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INTRODUCTION 
 

Cancer represents a significant global public health 

challenge and is poised to surpass cardiovascular 

disease as the primary cause of non-natural mortality in 

many countries, based on prevailing year-to-year trends 

[1–8]. Recent reports indicate that in the year 2023, the 

United States is projected to witness 1,958,310 new 
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ABSTRACT 
 

X-ray repair cross-complementation group 1 (XRCC1) is a pivotal contributor to base excision repair, and its 
dysregulation has been implicated in the oncogenicity of various human malignancies. However, a comprehensive 
pan-cancer analysis investigating the prognostic value, immunological functions, and epigenetic associations of 
XRCC1 remains lacking. To address this knowledge gap, we conducted a systematic investigation employing 
bioinformatics techniques across 33 cancer types. Our analysis encompassed XRCC1 expression levels, prognostic 
and diagnostic implications, epigenetic profiles, immune and molecular subtypes, Tumor Mutation Burden (TMB), 
Microsatellite Instability (MSI), immune checkpoints, and immune infiltration, leveraging data from TCGA, GTEx, 
CELL, Human Protein Atlas, Ualcan, and cBioPortal databases. Notably, XRCC1 displayed both positive and negative 
correlations with prognosis across different tumors. Epigenetic analysis revealed associations between XRCC1 
expression and DNA methylation patterns in 10 cancer types, as well as enhanced phosphorylation. Furthermore, 
XRCC1 expression demonstrated associations with TMB and MSI in the majority of tumors. Interestingly, XRCC1 
gene expression exhibited a negative correlation with immune cell infiltration levels, except for a positive 
correlation with M1 and M2 macrophages and monocytes in most cancers. Additionally, we observed significant 
correlations between XRCC1 and immune checkpoint gene expression levels. Lastly, our findings implicated XRCC1 
in DNA replication and repair processes, shedding light on the precise mechanisms underlying its oncogenic effects. 
Overall, our study highlights the potential of XRCC1 as a prognostic and immunological pan-cancer biomarker, 
thereby offering a novel target for tumor immunotherapy. 
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cancer cases, with an estimated 609,820 cancer-related 

deaths [9]. Among the diverse spectrum of cancer types, 

low-grade gliomas (LGGs), classified as WHO grade II 

gliomas, represent a prevalent form of primary intra-

cranial tumors, accounting for approximately 15-25% of 

all gliomas [10]. The annual incidence of LGGs is 

estimated to be around 1 case per 10,000 individuals. 

Notably, these tumors exhibit diffuse infiltration, 

gradual growth, and substantial genetic and trans-

criptional heterogeneity [11, 12]. LGGs are less 

aggressive and have a better prognosis than their high-

grade counterparts, nonetheless, they remain incurable 

and impart significant negative impacts on patients' 

quality of life [13, 14]. Although conventional treatment 

approaches for cancer encompass surgical intervention, 

radiotherapy, and chemotherapy, recent advancements 

have brought forth the exploration of immunotherapies, 

targeted therapies, and epigenetic interventions [15–19]. 

Despite the expanding array of therapeutic modalities 

available to oncology patients, challenges such as 

tumor recurrence following surgical resection and the 

limited responsiveness of most patients to emerging 

therapies or development of treatment resistance persist, 

presenting significant hurdles in cancer management 

[20, 21]. Consequently, there is an urgent imperative to 

actively pursue alternative therapeutic targets and novel, 

highly sensitive tumor biomarkers, with the aim of 

unveiling innovative treatment strategies. 
 

Sustained DNA damage in cells triggers repair 

pathways for cell survival, and the sort of DNA damage 

determines which repair pathways are activated [22]. X-

ray repair cross-complementing 1 (XRCC1), a vital 

DNA repair scaffold, interacts closely with DNA ligase 

IIIα (Lig-III) to orchestrate the mending of DNA single-

strand breaks triggered by ionizing radiation and 

alkylating agents, encompassing the base excision 

repair (BER) and single-strand break repair (SSBR) 

pathways [23, 24]. The BER pathway maintains 

genomic integrity and stability [25], with XRCC1 

playing a critical role as a DNA repair gene by acting as 

a backbone protein in the initial and late steps of this 

pathway [26]. XRCC1 exhibits differential expression 

patterns across various normal human tissues, with 

slightly elevated levels observed in gonadal tissues and 

comparatively lower levels in pancreatic tissues [27]. In 

the context of tumorigenesis, XRCC1 manifests distinct 

expression profiles in different cancer tissues and serves 

as a valuable biological marker for tumors. Notably, 

nuclear expression levels of XRCC1 demonstrate 

associations with the prognosis of patients with biliary 

tract cancer and provide predictive insights into 

therapeutic responses following chemotherapy [28]. 

Intriguingly, gliomas exhibit reduced XRCC1 

expression compared to normal tissues and augmented 

XRCC1 expression significantly impedes malignant 

biological behaviors [29]. Noteworthy regulatory 

mechanisms governing XRCC1 functionality include 

epigenetic modifications, gene mutations, and phospho-

rylation alterations. Methylation events involving 

XRCC1 have been linked to sperm chromatin 

condensation in males and sperm DNA fragmentation in 

patients with idiopathic oligospermia [30]. Gastric 

cancer tissues exhibit substantially higher levels of 

XRCC1 gene promoter methylation compared to 

adjacent normal tissues, with the hypermethylation 

status of this gene promoter significantly associated 

with protein expression loss [31]. Impairment in 

phosphorylation sites T358 and T367 on XRCC1 

hampers its recruitment to DNA damage sites [32]. 

Additionally, phosphorylation of XRCC1 activates the 

microhomology-mediated end joining (MMEJ) pathway 

involved in DNA double-strand break repair, and 

MMEJ has been implicated in genomic rearrangements 

and oncogenic transformations [33]. 

 

In this study, we aimed to perform a comprehensive 

pan-cancer analysis of XRCC1, a pivotal gene in DNA 

repair, which has not been reported previously. To 

achieve this, we utilized multiple databases, including 

CCLE, CPTAC, HPA, GEO, TCGA, cBioPortal, 

TISIDB, TIMER, and XCELL. Our analysis aimed to 

examine XRCC1 expression levels across diverse 

cancer types and elucidate its prognostic implications. 

Furthermore, we explored the potential connections 

between XRCC1 expression and DNA methylation 

patterns, tumor mutational load (TMB), microsatellite 

instability (MSI), and immune infiltration levels in 

various cancer contexts. Through XRCC1 coexpression 

analysis and enrichment analysis, we sought to unravel 

the biological functions of XRCC1 in tumorigenesis. 

Remarkably, our findings identified XRCC1 as a novel 

prognostic and immunological biomarker, holding 

promise as a molecular target in numerous cancer types, 

with particular significance in LGGs. This analysis 

represents a rare and comprehensive approach in cancer 

research, harnessing genomic data from multiple cancer 

types to yield more comprehensive and precise 

outcomes. 

 

MATERIALS AND METHODS 
 

Patient data sets 

 

To acquire the required RNAseq data, we accessed 

UCSC XENA (https://xenabrowser.net/datapages/) and 

retrieved the data in TPM (transcripts per million reads) 

format, which had undergone uniform processing by the 

Toil process [34]. For the TCGA and GTEx datasets, 

we performed log2 transformation on the TPM data to 

facilitate subsequent analysis and comparison. To 

conduct ROC (Receiver Operating Characteristic) 

https://xenabrowser.net/datapages/
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analysis of XRCC1, we employed the pROC package 

(v.1.17.0.1) and ggplot2 package (v3.3.3) in R (v.3.6.3). 

Additionally, we obtained cell line gene expression 

matrices of tumors from the CCLE dataset 

(https://portals.broadinstitute.org/ccle/about). All the 

aforementioned analyses were implemented using the 

ggplot2 package (v3.3.3) in R (v4.0.3). 

 

Human Protein Atlas analysis 

 

We utilized the Human Protein Atlas (https://www. 

proteinatlas.org/) as a valuable resource for accessing 

proteomic and transcriptomic data encompassing 

diverse human samples, including cellular, tissue, and 

pathological profiles. Leveraging this online database, 

we investigated the expression patterns of the XRCC1 

gene across a range of tumor types. 

 

Survival analysis 

 

To analyze RNA-seq expression data from a 

substantial number of tumor and normal samples, we 

employed the GEPIA database (http://gepia.cancer-

pku.cn/) [35]. This online resource encompasses a 

vast collection of 9736 tumor samples and 8587 

normal samples obtained from the TCGA and GTEx 

projects. Utilizing the “Survival Map” module within 

GEPIA, we accessed the OS (Overall Survival) and 

DFS (Disease-Free Survival) significance map data 

for XRCC1 across a broad spectrum of human 

cancers. The expression thresholds of cutoff-high 

(50%) and cutoff-low (50%) were utilized to stratify 

samples into high-expression and low-expression 

groups. Hypothesis testing was conducted using the 

log-rank test, and survival plots were obtained 

through the “Survival Analysis” module of GEPIA. 

