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INTRODUCTION 
 

Premature ovarian insufficiency (POI) is a type of female 

infertility characterized by the premature decline of ovarian 

function, resulting in elevated gonadotropins and decreased 

estradiol concentrations before the age of 40 years [1, 2]. It 

significantly impacts women's physical and mental health. 

Moreover, the incidence of POI has been steadily 
increasing, particularly among younger women. While the 

overall incidence of POI in women is around 1%, it rises to 

10%-28% in women with primary amenorrhea [3]. 

However, POI is a highly heterogeneous disease with 

various causes, including genetic, immune, iatrogenic, 

infection, environmental, and personal factors. 

Consequently, the etiology and pathogenesis of the 

majority of POI cases remain unclear [1–3]. 

 

GCs are one of the functional cells of follicle, secreting 

sex hormones, growth factors and cytokines to regulate 
the growth and development of follicles [4, 5]. The 

disorder and dysfunction in GCs’ biological process 

will affect the normal follicular development, 
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ABSTRACT 
 

Premature ovarian insufficiency (POI) is a diverse form of female infertility characterized by a decline in ovarian 
function before the age of 40. Melatonin (MT) is a potential clinical treatment for restoring or safeguarding 
ovarian function in POI. However, the specific therapeutic mechanism underlying this effect remains unclear. To 
address this, we conducted experiments using human granulosa cells (GCs) from both POI and normal patients. 
We examined the expression levels of autophagy-related genes and proteins in GCs through qRT-PCR and western 
blot analysis. Autophagy flux was monitored in GCs infected with GFP-LC3-adenovirus, and the regulatory 
function of MT in autophagy was investigated. Additionally, we employed pharmacological intervention of 
autophagy using 3-Methyladenine (3-MA) and RNA interference of Forkhead box O-3A (FOXO3A) to elucidate the 
mechanism of MT in the autophagy process. Compared to GCs from normal patients, GCs from POI patients 
exhibited irregular morphology, decreased proliferation, increased apoptosis, and elevated ROS levels. The 
expression of autophagy-related genes was downregulated in POI GCs, resulting in reduced autophagic activity. 
Furthermore, MT levels were decreased in POI GCs, but exogenous MT effectively activated autophagy. 
Mechanistically, melatonin treatment downregulated FOXO3A expression and induced phosphorylation in POI 
GCs. Importantly, silencing FOXO3A abolished the protective effect of melatonin on GCs. These findings indicate 
that autophagy is downregulated in POI GCs, accompanied by a deficiency in MT. Moreover, we demonstrated 
that supplementing MT can rescue autophagy levels and enhance GC viability through the activation of FOXO3A 
signaling. Thus, MT-FOXO3A may serve as a potential therapeutic target for POI treatment. 
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maturation and ultimately affect fertility. Previous 

studies have demonstrated that the apoptosis of GCs is 

the main cause of follicular atresia [6–8]. Therefore, 

investigating the role and mechanism of GCs in the 

pathogenesis of POI will offer a novel perspective and 

valuable insights into the etiology of POI. 

 

Besides of apoptosis, autophagy is another programmed 

self-digestion process in cells which is closely par-

ticipated in a variety of processes such as development, 

metabolism, immune regulation and aging to keep cell 

homeostasis and balance [9–13]. Previous studies have 

shown that autophagy is also involved in the 

establishment and maintenance of follicle reserve, the 

physiological process of ovarian oocyte aging, and the 

pathological process of Premature Ovarian Failure 

(POF), POI and polycystic ovary syndrome (PCOS) [14–

16]. When the level of autophagy of GCs accumulates, 

the programmed apoptosis program is activated, which 

causes GC apoptosis and eventually causes follicular 

atresia, which promotes the occurrence of POI [17–20]. 

Therefore, studying the role and mechanism of GC 

autophagy in the pathogenesis of POI will provide a new 

target for the early identification and intervention of POI. 

