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INTRODUCTION 
 

Around 0.5% to 1% of the population worldwide is 

affected by rheumatoid arthritis (RA) [1] especially 

with pain in the hands and feet. RA is a chronic, 

systemic autoimmune disease associated with synovial 

tissue hyperplasia, synovial formation, cartilage 

destruction, and systemic complications [2]. RA causes 

joint inflammation and in severe cases can lead to 

permanent joint damage and disability. In addition, RA 

may affect other organs, including the lungs, heart, 

blood vessels, skin and eyes. It occurs most often 
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ABSTRACT 
 

Rheumatoid arthritis (RA) is an autoimmune rheumatic disease, which do not respond well to current 
treatment partially. Therefore, further in-depth elucidation of the molecular mechanism and pathogenesis of 
RA is urgently needed for the diagnosis, personalized therapy and drug development. Herein, we collected 111 
RA samples from Gene Expression Omnibus (GEO) database, and conducted differentially expressed genes and 
GESA analysis. Abnormal activation and imbalance of immune cells in RA were observed. WGCNA was utilized 
to explore the gene modules and CD8+ T cell-related genes (CRGs) were chosen for KEGG and GO analysis. 
Besides, to explore biomarkers of RA in depth, machine learning algorithms and bioinformatics analysis were 
used, and we identified GDF15, IGLC1, and IGHM as diagnostic markers of RA, which was confirmed by clinical 
samples. Next, ssGSEA algorithms were adopted to investigate the differences in immune infiltration of 23 
immune cell subsets between RA and healthy control group. Finally, optimal classification analysis based on 
consensus clustering combined with ssGSEA algorithms were conducted. GDF15 was revealed that to be 
positively correlated with mast cells and type 2 T helper cells, but negatively correlated with most other 
immune cells. On the other hand, IGHM and IGLC1 were negatively correlated with CD56dim natural killer cells, 
while positively associated with other immune cells. Finally, RA samples in subtype A exhibited a higher 
immune infiltration status. This study could provide guidance for individualized treatment of RA patients and 
provide new targets for drug design. 
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between the ages of 50 and 59 [3]. Early diagnosis is 

key to the success of optimal treatment, especially for 

patients with significant risk factors such as high 

disease activity, the presence of autoantibodies, and 

early joint injury [4]. Although the outlook is now 

promising for most patients, many patients still do not 

respond to current treatments. Therefore, it is urgent to 

further elucidate the pathogenesis of RA in order to 

propose new treatment methods. 

 

Pathogenetic changes in the synovial membrane are 

related to the persistent inflammation in RA [5]. On the 

one hand, macrophage-like synoviocytes (MLSs) 

secrete IL-1, IL-6, IL-26 and TNF-α [6]. On the other 

hand, fibroblast-like synoviocytes (FLSs) produce IL-6, 

IL-26, MMPs, prostaglandins and leukotrienes [7, 8]. In 

addition, infiltration of adaptive immune cells such as 

CD4+ memory T cells and B cells into the synovial 

sublining mediates damage and erosion formation in 

later disease [9, 10]. 

 

T cells also play an important role in RA. CD4+ T cells 

drive the occurrence and progression of RA by secreting 

IL-6 [11]. At the meantime, both IFN-γ-expression  

Th1 cells and IL-17-producing helper T (Th17) cells 

also have important roles in RA development [2]. Th17 

cells and their effector molecules interleukin17, 

interferon (IFN) γ, tumor necrosis factor (TNF) α, and 

granulocyte-macrophage colony-stimulating factor 

(GM-SCF) are involved in the pathology of RA [12]. 

Several studies have shown that IL-17A is involved in 

various pathological processes of RA, such as activation 

of fibroblast-like synovial cells (FLS) [13], maturation 

and function of osteoclasts [14], recruitment and 

activation of neutrophils [15], macrophages [16], and B 

cells. Clinical trials of IL-17A blocking treatment for 

RA have been conducted. IL-17A blocking improved 

the signs and symptoms of RA despite the inadequate 

therapeutic response [17]. However, the role of CD8+ T 

cells in RA is still controversial. Some studies suggest 

that these cells may have a major pro-inflammatory role 

in the disease, others suggest the opposite [18, 19]. 

Therefore, it is very important to evaluate the 

infiltration of immune cells, search for new biomarkers 

to clarify the molecular mechanism of RA and find new 

therapeutic targets from the perspective of immune 

system. 

 

In this work, we collected 25 HC and 111 RA samples 

for analyzing differentially expressed genes and further 

conducting GESA analysis. WGCNA was utilized to 

explore the gene modules and CD8+ T cell-related genes 

(CRGs) were chosen for PPI, KEGG and GO analysis. 
Besides, to explore biomarkers of RA in depth, machine 

learning algorithms and bioinformatics analysis were 

performed. Next, ssGSEA algorithms were adopted to 

investigate the differences in immune infiltration of 22 

immune cell subsets between RA and healthy control 

(HC) group. Finally, optimal classification analysis 

based on consensus clustering combined with consensus 

clustering algorithms were conducted.  