Furthermore, we performed univariate Cox regression 

analysis of XRCC1 expression, specifically evaluating 

progression-free survival (PFS) and disease-specific 

survival (DSS) in tumor patients. The “forest plot” R 

package was employed to present P-values, hazard 

ratios (HR), and 95% confidence intervals (CI) for 

each variable of interest. 

 

UALCAN database analysis 

 

The UALCAN database (http://ualcan.path.uab.edu/ 

analysis-prot.html) [36] offers an interactive platform 

for conducting comprehensive analyses of TCGA gene 

expression data. Within this database, we utilized the 

CPTAC dataset [37] to examine protein expression and 

phosphoprotein levels. Furthermore, we employed the 

UALCAN database's coverage of the TCGA dataset to 
investigate the methylation levels of XRCC1 DNA 

across various cancer types. Statistical analysis was 

conducted using Student's t-test to assess the 

significance of differences, with a p-value threshold of 

less than 0.05 considered statistically significant. 

 

Pan-cancer analysis of genetic alterations of 

XRCC1 

 

The cBio Cancer Genomics Portal (cBioPortal) 

(http://cbioportal.org) [38] is a valuable resource for 

exploring, visualizing, and analyzing multidimensional 

cancer genomics data. In our study, we leveraged the 

cBioPortal database to investigate the mutation 

frequency, mutation types, copy number alterations 

(CNAs), and mutation sites of XRCC1 across all TCGA 

tumors. Furthermore, we examined the potential 

relationship between genetic alterations in XRCC1 and 

prognosis in patients with different cancer types. 

Additionally, TMB and MSI scores were obtained from 

the TCGA dataset, and we performed correlation 

analysis, employing Spearman's rank correlation 

coefficient, to assess the association between XRCC1 

expression and TMB as well as MSI. 

 

TISIDB database analysis 

 

The TISIDB database (http://cis.hku.hk/TISIDB/ 

index.php) [39] serves as a comprehensive web portal 

focusing on tumor and immune system interactions, 

encompassing diverse data types. In our investigation, 

we utilized the TISIDB database to explore the 

correlations between XRCC1 expression and immune or 

molecular subtypes in various cancer types. Statistical 

significance was determined with a p-value threshold of 

less than 0.05, indicating meaningful differences in the 

observed associations. 

 

Correlation analysis of XRCC1 expression with 

immune infiltrating cells and their marker genes 

 

We obtained data for 33 cancers and normal tissues 

from the Genomic Data Commons (GDC) [40] data 

portal within the TCGA database. To ensure an accurate 

assessment of immune correlations, we utilized the 

immunedeconv R package, which integrates six 

advanced algorithms: TIMER, XCELL, CIBERSORT, 

EPIC, MCPCOUNTER, and QUANTISEQ. The 

generated heat map depicts different types of cancer on 

the horizontal axis, various immune scores on the 

vertical axis, and correlation coefficients represented by 

distinct colors. Additionally, we explored the 

relationship between XRCC1 expression in immune 

cells and multiple markers using the TIMER database 

(http://cistrome.org/TIMER/) [41]. The x-axis displays 

XRCC1 expression levels, while the y-axis represents 
other relevant genes. Statistical significance is denoted 

by asterisks: * indicates p < 0.05, ** indicates p < 0.01, 

and *** indicates p < 0.001. 

https://portals.broadinstitute.org/ccle/about
https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://ualcan.path.uab.edu/analysis-prot.html
http://ualcan.path.uab.edu/analysis-prot.html
http://cbioportal.org/
http://cis.hku.hk/TISIDB/index.php
http://cis.hku.hk/TISIDB/index.php
http://cistrome.org/TIMER/
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Correlation analysis of XRCC1 expression with 

immune checkpoint 

 

To delve deeper into the analysis of the expression of 47 

common immune checkpoint genes in relation to 

XRCC1, we employed the limma package [42]. 

Specifically, we extracted these immune checkpoint 

genes and calculated their correlation with XRCC1 

expression individually. For a correlation to be 

considered significant, we set the thresholds at p < 0.05 

and R > 0.20, indicating a statistically significant 

positive correlation between XRCC1 and the immune 

checkpoint genes. 

 

Gene enrichment analysis and PPI network 

construction 

 

We explored the differential expression genes 

(DEGs) between different XRCC1 expression groups 

(low expression group: 0–50%; high expression group: 

50–100%) in LGG using the DESeq2 package. The 

volcano map was drawn by the ggplot2 package with 

the threshold values of |log2 fold-change (FC)|>1.0 and 

adjusted P-value<0.05. Then, we performed GO term 

enrichment, KEGG pathway enrichment and Gene 

enrichment analysis (GSEA) of DEGs using the ggplot2 

package for visualization and the clusterProfiler 

package [43] for statistical analysis. The Tool for 

Interactive Gene Search (STRING) (https://string-

db.org/cgi/input.pl) [44] is a public database providing 

protein interaction information. We used the STRING 

online database to construct PPI networks for 134 genes 

obtained at threshold |log2 fold-change (FC)|>2.0 and 

adjusted p-value<0.05 and screened hub gene by 

Cytoscape [45]. 

 

Analysis of mutations, methylation, and pathway 

activity of XRCC1 and its hub gene 

 

To further expand our analysis, we utilized GSCALite 

(http://bioinfo.life.hust.edu.cn/web/GSCALite/) [46], 

which offers various analysis modules to examine 

multi-omics data. The database incorporates data  

from multiple sources, including 11,160 samples  

from TCGA covering 33 cancer types (TCGA 

Cancer), information on Cancer Drug Sensitivity 

Genomics with 746 drug data from the Cancer 

Therapeutic Response Portal, as well as 11,688 

normal tissue expression data from the Genotype-

Tissue Expression (GTEx) project. With the help  

of GSCALite, we investigated several aspects, 

including copy number variation (CNV), methylation 

patterns, pathway activity, and drug sensitivity. These 
analyses allow us to gain insights into the genetic 

alterations, epigenetic modifications, cellular pathway 

dynamics, and potential therapeutic responses 

associated with XRCC1 and its involvement in 

different cancers. 

 

Statistical analysis 

 

In our study, R (version 3.6.3) was employed for 

conducting statistical analyses. The Wilcoxon signed 

rank sum test was utilized to investigate the expression 

of XRCC1 in tumor tissues and their corresponding 

neighboring tissues. Cox regression analysis and the 

Kaplan-Meier method were applied to evaluate 

prognostic factors. Student's test was used to compare 

protein expression, phosphoprotein levels, and DNA 

methylation levels of XRCC1 between normal and 

tumor groups. The correlation between XRCC1 

expression and tumor mutational burden (TMB) as well 

as microsatellite instability (MSI) was examined using 

Spearman's rank correlation analysis. Furthermore, we 

assessed the association between XRCC1 expression 

and clinical-pathological characteristics of LGG using 

the Kruskal-Wallis and Wilcoxon rank sum tests. A p-

value below 0.05 was considered statistically significant 

in all statistical tests performed. 

 

Data availability statement 

 

The datasets presented in this study can be found in 

online repositories. The names of the repository/ 

repositories and accession number(s) can be found in 

the article Supplementary Material. 

 

RESULTS 
 

Pan-cancer analysis of XRCC1 differential 

expression and clinicopathological correlation 

 

In this study, we aimed to investigate the role of 

XRCC1 in carcinogenesis. Firstly, we analyzed the 

expression status of XRCC1 in various tumor tissues 

and paired normal tissues (Figure 1A). The results 

revealed significantly higher expression levels of 

XRCC1 in tumor tissues compared to normal tissues in 

multiple cancer types, including bladder urothelial 

carcinoma (BLCA), breast invasive carcinoma (BRCA), 

cholangiocarcinoma (CHOL), colon adenocarcinoma 

(COAD), esophageal carcinoma (ESCA), head and neck 

adenocarcinoma (HNSC), kidney renal clear cell 

carcinoma (KIRC), kidney renal papillary cell 

carcinoma (KIRP), liver hepatocellular carcinoma 

(LIHC), lung squamous cell carcinoma (LUSC), 

pheochromocytoma and paraganglioma (PCPG), rectum 

adenocarcinoma (READ), and stomach adenocarcinoma 

(STAD). Conversely, the expression level of XRCC1 

was low in the kidney chromophobe (KICH) (Figure 

1A). We further validated our findings by analyzing the 

expression of XRCC1 in normal samples from the 

https://string-db.org/cgi/input.pl
https://string-db.org/cgi/input.pl
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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Figure 1. (A) Human XRCC1 gene expression status in various cancers from TCGA database. (B) Wilcoxon signed rank sum test was used to 

detect the differential expression of XRCC1 in tumor tissues and adjacent paracancerous tissues. (C) The protein expression level of the 
XRCC1 gene in glioblastoma multiforme, hepatocellular carcinoma, head and neck squamous carcinoma, pancreatic adenocarcinoma, breast 
cancer, ovarian cancer, colon cancer, lung adenocarcinoma, clear cell RCC. (D) The box plot of tumor pathological stages (stage I, stage II, 
stage III, stage IV) following ACC, BLCA, LIHC, and clinical stages (stage I, stage II, stage III, stage IV) of HNSC, OSCC. ns P≥0.05, *P<0.05, 
**P<0.01; ***P<0.001. 
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Genotype-Tissue Expression (GTEx) database and 

matched adjacent tumor tissues (Supplementary Figure 

1A). To assess the expression of XRCC1 in tumor tissues 

compared to their matched adjacent tissues, we performed 

the Wilcoxon signed rank sum test (Figure 1B). 

