210 cohort 

(Figure 7C). This trend was consistently observed in the 

SKCM PRJEB23709 and SKCM GSE91061 cohorts 

(Figure 7D, 7E). Kaplan-Meier curves demonstrated a 

significant difference in survival outcomes between the 

high and low lactate score groups in the SKCM 

PRJEB23709 cohort, with patients in the low lactate 

score group exhibiting better survival outcomes (p = 

0.018, Figure 7D). These findings suggest that the lactate 

score may hold potential prognostic value for predicting 

immunotherapy response. 

 

Survival and immune infiltration analysis of PDP1 
 

We performed correlation analysis between the 

seventeen genes included in the lactate score model and 

the lactate score in ovarian cancer. Among these genes, 
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PDP1 exhibited the strongest positive correlation 

(Figure 8A). Furthermore, Kaplan-Meier analysis 

confirmed that the expression of PDP1 was significantly 

associated with survival outcomes, with patients 

showing lower expression of PDP1 tending to have 

better survival in OV (Figure 8B). Next, we classified 

the samples into high, middle, and low groups based on 

the expression of PDP1. Interestingly, patients in the 

high PDP1 group consistently exhibited higher lactate 

scores compared to the middle and low PDP1 groups 

across multiple cancer types (Figure 8C). Moreover, the 

low PDP1 groups demonstrated higher immune 

 

 
 

Figure 6. The correlation between drug sensitivity and lactate scores. (A) The heatmap of the Pearson correlation between lactate 
scores and IC50 values predicted by oncoPredict. (B) The scatter plot of the positive correlation between EPZ004777 and lactate score in 
ESCA and LGG. (C) The differences of EPZ004777 IC50 values between high, middle and low lactate score groups. (D) The scatter plot of the 
negative correlation between Ibrutinib and lactate score in GBM and SKCM. (E) The differences of Ibrutinib IC50 values between high, middle 
and low lactate score groups. ESCA: esophageal carcinoma; LGG: lower grade glioma; GBM: glioblastoma multiforme; SKCM: skin cutaneous 
melanoma. 
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infiltration of CD8+ T cells compared to the middle and 

high PDP1 groups (Figure 8D). 

 

Target miRNAs prediction and single-cell 

transcriptomic analysis 

 

Using seven miRNA target gene prediction databases, 

namely Pictar, miRDB, ElMMo, Miranda, PITA, 

TargetScan, and DIANA-microT, a total of 528 target 

miRNAs were predicted. Among them, 13 miRNAs 

were predicted by more than five databases, as depicted 

in Figure 9A. Among these 13 miRNAs, we further 

investigated the expression data of five miRNAs in 

TCGA and their correlation with PDP1 expression in 

various cancer types. Notably, hsa.miR.655.3p exhibited 

a positive regulation of PDP1 in LGG but a negative 

 

 
 

Figure 7. The distribution of infiltration levels of immune cells and prediction of immunotherapy response. (A) The heatmap of the 

Pearson correlation between lactate scores and immune cell fractions. (B) The differences of CD8+ T cell infiltration between high, middle and 
low lactate score groups. (C) The KM plot of patients in high and low lactate score groups from the BLCA IMvigor210 cohort undergoing 
immunotherapy. (D) The KM plot of patients in high and low lactate score groups from the SKCM PRJEB23709 cohort undergoing 
immunotherapy. (E) The KM plot of patients in high and low lactate score groups from the SKCM GSE91061 cohort undergoing immunotherapy. 
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regulation in PAAD. Similarly, hsa.miR.135b.5p 

displayed a positive regulation of PDP1 in LGG but a 

negative regulation in HNSC and PAAD, while showing 

a positive regulation in seven other cancer types. These 

findings highlight both commonalities and 

heterogeneities in the regulation of PDP1 among 

different tumor types (Figure 9B). To gain further 

insights, we utilized the single-cell sequencing dataset 

GSE151214 and obtained cell sample annotations from 

the TISCH database. The analysis revealed that PDP1 

 

 
 

Figure 8. Survival and immune infiltration analysis of PDP1. (A) The Pearson correlation of the lactate scores and the expression of 

17-model genes. (B) PDP1, as the highest correlated gene, is associated with overall survival in OV patients. (C) The lactate scores are 
significantly different among high, middle and low PDP1 expression groups in most cancers. (D) The CD8+ T cell infiltrations are significantly 
different among high, middle and low PDP1 expression groups. 
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Figure 9. Predicted PDP1-target miRNAs and single-cell transcriptomic analysis. (A) The miRNAs targeting PDP1 predicted by the 

seven microRNA-mRNA links databases. And the overlapped miRNAs among more than five databases shown in the table. (B) The heatmap of 
the Pearson correlation between PDP1 expression and the five miRNAs detected in TCGA. (C) The distribution of different cells in ovarian 
cancer of GSE151214 and the location of PDP1 expression. 
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exhibited equalized and ubiquitous expression across 

various cell types, suggesting its potential as a biomarker 

(Figure 9C). 