 

MATERIALS AND METHODS 
 

Microarray download and differential expression 

analysis 
 

We collected a total of four transcriptome datasets 

from the Gene Expression Omnibus (GEO) database 

that contained samples from both patients with 

rheumatoid arthritis (RA) and healthy control (HC), 

including GSE1919 (platform: GPL91), GSE48780 

(platform: GPL570), GSE55235 (platform: GPL96), 

and GSE55457 (platform: GPL96). Following the 

exclusion of non-standard samples, we obtained a final 

sample size of 25 HC and 111 RA samples for 

analysis. To ensure accurate gene annotation, we 

employed Perl scripts to annotate gene names based on 

the platform file of each GEO dataset. Furthermore, to 

mitigate any potential batch effects, we utilized the 

“SVA” script in the R environment to standardize the 

data across the four independent GEO datasets [20, 

21]. Subsequently, we used the “limma” script to 

perform differential analysis on the transcriptional 

matrix of the HC and RA groups. The criteria for 

selecting differentially expressed genes were set at 

|FC| ≥ 2 and an adjusted p-value less than 0.05. 

Finally, using the KEGG pathway reference gene set 

“c2.cp.kegg.v7.4.symbols.gmt”, we conducted Gene 

Set Enrichment Analysis (GSEA) based on the fold 

change in gene expression between the two groups. 

 

Screening for the gene modules most relevant to 

immune cells 

 

We utilized the transcriptional matrix and immune cell 

scores of the samples to construct a Weighted Gene Co-

expression Network Analysis (WGCNA) model in order 

to identify the gene modules most strongly correlated 

with immune cells, using the “WGCNA” script. The 

immune cell scores of both HC and RA samples based 

on 23 marker genes for immune cells were evaluated 

using the single-sample Gene Set Enrichment Analysis 

(ssGSEA) algorithm. Based on the transcriptional data 

of each sample, we subsequently constructed a 

clustering tree model to determine and exclude outlier 

samples. We further constructed a free-scale network 

based on the optimal soft threshold value (β) and 

employed the dynamic tree to cut and integrate the 

obtained gene modules into similar ones. We utilized 

the Pearson correlation algorithm to calculate the 

correlation of transcriptional data in each gene module. 
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Finally, based on the Pearson correlation calculation of 

the immune cell scores of 23 types of immune cells and 

the correlation between genes in each independent gene 

module, we selected the gene module that was most 

relevant for subsequent analysis. 

 

Identification of differential expression CD8+ T cell 

related genes (CRGs) and potential function analysis 

 

To identify the differentially expressed CRGs (DE-

CRGs), we employed a Venn diagram to determine the 

intersection of the gene sets obtained from differential 

expression analysis and WGCNA analysis. Using the 

STRING database, we predicted the protein-protein 

interactions (PPI) among the DE-CRGs. Moreover, we 

utilized the “clusterProfiler” script to predict the Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathways that were associated with 

the DE-CRGs. 

 

Development of machine learning to screen for 

CRGs biomarkers 

 

In our study, we employed two machine learning 

algorithms to identify potential biomarkers that were 

associated with RA. Firstly, we utilized the 

“randomForest” script to calculate the importance score 

for each DE-CRG, and we considered variables with a 

threshold greater than 1 to be important. Additionally, 

we built a LASSO model using the “glmnet” script to 

identify key variables based on the optimal coefficient 

and minimum lambda value. The intersection of genes 

that were obtained from the two different machine 

learning algorithms was considered as potential 

biomarkers for RA. 

 

Diagnostic effectiveness evaluation of CRGs 

biomarkers 

 

Using the “ggplot2” and “limma” scripts, we performed 

an analysis of the expression of CRG biomarkers in 

both the HC and RA groups. Subsequently, we utilized 

the “pROC” script to draw ROC curves and evaluate the 

AUC values for each CRG biomarker. In addition, we 

constructed a nomogram diagnostic model based on the 

expression profiles of the CRG biomarkers, using the 

“rms” script. For each sample, we calculated the 

nomogram score using the following formula: 

Nomogram score = GDF15 × −1.23 + IGHM × 0.57 + 

IGLC1 × 0.25. 