 

N-acetyl-5-methoxytryptamine (Melatonin, MT) is  

an indoleamine hormone, which can be directly 

synthesized by the human ovary and released into the 

follicular fluid to regulate oxidative stress via inhibiting 

apoptosis and autophagy thereby protecting oocytes and 

GCs [21–23]. Dietary administration of MT delays 

ovarian aging in mice by improving the number of 

follicles, increasing the fertilization rate of oocytes and 

the rate of blastocyst formation [24–26]. More 

important, following studies have found that MT 

treatment shown a protective effect on POI [27–30]  

and some key targets which downstream of MT  

were elucidated, such as phosphatidylinositol-3-kinase 

(PI3K)-Akt-mammalian target of rapamycin (mTOR) 

[31], YAP-Hippo [32], silent information regulator 1 

(SIRT1) pathway [33] and so on. Therefore, gaining a 

comprehensive understanding of the mechanisms by 

which MT regulates GC autophagy is crucial in 

developing effective clinical treatments aimed at 

restoring or protecting ovarian function. 

 

In this study, we isolated GCs from both POI and 

normal patients, and observed that the POI-GCs 

exhibited irregular morphology, reduced proliferation, 

and increased apoptosis ratio with elevated ROS levels. 

Moreover, we found that the expression of genes and 

proteins related to autophagy were impaired in the POI 

group compared to the normal group, while MT levels 
were significantly lower in the former, indicating MT 

deficiency as a potential cause for down-regulated 

autophagy. To investigate this further, we treated POI-

GCs with exogenous MT at varying concentrations and 

observed that it effectively reversed the levels of 

autophagy-related proteins and improved cell viability. 

Additionally, we found that Forkhead box O-3A 

(FOXO3A), a downstream molecule of MT known to 

modulate autophagy, was down-regulated in the POI 

group. However, upon treatment with MT, we observed 

a significant concentration gradient-dependent activation 

of FOXO3A protein levels, which were abolished upon 

silencing FOXO3A, suggesting the MT-FOXO3A 

pathway as a potentially promising genetic target for 

POI therapy. 

 

MATERIALS AND METHODS 
 

Patients 
 

The study population consisted of patients who underwent 

in vitro fertilization (IVF) treatment at the Reproductive 

Medicine Center, The Second Affiliated Hospital of 

Zhengzhou University, from January 2022 to May 2023. 

Inclusion criteria for the POI patients: age < 35 years and 

meeting the diagnostic criteria for POI, which include 

being < 40 years of age, experiencing oligomenorrhea or 

amenorrhea for at least 4 months, and having a basal serum 

follicle-stimulating hormone (FSH) level ≥ 25 IU/L 

measured at least 2 times with an interval of > 4 weeks 

[34]. Patients with normal ovarian reserve who underwent 

IVF treatment due to tubal or male factor infertility were 

included as the normal group [34]. The inclusion criteria 

for normal patients were < 35 years of age, regularly 

previous menstruation, no history of hormone therapy in 

the past 3 months, basal serum FSH from 5 to 10 IU/L, 

AMH > 1.0 ng/ml, no PCOS-relative diseases and 

excluding patients with ovarian hyperstimulation 

syndrome, HCG daily estrogen < 4000pg/mL, ovum ≤ 15. 

Any women who was BMI > 25kg/m2 or < 18.5 kg/m2, 

diagnosed with chromosomal abnormalities, amenorrhea 

caused by abnormal genital development or other diseases 

(such as tumor, obesity, thyroid dysfunction, adrenal 

dysfunction and so on), uterine amenorrhea and 

physiological amenorrhea, suffering from malignant 

tumors, mental disorders, endometriosis, autoimmune 

disorders, with a history of ovarian surgery, radiotherapy, 

or chemotherapy/previously recurrent implantation 

failure/recurrent miscarriage, or taking antioxidant agents 

in the past three months were excluded. The study protocol 

was approved by the ethics committee of the Second 

Affiliated Hospital of Zhengzhou University. All patients 

signed written informed consent. 

 

Human GC isolation and culture 

 

Transvaginal ultrasound-guided follicular aspiration was 

performed to retrieve the follicular fluid after  

the cumulus-oocyte complex was identified and selected 
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in the embryology laboratory, the follicular fluid 

containing mural GCs was collected and preserved in  

4° C until use. The precipitates of follicular fluid were 

separated by centrifugal gradient method at 3000rpm for 

10min in 4° C. Discard the supernatant, carefully absorb 

the sticky white (or pink) part on the top layer of the 

precipitate into a new centrifuge tube, add appropriate 

phosphate buffered saline (PBS), blow and mix well, and 

centrifuge at 3000rpm for 8min in 4° C. The supernatant 

was discarded, and appropriate PBS was added, blown 

and mixed. The mixture liquid was spread on the surface 

of human blood lymphocyte separation solution 

according to the volume ratio of 1:2, and centrifuged at 

2000rpm for 30min in 4° C. After centrifugation, the 

liquid was divided into four layers from top to bottom: 