Moreover, we explored the expression of XRCC1 in a 

broader range of cancer tissues using the Cancer Cell Line 

Encyclopedia (CCLE) database, which provided cell  

line expression matrices for various tumor types 

(Supplementary Figure 1B). To examine the protein 

expression of XRCC1, we utilized the Clinical Proteomic 

Tumor Analysis Consortium (CPTAC) database. Our 

analysis demonstrated significantly higher protein 

expression levels of XRCC1 in primary tissues of GBM, 

hepatocellular carcinoma, head and neck squamous 

carcinoma, breast cancer, colon cancer, lung adeno-

carcinoma (LUAD), and ovarian cancer compared to 

normal tissues (Figure 1C). Additionally, we provided 

supplemental protein expression data for XRCC1 genes 

that did not show significant differences (Supplementary 

Figure 1C). These findings were further confirmed using 

the Human Protein Atlas (HPA) database (Supplementary 

Figure 2). Finally, we investigated the association 

between XRCC1 gene expression and clinical 

characteristics. We assessed XRCC1 expression levels in 

different tumor stages of Adrenocortical carcinoma 

(ACC), BLCA, and LIHC. Furthermore, we examined the 

correlation between XRCC1 expression and clinical 

stages in head and neck squamous cell carcinoma (HNSC) 

and oral squamous cell carcinoma (OSCC) (Figure 1D). 

Additionally, we analyzed the differential expression of 

XRCC1 based on patient age, gender, T-stage, and 

histological grade (Supplementary Figure 3). 

 

Pan-cancer analysis of the multifaceted prognostic 

value of XRCC1 

 

We separated the cancer cases into low-expression and 

high-expression groups based on the gene expression 

levels of XRCC1. We explored the relativity between 

XRCC1 gene expression levels and the survival prognosis 

across cancer types with the assistance of GEO and 

TCGA datasets. According to Figure 2A, high XRCC1 

gene expression was related to poor overall survival (OS) 

in cancers of acute myeloid leukemia (LAML) (n=106, 

P=0.041) and LGG (n=514, P=0.011) in the TCGA 

dataset. Disease-free survival (DFS) relevant statistics in 

Figure 2B revealed a linkage between poor prognosis and 

high XRCC1 gene expression levels for the cancer cases 

from the TCGA dataset of LGG (n=521, P=0.024), LIHC 

(n=364, P=0.0053) and LUAD (n=478, P=0.034). 

Meanwhile, high expression of the XRCC1 gene was 

linked to better DFS in GBM (n=160, P=0.012) and 
thymoma (THYM) (n=118, P=0.019). In summary, we 

found that the gene expression level of XRCC1 was 

mainly relevant to the poor survival prognosis of patients 

with various cancer types. Furthermore, we conducted a 

survival relevance analysis across multiple cancer types, 

including progression-free survival (PFS) and disease-

specific survival (DSS), to learn the relevance of XRCC1 

gene expression levels to the survival prognosis of cancer 

patients. The forest plot of PFS analysis indicated that 

higher XRCC1 gene expression levels were relevant to 

worse PFS in ACC (P=0.0171), LGG (P <0.0001) and 

LUAD (P= 0.0268), whereas better PFS in 

BRCA(P=0.0429) (Figure 3A). Furthermore, analysis of 

DSS prognosis (Figure 3B) showed the relevance of 

higher XRCC1 gene expression levels to worse DSS in 

patients with cervical squamous cell carcinoma and 

endocervical adenocarcinoma (CESC) (P=0.0015), 

COAD (P=0.0268), KIRC (P=0.0296), LIHC (P=0.0086) 

and LUSC (P=0.0190). The data from other cancer types 

are all statistically insignificant. In summary, our findings 

indicate that XRCC1 gene expression levels are 

predominantly associated with poor survival prognosis in 

various cancer types. Furthermore, the analysis of PFS 

and DSS across multiple cancer types further supports the 

relevance of XRCC1 gene expression levels to the 

survival prognosis of cancer patients. 

 

Diagnostic value of XRCC1 in pan-cancer 

 

In our analysis, we utilized receiver operating 

characteristic (ROC) curves to assess the predictive 

ability of XRCC1 expression levels in distinguishing 

between cancer and normal tissue across multiple 

cancer types. The results demonstrated that XRCC1 

exhibited a considerable accuracy (AUC>0.7) in 

predicting 20 cancer types, including ACC (AUC= 

0.789), BLCA (AUC=0.708), BRCA (AUC=0.763), 

CESC (AUC=0.776), CHOL (AUC=1.000), COAD 

(AUC=0.787), DLBC (AUC=0.787), ESCA (AUC= 

0.757), GBM (AUC=0.828), HNSC (AUC=0.857), 

KIRC (AUC=0.731), KIRP (AUC=0.746), LGG 

(AUC=0.847), LIHC (AUC=0.933), OSCC (AUC= 

0.851), PAAD (AUC=0.965), READ (AUC=0.770), 

SKCM (AUC=0.862), STAD (AUC=0.813), and 

THYM (AUC=0.945) (Figure 4). Notably, XRCC1 

exhibited high accuracy (AUC>0.9) in predicting 

CHOL, LIHC, PAAD, and THYM. These findings 

suggest that XRCC1 has the potential to serve as an 

excellent biomarker for cancer diagnosis. 

Supplementary Figure 4 provides the ROC curves for 

XRCC1 in other cancer types for reference. 

 

Pan-cancer analysis of the phosphorylation of 

XRCC1 

 

In our analysis, we investigated the differences in 
XRCC1 protein expression and phosphorylation 

between primary tumor tissues and normal tissues. 

Utilizing the CTPAC database, we focused on nine 
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types of tumors, namely breast cancer, ovarian cancer, 

COAD, RCC, UCEC, LUAD, GBM, PAAD, and 

HNSC. Initially, we examined the XRCC1 protein 

phosphorylation sites and identified notable 

differences (Figure 5A). Specifically, the phospho-

rylation level at the T453 locus within the XRCC1 

protein was significantly elevated in breast cancer, 

colon cancer, LUAD, UCEC, and pancreatic 

adenocarcinoma compared to normal tissues (all P < 

0.05) (Figure 5B, 5D, 5E, 5G, 5H). Furthermore, we 

observed an increased phosphorylation level at the 

S241 locus within XRCC1 protein in breast cancer (P 

= 9.4E-13), colon cancer (P = 1.7E-34), GBM (P = 

4.4E-02), UCEC (P = 7.4E-20), and ovarian cancer (P 

= 1.1E-08) (Figure 5B, 5D, 5F, 5G, 5I). These 

findings indicate the potential significance of 

phosphorylation events in tumorigenesis. Further 

molecular assays are warranted to gain a deeper 

understanding of the role of phosphorylation at these 

specific loci in various types of cancer development.  

 

 
 

Figure 2. Summary of relativity between survival prognosis across cancer types in TCGA dataset and XRCC1 gene expression 
levels. The GEPIA database was utilized to plot overall survival (A) and disease-free survival (B) conditions across cancer types in TCGA 

dataset by XRCC1 gene expression. We observed that high XRCC1 gene expression was related to worse OS and DFS in almost all cancer 
types, except DFS in UCEC cohorts(n=160) and THYM cohorts(n=118). Only p-values < 0.05 were displayed. 
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Pan-cancer analysis of the methylation level and 

genetic alteration of XRCC1 

 

We conducted an analysis of XRCC1 genomic 

alterations in pan-cancer using the cBioPortal (TCGA, 

The Pan-Cancer Atlas) database. Our findings revealed 

that genomic alterations in XRCC1 were detected in 

1.8% of patients (Figure 6A). Further exploration of the 

genetic alteration status of XRCC1 in different tumor 

samples within the TCGA cohort showed distinct 

patterns. Among these, the highest frequency of 

alterations in XRCC1 (>6%) was observed in patients 

with uterine carcinosarcoma (UCS), where 

“Amplification” was the predominant type of alteration 

(Figure 6B). In cases of DLBC with genetic alterations, 

copy number deletion of XRCC1 was the prevalent type 

of alteration. Notably, the “Structural Variant” type of 

XRCC1 alteration was exclusively found in cases of 

LUSC. Furthermore, we analyzed the types, sites, and 

cases of XRCC1 genetic alterations. Missense 

mutations were the most common type of alteration, and 

specific alterations such as P333L/T in the BRCT 

 

 
 

Figure 3. Association between XRCC1 expression levels and cancer patients' PFS and DSS prognosis, using univariate survival 
analysis in various cancers. (A) Relevance of XRCC1 gene expression levels to PFS prognosis across cancer types in TCGA dataset.  