 

Molecular subtype and immune infiltration 

characteristic analysis 

 

In this study, we conducted a consensus clustering 

analysis of RA samples using the “Consensus-

ClusterPlus” script to identify different molecular 

subtypes. Based on the optimal classification of k = 2–

9, the RA samples were successfully classified into two 

distinct molecular subtypes. To further understand the 

immune infiltration characteristics of these subtypes, we 

employed the ssGSEA algorithm to calculate the 

quantitative data for immune infiltration based on the 

expression of 23 immune cell marker genes in the HC 

and RA groups, and used the ggplot2 script to visualize 

the results. Additionally, we used Pearson correlation 

analysis to investigate the potential relationship between 

CRG biomarkers and immune infiltration features, and 

only considered p-values less than 0.05 to be 

statistically significant. 

 

RT-qPCR and Western blot 

 

Total RNA of clinical tissues was extracted and been 

reversed transcription into cDNA using EasyScript® 

First-Strand cDNA Synthesis SuperMix (TransGen 

Biotech). Real-time qPCR in the BioRad CFX96  

Touch system was conducted with SYBR Green 

(Supplementary Table 1). All results are relative to 

Actin expression. Each assessment was conducted in 

three biological replicates. Clinical tissues are lysed and 

the concentration of protein was measured. Equal 

amount of protein was dissolved in the gel and 

immunoblot was performed with the indicated primary 

antibodies using 8% or 10% polyacrylamide. 

 

Statistical analysis 

 

In this study, the R and Perl languages environment 

were utilized for data extraction and preprocessing. The 

Pearson algorithm was employed to calculate the 

correlation between two groups, while the Wilcoxon 

rank-sum test was utilized to assess statistical 

differences between two groups, and ANOVA was 

utilized to evaluate statistical differences between 

multiple groups. A p-value of less than 0.05 was 

considered statistically significant. Data were expressed 

as mean ± standard deviation (SD), and statistical 

significance was indicated by *p < 0.05, **p < 0.01, and 
***p < 0.001. 

 

RESULTS 
 

Differential expression and GSEA enrichment 

analysis 

 

In this study, we performed a comprehensive evaluation 

by utilizing 25 HC and 111 RA samples that were 

obtained from four independent Gene Expression 

Omnibus (GEO) datasets, namely GSE1919, 

GSE48780, GSE55235, and GSE55457. A stringent 

filtering criterion was applied with a threshold set at 
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|FC|≥2 and adj.p value <0.05, followed by utilizing the 

“limma” script to identify the differentially expressed 

genes (DEGs) between the HC and RA groups. Our 

differential expression analysis revealed a total of  

92 DEGs, comprising 40 downregulated genes and  

52 upregulated genes (Figure 1A, 1B). Furthermore, our 

gene set enrichment analysis (GSEA) results 

demonstrated significant enrichment of adipocytokine 

signaling pathway, spliceosome, and tyrosine 

metabolism pathways in the HC group. Interestingly, in 

the RA group, a significant enrichment of immune-

related signaling pathways, such as cell adhesion 

molecules (CAMs), chemokine signaling pathway, 

lysosome, and primary immunodeficiency, was 

observed (Figure 1C, 1D). 

 

Identification of key immune-related gene modules 

for RA via WGCNA 

 

WGCNA was utilized in this study to further explore 

the gene modules that were primarily associated with 

the immune system in RA. To eliminate outliers, 

clustering analysis was performed on all samples using 

the expression matrix data (Figure 2A). A scale-free 

network was constructed by setting a soft threshold (β) 

of 4 (Figure 2B). The dynamic tree cutting method

 

 
 

Figure 1. Analysis of differential gene expression and GSEA. (A) Volcano plot shows the differential gene expression between the 

HC and RA groups. The screening threshold is set at |FC|≥2 and adj.p value < 0.05, where red dots represent upregulated genes, and blue 
dots represent downregulated genes. (B) Heatmap of the differential gene expression in the HC and RA groups. (C, D) Enrichment analysis 
of GSEA pathway based on differential gene expression in HC and RA groups. 



www.aging-us.com 1403 AGING 

was used to categorize gene modules and integrate 

similar ones, resulting in a total of 14 gene modules 

being identified for further analysis (Figure 2C). The 

heatmap of gene modules indicated a potential 

correlation between each module (Figure 2D). To 

determine the correlation between gene modules and

 

 
 

Figure 2. Development of WGCNA to identify the gene modules most correlated with immune cells in RA. (A) Cluster analysis 

of samples. (B) Construction of a scale free network with a soft threshold (β) set to 4. (C) Identification of gene modules based on dynamic 
tree cutting. (D) Correlation analysis of gene expression between different gene modules. (E) Correlation analysis of gene modules and 23 
types of immune cells. Blue represents negative correlation and red represents positive correlation. (F) Association between module 
members and gene significance. 
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23 types of immune cells, Pearson correlation algorithm 

was used. The outcomes showed that different gene 

modules were significantly correlated with 23 types of 

immune cells, with the blue module demonstrating the 

most significant correlation with CD8+ T cells (r = 0.94, 

p = 2e-62) (Figure 2E). A scatter plot revealed a strong 

and significant correlation (r = 0.97, p < 1e-200) 

between CD8+ T cell-related genes and the blue module 

(Figure 2F). Therefore, the genes in the blue module 

were recognized as CD8+ T cell-related genes (CRGs) 

and were included in subsequent analyses. 