colorless transparent PBS layer, granule cell layer 

(white cloudy cell suspension), light yellow lymphocyte 

separation solution layer, and red blood cell layer. The 

cell suspension of granule cell layer was carefully 

aspirated, placed in a centrifuge tube with appropriate 

PBS, mixed and centrifuged at 3000rpm for 10min in 4° 

C. Finally, part of the cell precipitate was placed in an 

EP tube and frozen in an ultra-low temperature 

refrigerator. Part of the precipitate was added into the 

cell culture medium, and the granule cells were cultured 

in 37° C, 5% CO2 incubator. 

 

Flow cytometry (FACS) analysis of cell apoptosis 

 

FACS for detecting cell death was performed as 

described previously [23]. Harvested cells were stained 

with Annexin V-FITC and PI (Beytime, C1062) then 

analyzed by flow cytometer. Flowjo7.6 software was 

utilized to analyze the FACS data. 

 

Detection of reactive oxygen species (ROS) production 

 

ROS levels were determined using the Reactive Oxygen 

Species Assay Kit (Beyotime, S0033) according to the 

manufacturer’s instructions. The GCs were imaged with 

confocal microscope and fluorescence intensity was 

calculated by using the Image Processing and Analysis 

software in Java (Image J). 

 

GFP-LC3 adenovirus preparation and adenoviral 

transduction 

 

The autophagic flux was detected as previously reported 

[35, 36]. In brief, the infection of GCs with the tandem 

GFP-LC3 reporter adenovirus (Beyotime, C3006) was 

performed according to the manufacturer's protocol. For 

investigation the function of MT in regulating 

autophagy, different doses of MT were added into POI 
GC-medium after 48h of adenovirus infection. Then GCs 

were harvested and cell nuclei were stained with Hoechst 

33342 (Beyotime, C1029) for 10 min. 

EdU assay 

 

EdU Cell Proliferation Kit (Beyotime, C0071) was  

used to detected GC proliferation according to the 

manufacturer’s instructions. The images were blindly 

captured by using a Zeiss inverted microscope and three 

microscopic fields of each slide were quantified for each 

group with Image J. 

 

RNA extraction and quantitative reverse transcription 

polymerase chain reaction (qRT-PCR) 

 

Total RNA of all samples was extracted with Trizol 

reagent (Thermo Fisher Scientific, 15596026) via phenol-

chloroform precipitation. After treatment with DNase I 

(Promega) to eliminate genomic DNA, total RNA was 

then reverse transcribed to cDNA using oligo (dT) primer 

and reverse transcriptase (Takara, RR047A). The qRT-

PCR was performed by using ABI PRISM 7900 system 

(Applied Biosystems) with the SYBR Green Real time 

PCR Master Mix plus (TOYOBO). GAPDH was used as 

the internal normalization. The primers used for qRT-

PCR are listed below: human GAPDH (Forward: 5’- 

CACCCAGAAGACTGTGGATGG -3’, Reverse: 5’- 

GTCTACATGGCAACTGTGAGG -3’); human 

FOXO3A (Forward: 5’- GCGTGCCCTACTTCAAGGA 

TAAG -3’, Reverse: 5’- GACCCGCATGAATC 

GACTATG -3’); human Autophagy Related 7 (ATG7) 

(Forward: 5’- CTGCCAGCTCGCTTAACATTG -3’, 

Reverse: 5’- CTTGTTGAGGAGTACAGGGTTTT -3’); 

human Beclin 1 (BECN1) (Forward: 5’- CCATGCA 

GGTGAGCTTCGT -3’, Reverse: 5’- GAATCTG 

CGAGAGACACCATC -3’); and human Microtubule-

Associated Protein 1 Light Chain 3 Beta (LC3B) 

(Forward: 5’- CGGAGAAGACCTTCAAGCAG-3’, 

Reverse: 5’- CTGGGAGGCATAGACCATGT -3’). 

 

Western blot 

 

Total protein from all samples was harvested with RIPA 

lysis buffer (Beyotime, P0013B), the protein 

concentration was determined using a BCA kit 

(Beyotime, P0010). The protein components were 

separated using SDS-PAGE and transferred to 

polyvinylidene fluoride membranes (Bio-Rad, USA). 