(B) Relevance of XRCC1 gene expression to DSS prognosis across cancer types in TCGA dataset. Red font indicated P-value < 0.05. 
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Figure 4. XRCC1 expression levels could distinguish between cancerous and normal tissues in pan-cancer. (A) ACC; (B) BLCA;  
(C) BRCA; (D) CESC; (E) CHOL; (F) COAD; (G) DLBC; (H) ESCA; (I) GBM; (J) HNSC; (K) KIRC; (L) KIRP; (M) LGG; (N) LIHC; (O) OSCC; (P) PAAD;  
(Q) READ; (R) SKCM; (S) STAD; (T) THYM. X-axis reveals the false positive rate, while Y-axis indicates the true positive rate. 
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Figure 5. We utilized the UALCAN tool to compare the expression status of XRCC1 phosphoprotein (NP_006288.2, S234, 
S241, S266, S268, S447, S461, S475, and T453 sites) between primary tissue of specific tumors and normal tissue from CPTAC 
database. The schematic diagram of XRCC1 protein (A) demonstrated the phosphoprotein sites with positive results. We also enriched the 

box plots with different tumors containing breast cancer (B), clear cell RCC (C), COAD (D), LUAD (E), GBM (F), UCEC (G), PAAD (H), ovarian 
cancer (I), HNSC (J). 
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Figure 6. Mutation feature of XRCC1 in pan-cancer of TCGA. (A) The cBioPortal database was used to analyze the proportion of 
patients with XRCC1 genomic alterations in pan-cancer. The frequency of mutation type (B) and mutation site (C) of XRCC1 in TCGA tumors 
was analyzed using the cBioPortal tool. The cBioPortal database was used to explore the impact of XRCC1 mutation status on OS (D), DFS (E), 
PFS (F), and DSS (G) of cancer patients. 
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structural domain were identified in OV and ESCA 

cases (Figure 6C). Additionally, we investigated the 

potential association between XRCC1 genetic 

alterations and patient prognosis across different cancer 

types. The results demonstrated that patients with 

tumors harboring XRCC1 gene alterations exhibited 

poorer disease-free survival (DFS) and disease-specific 

survival (DSS) compared to those without alterations. 

Although overall survival (OS) and progression-free 

survival (PFS) did not reach statistical significance in 

the analysis between the two groups, a similar trend was 

observed (Figure 6D). Furthermore, we utilized the 

UALCAN database to analyze XRCC1 DNA 

methylation levels. The analysis revealed significant 

reductions in XRCC1 DNA methylation levels in 

COAD, ESCA, KIRC, KIRP, LUSC, PAAD, and 

SARC tissues compared to normal tissues. Conversely, 

elevated levels of XRCC1 DNA methylation were 

observed in BRCA and READ (Figure 7A). However, 

no significant differences in XRCC1 DNA methylation 

levels were observed in other tumor tissues compared to 

their matched normal tissues (Supplementary Figure 5). 

 

Pan-cancer analysis of TMB and MSI of XRCC1 

 

The study also investigated the association between 

XRCC1 gene expression levels and two significant 

biomarkers related to immunotherapy response: tumor 

mutational burden (TMB) and microsatellite 

instability (MSI). The results indicated that XRCC1 

gene expression levels were significantly correlated 

with TMB status in several cancer types, including 

SARC, LUSC, UCS, and DLBC. Among these, LUSC 

showed particularly strong statistical significance 

(Figure 8A), suggesting a potential role of XRCC1 in 

modulating TMB in this cancer type. Furthermore, the 

relationship between XRCC1 gene expression levels 

and MSI status was explored across multiple human 

cancers. The analysis revealed positive correlations 

between XRCC1 expression and MSI status in ACC, 

LGG, PAAD, MESO, and BLCA. On the other hand, 

BRCA and THYM showed negative correlations 

between XRCC1 expression and MSI status. It is 

worth noting that the p-value for BRCA was smaller 

than that of other cancers, indicating a potentially 

significant association (Figure 8B). These findings 

suggest that XRCC1 gene expression levels may be 

linked to the underlying genomic instability and DNA 

repair processes associated with TMB and MSI in 

various cancer types. 

 

Pan-cancer analysis of immune and molecular 

subtypes of XRCC1 

 

The study conducted an analysis of XRCC1 expression 

in relation to immune subtypes and molecular subtypes 

of human cancer using the subtype module of  

the TISIDB database. Immune subtypes were classified 

into six types: C1 (wound ranging), C2 (IFN-gamma 

dominant), C3 (inflammatory), C4 (lymphocyte 

depleted), C5 (immunologically quiet), and C6 (TGF-B 

dominant). The analysis revealed significant differences 

in XRCC1 expression among different immune subtypes 

in multiple cancer types, including BLCA, BRCA, 

COAD, ESCA, HNSC, KIRC, LGG, LIHC, LUAD, 

PAAD, PCPG, PRAD, SARC, STAD, TGCT, and UCS 

(Figure 9). Additionally, XRCC1 expression displayed 

significant differences among different molecular 

subtypes in several cancer types, including BRCA, 

GBM, HNSC, KIRP, LGG, LIHC, OV, PCPG, READ, 

STAD, and UCEC (Figure 10). XRCC1 expression in 

different immune and molecular subtypes of other 

cancers is shown in Supplementary Figure 6. These 

findings indicate that XRCC1 expression varies 

significantly across different immune and molecular 

subtypes in various human cancer types, highlighting the 

potential involvement of XRCC1 in distinct tumor 

microenvironments and molecular pathways. 

 

 
 

Figure 7. Promoter methylation level of XRCC1 in pan-cancer. (A) in BRCA, (B) in COAD, (C) in ESCA, (D) in KIRC, (E) in KIRP, (F) in 
LUSC, (G) in PAAD, (H) in READ, (I) in SARC, (J) in THCA. 
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Pan-cancer analysis of the XRCC1 expression and 

immune cell infiltration 

 

The study utilized the TIMER and XCELL datasets to 

investigate the correlation between XRCC1 expression 

and immune infiltration in multiple tumor tissues. The 

results demonstrated significant correlations between 

XRCC1 expression and the abundance of infiltrating 

immune cells in various cancer types. Specifically, 

XRCC1 expression showed significant correlations with 

T cell CD8+ infiltration in 15 types of cancer, T cell 

CD4+ infiltration in 14 types of cancer, neutrophil 

infiltration in 14 types of cancer, myeloid dendritic cell 

infiltration in 11 types of cancer, and B cell infiltration 

in 9 types of cancer. The significance of these 

correlations was assessed using the Wilcox test (Figure 

11A). Furthermore, the study employed the XCELL 

algorithm to explore the relationship between XRCC1 

expression and the immune infiltration levels of 

different immune cell subtypes. The analysis revealed a 

significant negative correlation between XRCC1 

expression and immune infiltration in LUAD, LUSC, 

SARC, TGCT, THCA, and UCEC. Additionally, 

positive associations were observed between XRCC1 

expression and common lymphoid progenitor 

infiltration, as well as T cell CD4+ Th1 and Th2 cell 

infiltration, across various cancer types (Figure 11B). 

Similar results were obtained using other algorithms 

such as CIBERSORT, EPIC, MCPCOUNTER, and 

QUANTISEQ (Supplementary Figure 7).  

 

Subsequently, we investigated the correlation between 

XRCC1 expression status and immune cell markers in 

LGG through the TIMER database, involving B cell, 

CD8+ T cells, M1/M2 macrophages, tumor-associated 

macrophages (TAM), neutrophils, Natural killer cell, 

dendritic cells. Meanwhile, a series of functional T 

cells, like Th1, Th2, Th9, Th17, Th22, Tfh, exhausted T 

cells, Treg cells were also be examined. The outcomes 

suggested that XRCC1 expression was obviously 

 

 
 

Figure 8. The relevance of XRCC1 gene expression levels to TMB and MSI across cancer types. (A) A bar chart reveals the 
relevance of XRCC1 gene expression levels to TMB in pan-cancer. (B) A bar chart shows the relationship between XRCC1 gene expression 
levels and MSI in multiple cancer types. The horizontal axis in the figure represents the correlation coefficient between genes and TMB/MSI, 
the ordinate is different tumors, the size of the dots in the figure represents the value of the correlation coefficient, and the different colours 
represent the degree of statistical significance. The bluer the colour, the smaller the p-value. 
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associated with the infiltration levels of immune cell 

markers containing B cell, Tfh, Th2, Th9, Th22, 

exhausted T cell, macrophage, TAM, monocyte, 

neutrophil and natural killer cell (Table 1). 