 

DISCUSSION 
 

In our study, our objective was to explore the landscape 

of lactate-related genes (LRGs) and their prognostic 

value, relationship with the tumor microenvironment, 

and therapeutic responses in pan-cancers. To begin 

with, we performed a pan-cancer genomic analysis of 

the GOBP Lactate Metabolic Process pathway and 

found that copy number variants (CNV) in genes related 

to lactate metabolism are highly prevalent in cancers 

such as OV, BRCA, SARC, UCS. But in these cancers, 

survival analysis of CNV and expression level indicated 

LDHA cannot be utilized for prognostic prediction. 

Therefore, we conducted a lactate score model 

consisting of seventeen genes using LASSO algorithm 

in TCGA and GEO datasets. We found that the lactate 

score was significantly associated with patient survival, 

and patients in the low lactate score groups had worse 

OS in BRCA, LIHC, MESO, OV, SARC, and SKCM. 

Next, we explored the correlation between the lactate 

score and immune immunity. We found that lactate 

score was negatively correlated with CD8+ T cells in 

almost all tumors and found potential application of 

lactate score as a biomarker in BLCA and SKCM 

patients receiving immunotherapy. Interestingly, PDP1 

was found to be a key member in the model and the 

expression of PDP1 was associated with survival 

outcome, implying that the PDP1 gene alone can be 

applied as an alternative to the lactate score model with 

weakened detection performance when all seventeen 

genes of the lactate score model are restricted. Last we 

predicted the target miRNAs of PDP1 and constructed 

single-cell transcriptomic analysis of PDP1. 
 

The Warburg effect represents a fundamental metabolic 

phenomenon observed in cancer cells, characterized by 

their preference for utilizing glucose as the primary 

energy source and producing substantial amounts of 

lactate, even in the presence of adequate oxygen [4]. 

Consequently, lactate is released into the extracellular 

space, leading to an accumulation of lactate within the 

tumor microenvironment, a factor associated with poor 

prognoses [43, 44]. Hypoxia, a prevalent feature in most 

tumors, drives the metabolic reprogramming of cancer 

cells, resulting in heightened glycolytic activity [45]. 

Transcription factors such as HIF-1α and c-Myc play 

pivotal roles in sustaining elevated lactate levels 

through diverse mechanisms [46]. Critically, lactate is 

recognized by cancer cells and various immune cells, 

including T cells, natural killer cells, dendritic cells, and 

macrophages, stimulating intracellular signaling path-

ways that contribute to acidosis, angiogenesis, and 

immunosuppression [2]. Consequently, lactate assumes 

a crucial role in tumor development and the remodeling 

of the tumor microenvironment. 

 

Accumulating evidence supports the critical role of 

lactate dehydrogenase (LDH) in regulating lactate 

metabolism through its involvement in the conversion 

of pyruvate to lactate. Among the LDH isoforms, LDHA 

specifically catalyzes the conversion of pyruvate to 

lactate, accompanied by the conversion of NADH to 

NAD+. This metabolic adaptation ensures a continuous 

supply of “fuel” for cancer cells by reducing the entry 

of pyruvic acid into the tricarboxylic acid cycle, thereby 

facilitating tumor growth and invasiveness, even in 

hypoxic conditions [3, 47]. Notably, previous studies 

have demonstrated an association between elevated 

LDHA expression and poor survival outcomes in 

various types of tumors [48], highlighting LDHA as a 

potential prognostic indicator [49]. In this study, we 

investigated the relationship between CNV of LDHA 

and patient survival across twenty-four different cancer 

types in TCGA. Surprisingly, our findings revealed no 

significant correlation between LDHA CNV and OS, 

suggesting that individual LDHA CNV alone is 

insufficient for prognostic prediction. Consequently, we 

conducted a comprehensive pan-cancer analysis using a 

lactate score model, which holds promise in predicting 

prognosis and response to immunotherapy. 