After blocking with 5% skim milk, the membranes were 

incubated with primary antibodies overnight in 4° C and 

then incubated with appropriate secondary antibody 

conjugated with horseradish peroxidase for 1 h at room 

temperature. The antibody information used in this study 

is as follows: Anti-Beclin 1 (1:2000, CST, #3495), Anti-

LC3II (1:1000, Proteintech, 14600-1-AP), Anti-ATG7 

(1:2000, CST, #8558), Anti-SQSTM1/P62 (1:2000, 
Proteintech, 18420-1-AP), Anti-FOXO3A (1:2000, CST, 

#12829), and Anti-GAPDH (1:8000, Proteintech, 60004-

1-Ig). The detection and analysis of the protein bands 
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were visualized following activation with ECL (Thermo 

Fisher Scientific, USA) and exposure on film (Kodak 

Carestream Biomax, Sigma-Aldrich, USA). 

 

Enzyme-linked immunosorbent assay (ELISA) 

 

GCs from POI and normal patients were used to test MT 

expression levels with ELISA kits (Sangon Biotech, 

Shanghai, China) and all procedures were conducted 

according to the manufacturer’s instructions. 

 

Statistical analysis 

 

The statistical analyses were performed with GraphPad 

Prism software (version 8.0). All data are presented as 

mean ± SD. Comparisons of means between two groups 

were analyzed by using unpaired Student’s t-test, while 

comparisons between more than two groups were made 

by one-way ANOVA followed by t-test. The differences 

were considered to be significantly different when the P-

value was less than 0.05. 

 

Data availability statement 

 

The data that support the findings of this study are 

available from the corresponding author upon reasonable 

request. 

 

RESULTS 
 

Autophagy is attenuating in GCs from POI patients 

 

Compared to GCs from normal patients, POI-GCs 

exhibit irregular morphology (Figure 1A), suggesting  

a change in cellular status. To investigate further 

differences in cell viability, we examined cell 

proliferation and survival. POI-GCs exhibited a lower 

ratio of EDU-positive cells but a higher apoptotic rate 

compared to the normal group (Figure 1B, 1C). These 

findings were supported by an elevation in cellular ROS 

levels (Figure 1D). Previous reports have indicated the 

significance of autophagy in the process of POI [2, 16, 

18, 36]. Therefore, we initially examined the variation in 

autophagy levels between POI and normal GCs. We 

observed a down-regulated tendency in genes related to 

autophagy, such as ATG7, BECN1, and LC3B, in the 

POI group compared to the normal group. Notably, 

ATG7 and BECN1 displayed significant differences 

(Figure 2A). Consistent with qRT-PCR results, the 

protein levels of these autophagy-related genes were 

significantly decreased (Figure 2B). Furthermore, the 

accumulation of SQSTM1/p62 also indicated a down-

regulation of autophagy in POI-GCs (Figure 2B). To 

evaluate the autophagic flux, we infected GCs with a 

GFP-LC3 reporter adenovirus, where the GFP signal is 

quenched in autolysosomes. Immunofluorescence results 

demonstrated a significant reduction in the green-LC3 

signal in POI-GCs compared to the normal group, 

indicating attenuated autophagic flux (Figure 2C). 

 

MT is down-regulating in POI-GCs and MT 

treatment improves cell viability via activating 

autophagy 

 

Although the role of MT in regulating autophagy has been 

partially elucidated [23, 26, 31], its expression level in 

POI-GCs remains unknown. To investigate this, we 

measured MT levels via ELISA and found that they were 

significantly decreased in the POI group compared to the 

non-POCS group (Figure 3A). To establish the 

relationship between MT deficiency and down-regulated 

autophagy in POI, we treated POI-GCs with exogenous 

MT and found that MT efficiently reversed the levels of 

autophagy-related proteins in a concentration-dependent 

manner (Figure 2B). Additionally, IF staining analysis 

demonstrated that autophagic flux was activated in POI-

GCs after MT treatment (Figure 3C). 

 

To determine whether activating autophagy in POI-GCs 

via MT treatment is beneficial, we assessed cell 

proliferation and survival in these cells. Encouragingly, 

we observed an increase in cell proliferation rate (Figure 

4A), while cell apoptosis and ROS levels  

were dramatically decreased after MT treatment  

(Figure 4B, 4C). We also disrupted autophagy in  

GCs pharmacologically. Specifically, we used 3-

Methyladenine (3-MA), an autophagy inhibitor that 

selectively targets class III phosphatidylinositol 3-kinase 

(PtdIns3K), which has been reported to affect glucose 

metabolism and induce apoptosis in GCs. The 

fluorescence results showed that green LC3 puncta were 

significantly increased with MT treatment, while this 

effect was reversed by 3-MA (Figure 4D). Consistently, 

3-MA abolished the promotion of GC proliferation by 

MT and further promoted cellular oxidative stress levels 

(Figure 4E, 4F). 