 

Pan-cancer analysis of the correlation between the 

XRCC1 expression and immune checkpoint genes 

 

The study evaluated the correlation between XRCC1 

expression and the expression of immune checkpoint 

genes, which are crucial in regulating the immune 

response in various tumors. A total of 47 immune 

checkpoint genes, including both immunosuppressive 

and immunostimulatory genes, were analyzed in 

multiple cancer types (Figure 12). The results revealed a 

notable correlation between XRCC1 expression and 

most of the immunosuppressive and immunostimulatory 

genes in BRCA, COAD, HNSC, LIHC, and THYM. It 

is worth mentioning that in HNSC, the genes showed a 

positive correlation with XRCC1 expression, while in 

COAD, they exhibited a negative correlation. These 

findings suggest that XRCC1 may have a role in 

modulating the pattern of tumor immunity by regulating 

the expression levels of these immune checkpoint genes 

in specific tumor types.  

 

Functional enrichment analysis of XRCC1 in LGG 

 

In the study of LGG patients, a total of 529 primary 

LGG cases from the TCGA database were analyzed to 

investigate the relationship between XRCC1 expression 

levels and clinicopathological characteristics (Table 2). 

 

 
 

Figure 9. The relationship between XRCC1 expression and pan-cancer immune subtypes. (A) in BLCA, (B) in BRCA, (C) in COAD,  

(D) in ESCA, (E) in HNSC, (F) in KIRC, (G) in LGG, (H) in LIHC, (I) in LUAD, (J) in PAAD, (K) in PCPG, (L) in PRAD, (M) in SARC, (N) in STAD, (O) in 
TGCT, (P) in UCS.  
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The patients were divided into low-expression (n=264) 

and high-expression (n=264) groups based on the mean 

XRCC1 relative expression. Statistical tests such as chi-

square test, Fisher's exact test, and Wilcoxon signed 

rank sum test were performed to analyze the 

associations. The results indicated significant 

associations between XRCC1 expression levels and 

several clinicopathological characteristics of LGG. 

XRCC1 expression was found to be correlated with 

WHO grade (P<0.001), IDH status (P<0.001), 1p/19q 

codeletion (P<0.001), and histological type (P<0.001) 

(Figure 13A–13D). To further confirm these findings, 

logistic regression analysis was conducted, and the 

results supported the associations between XRCC1 

expression levels and the clinicopathological 

characteristics of LGG (Table 3). Furthermore, gene 

expression analysis identified a total of 1832 

differentially expressed genes (DEGs) in LGG 

patients, including 677 upregulated genes and 1155 

downregulated genes, using predefined thresholds for 

fold-change and adjusted p-values (Figure 13E). 

Among these DEGs, 134 genes exhibited significant 

differential expression, including 94 upregulated genes 

and 40 downregulated genes. Gene Ontology (GO) and 

KEGG pathway enrichment analyses were performed 

to explore the functional implications of these DEGs 

(Figure 13F and Supplementary Table 1). The GO 

analysis revealed that the DEGs were enriched in 

biological processes (BP) such as mitotic sister 

chromatid segregation, mitotic nuclear division, 

spindle checkpoint, DNA conformation change, and 

mitotic cell cycle checkpoint. In terms of cellular 

component (CC), the enriched categories included 

transmembrane transporter complex, neuron projection 

 

 
 

Figure 10. The relationship between XRCC1 expression and pan-cancer molecular subtypes. (A) in BRCA, (B) in GBM, (C) in HNSC, 
(D) in KIRP, (E) in LGG, (F) in LIHC, (G) in OV, (H) in PCPG, (I) in PRAD, (J) in READ, (K) in STAD, (L) in UCEC. 



www.aging-us.com 887 AGING 

terminus, mitotic spindle, chromosomal region, and 

spindle microtubule. The molecular function (MF) 

analysis highlighted neurotransmitter receptor activity, 

postsynaptic neurotransmitter receptor activity, gated 

channel activity, microtubule binding, and histone 

kinase activity. Additionally, the KEGG pathway 

analysis revealed significant associations with 

GABAergic synapse, neuroactive ligand-receptor 

interaction, cAMP signaling pathway, cell cycle, and 

Ras signaling pathway. These findings provide valuable 

insights into the molecular characteristics and functional 

pathways associated with XRCC1 expression in LGG 

patients, shedding light on its potential role in LGG 

progression and suggesting potential therapeutic targets. 

 

Gene Set Enrichment Analysis (GSEA) was used to 

search for GO and Reactome pathways, which revealed 

that the DNA replication, DNA integrity checkpoint, 

DNA repair, and signal transduction in response to 

DNA damage were significantly enriched (Figure 13G 

and Supplementary Table 2). In addition, Reactome 

pathway analysis significantly enriched the cell cycle, 

cell cycle checkpoints, DNA repair, and neuronal 

system (Figure 13H). These results suggest that XRCC1 

is associated with DNA repair-related pathways. 

Furthermore, we obtained the top 5 hub genes of 134 

DEGs, including SOX4, PAX3, HOXD9, HOXC9, and 

GATA4 (Figure 13I). Moreover, the receiver operating 

characteristic (ROC) curve was carried out to analyze 

the effectiveness of hub gene expression in normal 

samples of GTEx-combined adjacent LGG tissues  

and LGG samples. XRCC1 (AUC=0.847), SOX4 

(AUC=0.985), and HOXD9 (AUC=0.767) indicated 

that these three genes could be ideal biomarkers to 

distinguish LGG from non-tumor tissues (Figure 13K). 

The corresponding heat map data also showed that in 

LGG, XRCC1 was positively associated with the five 

genes mentioned above (Figure 13J). 

 

 
 

Figure 11. The XRCC1 expression correlated with immune infiltration. (A) The expression of XRCC1 was strongly associated with the 
infiltration levels of various immune cells in the TIMER dataset. (B) Based on the XCELL database, we explored the significant correlation 
between the expression of XRCC1 and the infiltration levels of various immune cells. (*p < 0.05, **p < 0.01, and ***p < 0.001). 
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Table 1. Correlation analysis between XRCC1 and markers of immune cells in 
TIMER. 

Cell type Gene marker 
None  Purity 

Cor P  Cor P 

B cell 

CD19 0.151 ***  0.156 *** 

CD20(KRT20) 0.007 0.88   0.016 0.72  

CD38 0.117 **  0.101 * 

CD8+ T cell 
CD8A -0.051 0.25   -0.07 0.13  

CD8B -0.101 *  -0.106 * 

Tfh 

BCL6 0.175 ***  0.179 *** 

ICOS 0.07 0.11   0.06 0.19  

CXCR5 0.131 **  0.153 *** 

Th1 

T-bet (TBX21) 0.108 *  0.112 * 

STAT4 -0.241 ***  -0.245 *** 

IL12RB2 -0.079 0.07   -0.093 * 

WSX1(IL27RA) -0.023 0.60   -0.018 0.69  

STAT1 0.154 ***  0.141 ** 

IFN-γ (IFNG) 0.051 0.24   0.064 0.16  

TNF-α(TNF) 0.081 0.07   0.067 0.14  

Th2 

GATA3 0.179 ***  0.181 *** 

CCR3 0.099 *  0.098 * 

STAT6 0.082 0.06   0.081 0.08  

STAT5A 0.312 ***  0.333 *** 

Th9 

TGFBR2 0.136 **  0.141 ** 

IRF4 0.055 0.21   0.089 0.05  

PU.1(SPI1) 0.292 ***  0.302 *** 

Th17 

STAT3 0.275 ***  0.268 *** 

IL-21R -0.123 **  -0.131 ** 

IL-23R 0.004 0.94   -0.017 0.72  

IL-17A -0.01 0.82   0.005 0.91  

Th22 
CCR10 0.122 **  0.139 ** 

AHR 0.104 *  0.087 0.06  

Treg 

FOXP3 -0.039 0.38   -0.024 0.60  

CD25(IL2RA) -0.041 0.35   -0.01 0.83  

CCR8 0.033 0.46   0.038 0.41  

T cell 

exhaustion 

PD-1 (PDCD1) 0.112 *  0.11 * 

CTLA4 0.018 0.68   0.017 0.71  

LAG3 0.176 ***  0.189 *** 

TIM-3 (HAVCR2) 0.25 ***  0.257 *** 

Macrophage 
CD68 0.245 ***  0.25 *** 

CD11b (ITGAM) 0.252 ***  0.265 *** 

M1 

INOS (NOS2) 0.072 0.10   0.082 0.07  

IRF5 0.276 ***  0.288 *** 

COX2(PTGS2) -0.044 0.32   -0.043 0.35  

M2 

CD163 0.088 *  0.089 0.05  

ARG1 -0.018 0.69   -0.019 0.67  

MRC1 -0.047 0.29   -0.03 0.52  

MS4A4A 0.16 ***  0.174 *** 

TAM 

CCL2 0.073 0.10   0.062 0.17  

CD80 0.165 ***  0.161 *** 

CD86 0.221 ***  0.228 *** 
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CCR5 0.236 ***  0.232 *** 

Monocyte 

CD14 0.211 ***  0.203 *** 

CD16(FCGR3B) -0.001 9.74-01  0.002 0.97  

CD115 (CSF1R) 0.238 ***  0.25 *** 

Neutrophil 

CD66b 

(CEACAM8) 
0.06 0.17  

 
0.054 0.24  

CD15(FUT4) 0.313 ***  0.313 *** 

CD11b (ITGAM) 0.252 ***  0.265 *** 

Natural killer 

cell 

XCL1 -0.012 0.78   0.003 0.94  

CD7 0.192 ***  0.206 *** 

KIR3DL1 -0.115 **  -0.116 * 

Dendritic cell 

CD1C(BDCA-1) 0.042 0.35   0.054 0.24  

CD141(THBD) -0.005 0.91   0.006 0.90  

CD11c (ITGAX) 0.279 ***  0.285 *** 

Tfh Follicular helper T cell, Th T helper cell, Treg Regulatory T cell, TAM Tumor-associated 
macrophage. None, correlation without adjustment. Purity, correlation adjusted by purity. 
Cor, R-value of Spearman's correlation. *P < 0.05; **P < 0.01; ***P < 0.001. 