 

The “Warburg effect” represents a characteristic 

metabolic alteration in cancer cells, characterized by 

increased glucose consumption and lactate production to 

support rapid cell proliferation. Lactate levels are 

upregulated in cancer cells through various mechanisms 

[46]. Specifically, in cervical cancer, physiological 

lactate levels can range from 4 mM to 40 mM, whereas 

normal tissues maintain levels of only 1.8–2 mM [50, 

51]. High lactate levels have been associated with poor 

clinical outcomes in several cancer types [52], and 

elevated lactate levels have been linked to metastasis in 

cervical, breast, head, and neck cancers [50, 53, 54]. The 

accumulation of lactate in the tumor microenvironment 

alters the metabolic landscape, providing fuel for cancer 

cells and contributing to acidosis, inflammation, 

angiogenesis, immunosuppression, and radio resistance 

[55]. Consequently, tumor lactate, serum lactate, and 

lactate dehydrogenase (LDH) levels have been 

recognized as prognostic biomarkers in various cancer 

types [53, 55, 56]. Given the high prevalence of copy 

number variants in lactate-related genes in ovarian 

cancer, we constructed a lactate score model using data 

from the TCGA-OV cohort. Patients with high lactate 

scores demonstrated significantly worse overall survival 
compared to those with low lactate scores, a finding 

validated in independent datasets (GSE14764 and 

GSE140082). To explore the prognostic value of the 
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lactate score across multiple cancer types, we performed 

univariate Cox regression analysis, revealing a 

significant association between the lactate score and 

overall survival in BRCA, LIHC, MESO, OV, SARC, 

and SKCM. Kaplan-Meier analysis further confirmed 

the prognostic value of the lactate score in BRCA and 

MESO. These findings highlight the association between 

the lactate score and survival outcomes, suggesting its 

potential as a biomarker for prognostic prediction. 

 

Elevated lactate levels in the TME have been shown to 

exert immunosuppressive effects, inhibiting the 

antitumor activity of immune cells. This is primarily 

mediated through the release of H+ ions, resulting in 

acidification of the TME [57]. Acidic conditions with 

an extracellular pH of 6.0–6.5 can induce an anergic 

state in CD8+ T cells, leading to reduced cytolytic 

activity and cytokine production [13]. Similarly, NK 

cell function is suppressed under acidic conditions 

through mTOR inhibition [14]. Lactic acidosis 

promotes the differentiation of monocytes into dendritic 

cells with an immunosuppressive phenotype and 

inhibits the function of M1 macrophages, characterized 

by decreased expression of IL-6, iNOS, and CCL2  

[2, 58]. Furthermore, lactate plays a role in the metabolic 

profile of regulatory T (Treg) cells, supporting their 

survival and immunosuppressive functions [15]. 

Additionally, lactate promotes the polarization of 

alternatively activated macrophages with an M2-like 

phenotype, contributing to angiogenesis, tissue 

remodeling, and facilitating tumor growth and invasion 

[16]. In our study, we observed a significant correlation 

between the lactate score and tumor immunity. 

Specifically, the low lactate score group exhibited 

significantly higher levels of CD8+ T cell infiltration 

compared to the high and median lactate score groups. 

This suggests that a low lactate score, indicative of 

reduced lactate levels and potentially associated with 

immune cell activation, may be linked to a more 

favorable prognosis. 

 

Checkpoint inhibitors, including CTLA-4 and PD-1/PD-

L1 inhibitors, have demonstrated significant clinical 

efficacy in various cancer types. However, the 

effectiveness of immunotherapeutic approaches is often 

hampered by the immunosuppressive nature of the 

tumor microenvironment, which arises, in part, from the 

metabolic interactions between tumor cells and 

infiltrating immune cells. Previous studies have 

suggested that lactate-related signatures are correlated 

with immune responses and may have implications  

for immunotherapy outcomes in SKCM and KIRC, 

given the immune characteristics of the tumor 
microenvironment [59, 60]. In order to explore the 

connection between the lactate score and immunotherapy 

response, we specifically examined the correlation 

between lactate score and response to immunotherapy 

in BLCA and SKCM. Our findings indicate that the 

lactate score is associated with the response to 

immunotherapy and may potentially serve as a valuable 

prognostic indicator for predicting immunotherapy 

response in BLCA and SKCM. 