 

MT reverses autophagy insufficiency in POI-GCs via 

FOXO3A signaling 

 

The FOXO transcription factor family, which includes 

FOXO1 and FOXO3, has been shown to modulate the 

autophagy process [37–39]. In order to elucidate the 

underlying molecular mechanism of autophagy 

regulation and cell viability rescue in granulosa cells 

from individuals with premature ovarian insufficiency 

(POI-GCs) following melatonin (MT) treatment, we 

examined the expression of FOXO3A. Surprisingly, we 

found that FOXO3A was down-regulated in both mRNA 
and protein levels in the POI group compared to the 

normal group (Figure 5A, 5B). Additionally, the inactive 

form of FOXO3A accumulated in the POI group. Upon 
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treating POI-GCs with MT at varying concentrations, we 

observed a significant increase in FOXO3A protein 

levels, accompanied by a decrease in phosphorylated 

FOXO3A (Figure 5C). Moreover, using siRNA to silence 

 

 

 

Figure 1. Morphological and functional characteristics of granulosa cells (GCs) in premature ovarian insufficiency (POI) patients 
and normal controls. (A) Microscopic images depicting the morphology of GCs. Scale bar, 50 μm. (B) Representative immunofluorescence 
(IF) staining and analysis of cell proliferation in GCs (n = 5). Scale bar, 100 μm. (C) Flow cytometry analysis of apoptotic rates in GCs (n = 3). (D) 
Analysis of reactive oxygen species (ROS) production in GCs. **p < 0.01, ***p < 0.001. 
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Figure 2. Attenuated autophagy in GCs from POI patients. (A) mRNA levels of autophagy-related genes in GCs (n = 4-6).  

(B) Representative Western blots (WB) and analysis of autophagy-related proteins in GCs (n = 3). (C) Representative IF staining and analysis of 
autophagy flux in GCs (n = 5). Scale bar, 50 μm. ns, no significant, *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 3. Regulation of autophagy in POI-GCs by melatonin (MT). (A) ELISA analysis of MT levels in GCs (n = 4-6). (B) Representative 
WB and analysis of autophagy-related proteins in POI-GCs after MT treatment (n = 3). (C) Representative IF staining and analysis of autophagy 
flux in POI-GCs after MT treatment (n = 5). Scale bar, 50 μm. *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 4. Improvement in cell proliferation and survival via activated autophagy with MT treatment. (A) Representative EdU 
staining results and analysis for cell proliferation in POI-GCs after MT treatment (n = 5). Scale bar, 100 μm. (B) Flow cytometry analysis of 
apoptotic rates in POI-GCs after MT treatment (n = 3). (C) Analysis of ROS production in POI-GCs after MT (n = 3). (D) Representative IF staining 
and analysis of autophagy in POI-GCs after 3-MA treatment with or without MT (n = 5). (E) EdU results of POI-GCs. (F) Analysis of ROS production 
in POI-GCs after 3-MA treatment with or without MT. **p < 0.01, ***p < 0.001. 
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Figure 5. Reversal of autophagy insufficiency in POI-GCs by melatonin via forkhead box O-3A (FOXO3A) signaling. (A) Gene 

expression of FOXO3A in GCs from POI and normal patients (n = 4-6). (B) Representative WB results of FOXO3A in GCs from POI and normal 
patients (n = 3). (C) Representative WB of FOXO3A in POI-GCs after MT treatment (n = 3). (D) Representative IF staining and analysis of 
autophagy in POI-GCs after FOXO3A knockdown with or without MT (n = 5). (E) Representative EDU staining results and analysis for cell 
proliferation in POI-GCs after MT and siFOXO3A treatment (n = 5). Scale bar, 100 μm. (F) Flow cytometry analysis of apoptotic cell rates in POI-
GCs after MT and siFOXO3A treatment (n = 4). (G) Analysis of ROS production in POI-GCs after MT and siFOXO3A treatment (n = 3).  
*p < 0.05, **p < 0.01, ***p < 0.001. 
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FOXO3A significantly reversed the MT-induced 

increase in autophagic activity (Figure 5D), abolished the 

protective effects of MT on POI-GC proliferation (Figure 

5E), and diminished cell survival (Figure 5F, 5G). Our 

results indicate that the ability of MT to reverse 

autophagy insufficiency in POI-GCs is dependent on 

FOXO3A signaling. 