 

 
 

Figure 12. The association heatmaps between XRCC1 expression and immune checkpoint genes in pan-cancer. *P < 0.05,  
**P < 0.01, ***P < 0.001. 
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Table 2. Correlation between XRCC1 expression and clinicopathological 
characteristics in LGG. 

Characteristic 
Low expression of 

XRCC1 

High expression of 

XRCC1 
p 

n 264 264  

WHO grade, n (%)   < 0.001 

G2 133 (28.5%) 91 (19.5%)  

G3 104 (22.3%) 139 (29.8%)  

IDH status, n (%)   < 0.001 

WT 25 (4.8%) 72 (13.7%)  

Mut 238 (45.3%) 190 (36.2%)  

1p/19q codeletion, n (%)   < 0.001 

codel 132 (25%) 39 (7.4%)  

non-codel 132 (25%) 225 (42.6%)  

Primary therapy outcome, n (%)   0.073 

PD 42 (9.2%) 68 (14.8%)  

SD 76 (16.6%) 70 (15.3%)  

PR 34 (7.4%) 30 (6.6%)  

CR 73 (15.9%) 65 (14.2%)  

Gender, n (%)   0.727 

Female 122 (23.1%) 117 (22.2%)  

Male 142 (26.9%) 147 (27.8%)  

Race, n (%)   0.866 

Asian 3 (0.6%) 5 (1%)  

Black or African American 11 (2.1%) 11 (2.1%)  

White 242 (46.8%) 245 (47.4%)  

Age, n (%)   0.139 

<=40 141 (26.7%) 123 (23.3%)  

>40 123 (23.3%) 141 (26.7%)  

Histological type, n (%)   < 0.001 

Astrocytoma 67 (12.7%) 128 (24.2%)  

Oligoastrocytoma 61 (11.6%) 73 (13.8%)  

Oligodendroglioma 136 (25.8%) 63 (11.9%)  

Laterality, n (%)   0.739 

Left 126 (24.1%) 130 (24.9%)  

Midline 4 (0.8%) 2 (0.4%)  

Right 131 (25%) 130 (24.9%)  

Age, median (IQR) 40 (32.75, 51) 41.5 (31, 55) 0.484 

Abbreviations: CR, complete response; PD, progressive disease; SD, stable disease; 
PR, partial response. 

 

Analysis of genetic mutation and methylation levels 

of XRCC1 and hub-gene and pathway regulation in 

LGG 

 

We performed co-analysis of XRCC1 with its correlated 

genes, namely GATA4, HOXC9, HOXD9, PAX3, and 

SOX4. The CNV states of these genes in LGG were 

investigated, as depicted in Figure 14A. XRCC1 

exhibited a high susceptibility to mutation, primarily 

heterozygous deletion, while GATA4 showed 

heterozygous amplification as the main CNV type. The 

CNV analysis in Figure 14B confirmed the vulnerability 

of these genes to heterozygous deletions, with  

XRCC1 being the most mutation prone. Figure 14C 

demonstrated a significant correlation between CNV 

and XRCC1 expression levels in LGG, while a weak 

correlation was observed for SOX4 and PAX3. 

Survival analysis based on hypermethylation and 

hypomethylation patterns (Figure 14D) revealed  

that hypermethylation of HOXD9 was associated  

with a higher survival risk in LGG, whereas 

hypermethylation of XRCC1 and PAX3 indicated a 

lower survival risk. Furthermore, in Figure 14E, the 

expression levels of XRCC1 and its correlated genes 
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Figure 13. Associations between XRCC1 expression and different clinical characteristics in LGG. PPI network building and GO, 
KEGG, and GSEA analyses between XRCC1 high and low expression groups in LGG. Hub genes positively correlated with XRCC1 expression in 
LGG and hub genes' receiver operating characteristic (ROC) curve. (A) WHO grade. (B) IDH status. (C) 1p/19q codeletion. (D) Histological type 
(ns, p≥0.05, *p<0.05, **p<0.01, ***p<0.001). (E) volcano plot of DEGs (red: upregulation, blue: downregulation). (F) GO and KEGG analyses of 
DEGs. (G, H) significant GSEA results for DEGs, including GO terms and Reactome pathways. (I) PPI network. (J) the gene coexpression 
heatmap of the hub genes. (K) ROC curve of hub genes. 
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Table 3. XRCC1 expression associated with clinicopathologic characteristics (Logistic 
Regression). 

Characteristics Total (N) Odds ratio (OR) P-value 

WHO grade (G3 vs. G2) 467 1.953 (1.354-2.829) <0.001 

IDH status (Mut vs. WT) 525 0.277 (0.167-0.448) <0.001 

1p/19q codeletion (non-codel vs. codel) 528 5.769 (3.834-8.840) <0.001 

Primary therapy outcome (PR&CR vs. PD&SD) 458 0.759 (0.524-1.098) 0.144 

Gender (Male vs. Female) 528 1.079 (0.766-1.521) 0.662 

Race (White vs. Asian&Black or African 

American) 
517 0.886 (0.418-1.858) 0.748 

Age (>40 vs. <=40) 528 1.314 (0.934-1.852) 0.117 

Histological type 

(Oligoastrocytoma&Oligodendroglioma vs. 

Astrocytoma) 

528 0.361 (0.249-0.520) <0.001 

Laterality (Right vs. Left&Midline) 523 0.977 (0.693-1.377) 0.896 

 

exhibited negative correlation with methylation  

levels. Notably, XRCC1 and PAX3 showed substantial 

statistical significance, suggesting their deregulation. 

Figure 14F illustrated the influence of these six genes 

on ten LGG-related pathways. Increased expression of 

XRCC1 in LGG activated the Cell cycle, DNA 

damage response, and Hormone AR pathways, while 

inhibiting Apoptosis, EMT, RAS/MAPK, RTK, and 

TSC/mTOR pathways. The DNA damage response 

and EMT pathways were predominantly activated, 

whereas the RAS/MAPK and RTK pathways were 

primarily inhibited. Both Apoptosis and PI3K/AKT 

pathways showed elements of activation and/or 

inhibition. Moreover, Figure 14H demonstrated the 

correlation between XRCC1 and its correlated genes' 

expression levels and drug sensitivity in LGG for 

specific drugs. Notably, XRCC1 expression was 

negatively correlated with drug sensitivity in LGG, 

potentially explaining its classification as a pro-cancer 

gene. Conversely, HOXC9 expression exhibited a 

positive correlation with drug sensitivity in LGG. 

SOX4, PAX3, and HOXD9 displayed limited 

relevance to drugs.  

 

DISCUSSION 
 

DNA repair is critical in protecting the cellular genome 

from damage caused by carcinogens or ionizing 

radiation [47]. XRCC1 is required for DNA single-

strand break repair in human cells. The reduced DNA 

single-strand break repair and genomic instability 

caused by XRCC1 defects may contribute to cancer 

development [48]. A large number of studies have 

reported that XRCC1 is associated with the 
development, progression, and prognosis of a variety of 

cancers, such as thyroid cancer, gastric cancer, non-

small cell lung cancer, and cervical cancer. Moreover, 

XRCC1 Arg194Trp and XRCC1 Arg399Gln were 

revealed to be strongly associated with susceptibility to 

glioma among the Chinese population according to a 

large case-control study [49]. Still, the exact mechanism 

is unclear [47, 48, 50–55]. Therefore, we systematically 

analyzed XRCC1 concerning expression, prognostic 

types, immune invasion, methylation, phosphorylation, 

and molecular typing in various cancers. 

 

High XRCC1 gene expression was associated with poor 

OS in LAML and LGG and poor DFS in LGG, LIHC, 

and LUAD. That is, increased expression of XRCC1 

corresponds to a poor prognosis in most cancers. 

XRCC1, a gene closely related to DNA damage repair, 

plays an important role in tumor resistance to 

radiotherapy and chemotherapy. Radiotherapy has been 

reported to be more effective in patients with non-small 

cell lung cancer who have XRCC1 gene mutations [56]. 