 

We conducted a more detailed investigation of the 

seventeen genes comprising the lactate score model and 

found that PDP1 exhibited the strongest positive 

correlation with the lactate score. Furthermore, Kaplan-

Meier analysis confirmed that the expression of PDP1 

was significantly associated with patient survival, with 

lower expression of PDP1 being indicative of better 

survival outcomes. PDP1 is widely expressed in 

epidermal growth factor activated cells and various 

malignant human cancer cells. Notably, the functional 

activity of PDP1 is hindered by the acetylation of  

K202, which disrupts its interaction with the substrate 

PDHA1. This disruption is crucial for promoting 

glycolysis in cancer cells and subsequent tumor growth. 

Additionally, phosphorylation of Y381 on PDP1 results 

in the dissociation of SIRT3 and facilitates the 

recruitment of ACAT1 to the pyruvate dehydrogenase 

complex. These distinct posttranslational modifications 

collaboratively contribute to driving the Warburg effect 

[61]. Our findings further validate the significant role of 

PDP1 in the Warburg effect and tumor growth, 

highlighting its potential as an independent prognostic 

biomarker. 

 

Our study offers valuable insights into the landscape of 

lactate-related genes (LRGs) in various cancer types 

and highlights the potential predictive value of the 

lactate score in terms of prognosis and immunotherapy 

response. Nevertheless, it is important to acknowledge 

the limitations of our study. Firstly, as a retrospective 

study, the association between the lactate score and 

survival outcomes would benefit from further validation 

in prospective clinical studies. Secondly, additional 

experimental investigations are necessary to elucidate 

the mechanisms underlying the relationship between 

lactate and the response to immunotherapy. These 

limitations present opportunities for future research to 

enhance our understanding of the clinical implications 

of lactate in cancer. 

 

In summary, our study offers a comprehensive analysis 

of lactate-related genes (LRGs) in a broad range of 

thirty-three cancer types. The results emphasize the 

prognostic value of the lactate score, its influence on 

immune infiltration, and its correlation with the 

response to immunotherapy in diverse cancer types. 
These findings provide novel insights into the 

prognostic significance of lactate and open new 

avenues for investigating the interplay between lactate 
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and the tumor microenvironment, as well as the 

potential implications for immunotherapy response. 
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Supplementary Figure 1. The impact of the sex on the lactate scores and the prognosis in pan-caner. The boxplots of lactate 

scores and the KM plots between male and female patients with different tumors (A–Z). 
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Supplementary Figure 2. The impact of the age on the lactate scores and the prognosis in pan-caner. The boxplots of lactate 
scores and the KM plots between patients aged >65 and <65 years old with different tumors (A–G2).  
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Supplementary Table 
 

Supplementary Table 1. List of TCGA cancer types. 

Study abbreviation Study name Tumor Normal 

ACC Adrenocortical carcinoma 79 3 

BLCA Bladder Urothelial Carcinoma 407 19 

BRCA Breast invasive carcinoma 1101 113 

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 306 3 

CHOL Cholangiocarcinoma 36 - 

COAD Colon adenocarcinoma 451 42 

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 48 - 

ESCA Esophageal carcinoma 185 11 

GBM Glioblastoma multiforme 168 5 

HNSC Head and Neck squamous cell carcinoma 522 44 

KICH Kidney Chromophobe 65 24 

KIRC Kidney renal clear cell carcinoma 534 72 

KIRP Kidney renal papillary cell carcinoma 290 32 

LAML Acute Myeloid Leukemia 161 - 

LGG Brain Lower Grade Glioma 532 - 

LIHC Liver hepatocellular carcinoma 373 50 

LUAD Lung adenocarcinoma 509 59 

LUSC Lung squamous cell carcinoma 496 50 

MESO Mesothelioma 86 - 

OV Ovarian serous cystadenocarcinoma 308 - 

PAAD Pancreatic adenocarcinoma 179 4 

PCPG Pheochromocytoma and Paraganglioma 184 3 

PRAD Prostate adenocarcinoma 498 52 

READ Rectum adenocarcinoma 161 10 

SARC Sarcoma 263 2 

SKCM Skin Cutaneous Melanoma 457 1 

STAD Stomach adenocarcinoma 412 32 

TGCT Testicular Germ Cell Tumors 139 - 

THCA Thyroid carcinoma 513 58 

THYM Thymoma 119 2 

UCEC Uterine Corpus Endometrial Carcinoma 532 35 

UCS Uterine Carcinosarcoma 57 - 

UVM Uveal Melanoma 80 - 

 