 

DISCUSSION 
 

This study has unveiled that granulosa cells (GCs) 

derived from patients with premature ovarian 

insufficiency (POI) display a deficiency in autophagy 

along with reduced levels of melatonin (MT). Notably, 

our experiments involving MT treatment at varying 

concentrations revealed that MT elevated autophagy flux 

and bolstered the viability of POI-GCs. Mechanistically, 

we observed down-regulated mRNA and protein 

expression of FOXO3A in POI-GCs. However, treatment 

with MT resulted in a significant upregulation of 

FOXO3A and activation of FOXO-dependent trans-

cription. These findings emphasize the pivotal role of 

MT in regulating autophagy in GCs, especially in the 

context of POI, and suggest that the MT-FOXO3A 

signaling pathway could represent a promising 

therapeutic target for POI treatment. 

 

POI can be classified into two categories: genetic and 

non-genetic causes. Genetic causes involve mutations in 

over 50 genes that affect various processes including 

gonadal development, DNA replication, DNA repair, 

and hormonal signaling. Non-genetic causes include 

autoimmune and metabolic disorders, infections, and 

environmental factors [1, 2, 40]. Therefore, the 

comprehensive mechanisms underlying POI remain 

unclear. Recently, autophagy has emerged as an 

important cellular process for maintaining ovarian 

function and female reproduction [41, 42]. It has been 

reported that autophagy regulates the apoptosis of GCs 

to accelerate follicular atresia [17–20], and insufficient 

autophagy has been found in GCs from biochemical POI 

patients [36]. Our study also revealed that autophagy-

related genes and proteins are decreased in POI-GCs, 

which is accompanied by MT deficiency. 

 

It is widely acknowledged that MT efficiently inhibits 

apoptosis and autophagy in oocytes and GCs under 

oxidative stress [21–23]. These findings suggest that MT 

deficiency may be the primary reason for autophagy 

down-regulation in POI-GCs. Therefore, we conducted 

an experiment where we treated POI-GCs with 

exogenous MT in a concentration gradient. Surprisingly, 

we observed a significant increase in the levels of 

autophagy-related proteins and an improvement in cell 

viability.  These  results, combined  with previous  data  

from other studies [27–30], suggest that reversing MT 

deficiency could potentially serve as a promising 

clinical treatment for addressing insufficient autophagy 

in POI. 

 

The mechanisms by which melatonin regulates 

autophagy have been partially elucidated, involving 

pathways such as PI3K-Akt-mTOR [31], YAP-Hippo 

[32], SIRT1 pathway [33]. In our study, we observed a 

down-regulation of FOXO3A in POI-GCs. FOXO3A is 

known to encode a master regulator and potent 

suppressor of ovarian development [2, 43], and its loss 

of function in mice leads to POI as a result of global 

follicle activation [44]. Consistent with these findings, 

we found that MT treatment effectively activated 

FOXO3A, and silencing FOXO3A significantly 

attenuated the function of MT. Therefore, the 

predominant mechanism by which MT regulates 

autophagy in POI-GCs appears to be through the 

FOXO3A signaling pathway. However, further research 

is needed to explore the interplay between MT, 

FOXO3A, and phosphorylated-FOXO3A, as well as to 

identify the downstream targets of FOXO3A involved in 

regulating autophagy. Genomics and proteomics 

analyses in future studies may contribute to a more 

comprehensive understanding of the mechanisms 

underlying POI-GCs. In this study, we successfully 

demonstrated that the addition of MT supplementation 

effectively reversed inadequate autophagy, resulting in 

enhanced viability of POI-GCs by activating the 

FOXO3A signaling pathway. 

 

CONCLUSIONS 
 

Our research has revealed that the absence of MT results 

in the suppression of autophagy in POI-GCs. Furthermore, 

we have demonstrated that MT treatment efficiently 

restores autophagy levels and enhances the viability of 

GCs by activating the FOXO3A signaling pathway. These 

findings suggest that targeting the MT-FOXO3A axis 

holds considerable promise as a therapeutic strategy for 

addressing human POI. 
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