This phenomenon also exists in breast, head, neck and 

rectal cancer [57–59]. In addition, chemotherapy's effect 

and toxicity were greater in patients with XRCC1 

mutated non-small cell lung and gastric cancers than in 

those with high XRCC1 expression [60–62]. All this 

evidence suggests that XRCC1 is closely associated 

with tumor resistance. The main mechanism of action of 

chemotherapy and radiotherapy is to damage the DNA 

of tumor cells, and the effectiveness depends on the 

ability to damage the DNA [63, 64]. Thus, DNA repair 

interferes with chemotherapy and radiotherapy. For 

example, glycogen synthase kinase-3β, DNA-dependent 

protein kinase, and poly (ADP-ribose) polymerase 

family with DNA repair capabilities reduce the 

sensitivity of tumors to chemotherapy and radiotherapy 

[65–67]. At the same time, the enzyme complex formed 

by XRCC1 is optimized for single-strand break repair 

and also participates in other repair pathways, playing 

an important role in DNA repair [68, 69]. Therefore, it 
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Figure 14. Analysis of genetic mutation and methylation levels of XRCC1 and hub-gene and pathway regulation in LGG. (A) 
Homozygous/heterozygous CNV of XRCC1 and its related genes in LGG. Homo Amp: homozygous amplification; Hete Amp: heterozygous 
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amplification; Homo Del: homozygous deletion; Hete Del: heterozygous deletion; None: without CNV. (B) The heterozygous CNV of XRCC1 
and (C) the correlation between CNV and mRNA RSEM. The heterozygous CNV of XRCC1 and the correlation between CNV and mRNA RSEM 
in LGG were plotted to utilize GSCALite. (D) The overall survival discrepancy between hypermethylation and hypomethylation of XRCC1 and 
its related genes in LGG. (E) In the correlation between methylation and gene expression in LGG, blue represented a negative correlation, 
while red represented a positive correlation. (F) XRCC1 and hub genes influence pathways that participate in the development, growth, and 
progression of LGG. (G) The inferred activity of the identified four target genes in pathways that participate in the development, growth, 
and progression of LGG. A and I to mark the active and inhibited pathways, respectively. (H) The correlation of XRCC1 expression and LGG 
drug sensitivity. 

 

is likely that XRCC1 contributes to the poor prognosis 

of tumor patients by promoting DNA repair and 

reducing the sensitivity of tumors to chemotherapy and 

radiotherapy. 

 

DNA methylation and histone modifications such  

as methylation and phosphorylation are common 

epigenetic modifications that play an important role in 

the transcriptional regulation of genes involved in cell 

cycle progression, proliferation, apoptosis and cell 

death [70]. Alterations in the epigenetically controlled 

expression of these genes may also mediate oncogenic 

processes [71]. It has been demonstrated that XRCC1 

phosphorylation by CK2 is required for its stability and 

efficient DNA repair and that CK2 phosphorylation of 

XRCC1 facilitates dissociation from DNA and single-

strand break formation during BER [72]. In the present 

study, we found that the T453 site of XRCC1 protein 

exhibited higher phosphorylation levels in the breast, 

colon, LUAD, UCEC, and PAAD and that the 

expression status of XRCC1 phosphorylated proteins 

(S241, S266, S268, S447, S461 S475, and T453  

sites) in certain tumor tissues and normal tissues  

was somewhat of a difference. This suggests that 

XRCC1 is also associated with phosphorylation in the 

development of various types of cancer. In addition, we 

found a mutation rate of XRCC1 of 1.8% in all tumor 

patients and a copy number deletion of XRCC1 in  

all DLBC cases. This suggests that mutations in 

XRCC1 are associated with cancer development and 

progression. 

 

Another important finding of this study is that XRCC1-

associated infiltration of various immune cells 

correlates with cancer prognosis. Prognostic analysis 

showed that high XRCC1 gene expression was 

associated with poor OS and DFS in LGG. The immune 

cell infiltration results demonstrated that T cell CD4+ 

was positively correlated with XRCC1 in LGG. It is 

well known that T cell CD4+ epitopes are important 

targets of immunity against infectious diseases and 

cancer [73]. Several studies have shown that T cell 

CD4+ is associated with poor prognosis of tumors [74–

76], which coincides with the results of our research. 

Therefore, the high expression of XRCC1 leads to poor 

prognosis in LGG and is likely to be associated with T 

cell CD4+ infiltration. 

On the other hand, XRCC1 was negatively correlated 

with B cells (p<0.001). Numerous studies have shown 

that B cell has a beneficial effect on cancer prognosis 

[77–80], which supports our view from another 

perspective. Overall, XRCC1-mediated infiltration of 

various immune cells in the tumor microenvironment 

is likely to be closely associated with tumor prognosis. 

In addition, XRCC1 was significantly associated with 

most immunosuppressive and immunostimulatory 

genes in BRCA, COAD, HNSC, LIHC, and THYM. 

Immune checkpoints are regulators of the immune 

system that are essential for self-tolerance and prevent 

the immune system from attacking cells indiscri-

minately. However, some cancers can protect 

themselves from attack by tricking immune 

checkpoints [81]. And the present study found that 

XRCC1 was significantly correlated with most 

immunosuppressive and immunostimulatory genes in 

some tumors, suggesting that the immune escape 

mechanism of tumors may be associated with XRCC1. 

TMB is a genetic signature of tumor tissue, defined as 

the number of non-genetic mutations per million bases 

in the studied genomic sequence, and its measurement 

has been achieved by second-generation sequencing 

[82]. TMB has shown potential as a predictive 

biomarker with multiple applications, including the 

association between different reported TMB levels and 

patient response to immune checkpoint inhibitor 

therapy in various cancers [83]. The gene expression 

level of XRCC1 was strongly associated with TMB 

status across multiple cancer types, which on the other 

hand, supports the previous conclusions about XRCC1 

and immune checkpoints. Taken together, the above 

results strongly suggest the potential of XRCC1 as an 

anti-cancer immunotherapy target. 

 

LGGs are a heterogeneous group of tumors that include 

predominantly glial histology, including astrocytes and/or 

oligodendrocytes, and tumors with mixed neuron-glial 

cell morphology. These tumors are considered Grade I 

and Grade II according to the current WHO classification 

[84]. Since XRCC1 expression correlates with the 

prognosis of each type of LGG, we further explored the 

clinical features, gene function enrichment, mutations, 

methylation, and drug resistance aspects of XRCC1 in 

LGG. Based on our analysis of clinical features and gene 

expression data of 529 primary LGG cases, we found that 
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XRCC1 expression was not only correlated with WHO 

pathological classification but also negatively correlated 

with drug sensitivity in LGG, which may also explain 

why high XRCC1 expression implies poor prognosis in 

LGG. In addition, we identified XRCC1 (AUC=0.847), 

SOX4 (AUC=0.985), and HOXD9 (AUC=0.767) as 

three molecules that could be ideal biomarkers to 

distinguish LGG from non-tumor tissues. Furthermore, 

DNA integrity checkpoint, DNA repair, and signal 

transduction in response to DNA damage were 

significantly enriched, and these results suggest that 

XRCC1 pathways are associated with DNA repair in 

LGG. These results indicate that XRCC1 and DNA 

repair-related pathways may play a role in the 

development of LGG. 

 

Our first pan-cancer analysis of XRCC1 revealed a 

statistical correlation between XRCC1 expression and 

clinical prognosis, DNA methylation, protein 

phosphorylation, TMB, MSI, immune cell infiltration, 

and immune checkpoints. Our results suggest that 

XRCC1 can be an independent prognostic and 

diagnostic factor for many tumors. Its expression 

levels lead to different prognostic outcomes and 

tumour diagnostic results. However, despite our 

comprehensive and systematic analysis of XRCC1 

and the use of different public databases for cross-

validation, this study still has some limitations. First, 

the gene microarray and sequencing data from 

different databases exhibited differences and lacked 

granularity and specificity, which may cause 

systematic bias. Future studies should rely on higher 

resolution methods, such as single-cell RNA 

sequencing, to overcome this problem. Second, in 

vivo/in vitro experiments are needed to demonstrate 

our results regarding the potential function of XRCC1 

in LGG, which may increase the credibility of our 

results. Third, we could not demonstrate that XRCC1 

expression affects patient survival through immune 

infiltration, even though we found that XRCC1 

expression was associated with immune cell 

infiltration in tumors and patient survival. Therefore, 

further prospective studies are needed to explore the 

relationship between XRCC1 expression and immune 

infiltration in cancer patient populations. 

 

CONCLUSIONS 
 

We conducted a comprehensive investigation into the 

potential of XRCC1 as a valuable diagnostic and 

prognostic indicator in diverse cancer types. The 

positive correlation between XRCC1 expression and 

immune cell infiltration suggests its involvement in the 

tumor immune microenvironment. Moreover, the 

heterogeneity of XRCC1 is highlighted by its 

differential expression across immunological and 

molecular subtypes of different malignancies. In certain 

tumors, XRCC1 may play a role in modulating the 

tumor immune landscape by regulating the expression 

of immune checkpoint genes. Overall, XRCC1 emerges 

as a promising biomarker for cancer diagnosis, 

prognosis, and immunological assessment, particularly 

in the context of LGG. This study employs a systems 

biology approach to analyze the molecular mechanisms 

behind the development of cancer in an effort to 

improve our knowledge of cancer biology and yield 

novel insights for therapeutic approaches. Future 

investigations ought to concentrate on unraveling  

the mechanism underlying XRCC1's involvement  

in various cancer types, particularly in immuno-

modulation. By closely examining the relationship 

between XRCC1 and immune cell infiltration, we will 

seek to elucidate the precise mechanism underlying 

XRCC1 in regulating tumor immune response. 

Furthermore, exploring XRCC1's potential role in tumor 

immunotherapy and assessing its viability as a 

therapeutic target will provide valuable insights for the 

design of tailored cancer therapies and immunotherapy 

approaches. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Wilcoxon rank sum test was performed to explore the differential expression of XRCC1 between normal and 

tumor tissues in combination with TCGA and GTEx dataset (A). We analyzed the cell line expression matrix of 32 tumors from TCGA database 
(B). The protein expression of XRCC1 genes that were not significantly different was presented (C). (ns, P≥0.05; *, P< 0.05; **, P<0.01; ***, 
P<0.001). 



www.aging-us.com 903 AGING 

 
 

Supplementary Figure 2. HPA database verifies the expression of XRCC1 gene in seven tumors. The expression of XRCC1 gene in 
BLCA (A), LUSC (B), LIHC (C), COAD (D), OV (E), BRCA (F), and STAD (G) is significantly higher than that in the corresponding normal tissues. 
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Supplementary Figure 3. Association between XRCC1 gene expression and clinical characteristics, including (A) Age, (B) Gender, (C) T 

stage, (D) Histologic grade. 
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Supplementary Figure 4. ROC curve showed the efficiency of XRCC1 expression level to distinguish tumor tissue from non-
tumor tissue. (A) KICH, (B) LAML, (C) LUAD, (D) LUSC, (E) OV, (F) TGCT, (G) THCA, (H) UCEC, (I) PRAD, (J) UCS. 
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Supplementary Figure 5. Promoter methylation level of XRCC1 in pan-cancer. (A) in BLCA, (B) in CESC, (C) in CHOL, (D) in GBM, (E) 
in HNSC, (F) in LIHC, (G) in LUAD, (H) in PCPG, (I) in PRAD, (J) in STAD, (K) TGCT, (L) THYM, (M) UCEC. 
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Supplementary Figure 6. The relationship between XRCC1 expression and pan-cancer immune subtypes (A) and molecular subtypes (B). 
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Supplementary Figure 7. We investigated the correlation of XRCC1 gene expression with the level of infiltration of various immune cells 

via CIBERSOR (A), EPIC (B), MCPCOUNTER (C), QUANTISEQ (D). (P≥0.05; *, P< 0.05; **, P<0.01; ***, P<0.001). 
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Supplementary Tables 
 

 

Supplementary Table 1. Results of analyses of GO and KEGG. 

Ontology ID  Description  GeneRatio BgRatio P-value p.adjust q-value 

BP  GO:0000070  
mitotic sister chromatid 

segregation 
31/911  151/18670  7.62e-12  1.50e-09  1.29e-09  

BP  GO:0140014  mitotic nuclear division  38/911  264/18670  2.13e-09  2.01e-07  1.73e-07  

BP  GO:0031577  spindle checkpoint  9/911  34/18670  2.62e-05  7.49e-04  6.47e-04  

BP  GO:0071103  
DNA conformation 

change  
31/911  327/18670  3.30e-04  0.006  0.005  

BP  GO:0007093  
mitotic cell cycle 

checkpoint  
19/911  165/18670  4.50e-04  0.008  0.007  

CC  GO:1902495  
transmembrane 

transporter complex 
63/955  324/19717  1.43e-21  1.74e-19  1.32e-19  

CC  GO:0044306  
neuron projection 

terminus  
30/955  138/19717  3.00e-12  1.12e-10  8.47e-11  

CC  GO:0072686  mitotic spindle  15/955  109/19717  2.43e-04  0.002  0.001  

CC  GO:0098687  chromosomal region  32/955  349/19717  4.26e-04  0.003  0.002  

CC  GO:0005876  spindle microtubule  10/955  59/19717  4.90e-04  0.003  0.002  

MF  GO:0022836  gated channel activity  67/889  343/17697  3.50e-22  1.45e-19  1.22e-19  

MF  GO:0030594  
neurotransmitter 

receptor activity  
36/889  117/17697  3.24e-19  3.58e-17  3.03e-17  

MF  GO:0098960  

postsynaptic 

neurotransmitter 

receptor activity 

18/889  52/17697  2.96e-11  1.35e-09  1.14e-09  

MF  GO:0008017  microtubule binding  28/889  246/17697  4.65e-05  7.06e-04  5.98e-04  

MF  GO:0035173  histone kinase activity  5/889  17/17697  0.001  0.012  0.010  

KEGG  hsa04080  
Neuroactive ligand-

receptor interaction 
65/364  341/8076  1.95e-24  5.19e-22  4.38e-22  

KEGG  hsa04727  GABAergic synapse  20/364  89/8076  1.63e-09  8.65e-08  7.29e-08  

KEGG  hsa04024  
cAMP signaling 

pathway  
29/364  216/8076  1.07e-07  3.56e-06  3.00e-06  

KEGG hsa04110 Cell cycle 16/364 124/8076 1.32e-04 0.002 0.002 

KEGG hsa04014 Ras signaling pathway 21/364 232/8076 0.002 0.017 0.015 
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Supplementary Table 2. GSEA analysis results. 

GSEA-GO 

ID  ES  NES  

GO_NUCLEAR_CHROMOSOME  0.583  4.832  

GO_TRANSCRIPTION_REGULATOR_ACTIVITY  0.586  4.73  

GO_REGULATORY_REGION_NUCLEIC_ACID_BINDING  0.558  4.105  

GO_POSITIVE_REGULATION_OF_RNA_BIOSYNTHETIC_PROCESS  0.528  4.077  

GO_MITOTIC_CELL_CYCLE_CHECKPOINT  0.679  2.983  

GO_CELLULAR_RESPONSE_TO_DNA_DAMAGE_STIMULUS  0.541  2.904  

GO_REGULATION_OF_NUCLEAR_DIVISION  0.598  2.777  

GO_DNA_REPLICATION  0.573  2.619  

GO_DNA_INTEGRITY_CHECKPOINT  0.653  2.587  

GO_DNA_REPAIR  0.565  2.578  

GO_DNA_PACKAGING  0.519  2.475  

GO_DNA_BINDING_TRANSCRIPTION_FACTOR_BINDING  0.647  2.433  

GO_MITOTIC_DNA_INTEGRITY_CHECKPOINT  0.675  2.379  

GO_DNA_BIOSYNTHETIC_PROCESS  0.568  1.924  

GO_NEGATIVE_REGULATION_OF_IMMUNE_SYSTEM_PROCESS  0.481  1.906  

GO_SIGNAL_TRANSDUCTION_IN_RESPONSE_TO_DNA_DAMAGE  0.549  1.86  

 
GSEA-Reactome 

ID  ES NES p.adjust 

REACTOME_CELL_CYCLE  0.633 4.126 0.006 

REACTOME_CELL_CYCLE_MITOTIC  0.632 3.966 0.006 

REACTOME_CELL_CYCLE_CHECKPOINTS  0.681 3.769 0.006 

REACTOME_M_PHASE  0.587 3.338 0.006 

REACTOME_MITOTIC_SPINDLE_CHECKPOINT  0.69 3.22 0.006 

REACTOME_MITOTIC_METAPHASE_AND_ANAPHASE  0.626 3.169 0.006 

REACTOME_MITOTIC_PROMETAPHASE  0.607 3.127 0.006 

REACTOME_SEPARATION_OF_SISTER_CHROMATIDS  0.637 3.101 0.006 

REACTOME_DNA_REPAIR  0.658 2.581 0.006 

REACTOME_G2_M_CHECKPOINTS  0.676 2.573 0.006 

REACTOME_GABA_RECEPTOR_ACTIVATION  -0.484 -1.996 0.012 

REACTOME_NEUROTRANSMITTER_RELEASE_CYCLE  -0.58 -2.197 0.007 

REACTOME_NEUROTRANSMITTER_RECEPTORS_AND_POSTSYNAPTIC_SIGN

AL_TRANSMISSION  

-0.394 -2.451 0.007 

REACTOME_SIGNALING_BY_GPCR  -0.303 -2.52 0.008 

REACTOME_TRANSMISSION_ACROSS_CHEMICAL_SYNAPSES  -0.413 -2.881 0.007 

REACTOME_NEURONAL_SYSTEM  -0.414 -3.271 0.008 

 

 