 

Identification and functional enrichment analysis of 

differential CRGs 

 

The study integrated the results of WGCNA and 

differential expression analysis to identify 47 DE-CRGs 

(Figure 3A). Protein-protein interaction (PPI) analysis 

revealed significant correlations among these DE-CRGs 

(Figure 3B). To gain further insights into the potential 

molecular mechanisms of DE-CRGs in RA, we 

conducted GO and KEGG enrichment analyses. The 

GO analysis results suggested that the DE-CRGs were 

significantly enriched in immunological functions,  

such as positive regulation of cell activation, positive 

regulation of leukocyte activation, external side of 

plasma membrane, and cytokine activity (Figure 3C). 

The KEGG analysis results indicated that the  

CRGs were significantly enriched in immunological 

signaling pathways, such as cytokine-cytokine receptor 

interaction, viral protein interaction with cytokine and 

cytokine receptor, and chemokine signaling pathway 

(Figure 3D). 

 

Exploration of CRGs-related biomarkers for RA 
 

In order to further investigate the potential biomarkers 

associated with CRGs in RA, we employed two 

machine learning algorithms. Specifically, we utilized 

the RF algorithm to identify a set of 14 crucial CRG

 

 
 

Figure 3. Identification of DE-CRGs and potential molecular mechanism investigation. (A) Identification of DE-CRGs based on 
WGCNA and differential expression analysis. (B) PPI network reveals the potential interaction between the DE-CRGs. (C, D) GO and KEGG 
enrichment analysis of 47 DE-CRGs.  



www.aging-us.com 1405 AGING 

variables (Figure 4A). Furthermore, the LASSO 

analysis to identify 34 significant feature variables was 

conducted based on the optimal coefficients and 

minimum lambda values of the model (Figure 4B). By 

combining the results of the RF and LASSO analyses, 

we successfully shortlisted three biomarkers linked to 

CRGs, namely GDF15, IGLC1 and IGHM (Figure 4C). 

Our correlation analysis subsequently showed a 

significant negative correlation between GDF15 and 

IGLC1 and IGHM, while IGLC1 was positively 

correlated with IGHM, as demonstrated in Figure 4D. 

 

Diagnostic effectiveness assessment of CRGs-related 

biomarkers 

 

Further investigations were conducted to explore the 

diagnostic potential of three biomarkers associated with 

CRGs for RA. The findings of our expression level 

analysis demonstrated that the RA group exhibited 

significantly higher expressions of IGLC1 and IGHM, 

whereas the expression of GDF15 was lower compared 

to the HC group (Figure 5A–5C). In addition, the 

expression profiles of these three biomarkers were 

utilized to develop a nomogram, which could 

effectively evaluate the diagnostic accuracy of RA 

(Figure 5D). The ROC curve analysis indicated that the 

AUC of IGLC1, IGHM, and GDF15 was 0.841, 0.799, 

and 0.786, respectively. It is noteworthy that the AUC 

of the nomogram was 0.906, which was significantly 

higher than that of the individual CRGs- related 

biomarkers (Figure 5E). 

 

Immune infiltration characteristic analysis 

 

We conducted further investigations to explore the 

potential relationship between the biomarkers 

 

 
 

Figure 4. Screening the CRGs-related biomarkers based on the machine learning algorithm. (A) RF algorithm shows the 

importance of CRGs, which the cutoff of importance is set at 1. (B) The coefficients and log lambda value distribution of CRGs based on 
LASSO model. (C) Identification of CRGs- related biomarkers based on the LASSO and RF algorithms. (D) Correlation analysis between 
GDF15, IGHM and IGLC1.  
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associated with CRGs and immune infiltration 

characteristics. We observed a higher immune 

infiltration status in the RA group compared to the  

HC group, with increased levels of activated B cells,  

CD4+ T cells, CD8+ T cells, MDSCs, and natural killer 

T cells (Figure 6A). Our correlation analysis of the 

CRGs-related biomarkers and immune infiltration 

characteristics revealed that GDF15 was positively 

correlated with mast cells and type 2 T helper cells, but 

negatively correlated with most other immune cells. On 

the other hand, IGHM and IGLC1 were negatively 

correlated with CD56dim natural killer cells, while 

positively associated with other immune cells (Figure 

6B–6D). These findings illustrate the potential 

association between CRG-related biomarkers and 

immune infiltration features of RA, providing a novel 

perspective for exploring the underlying mechanisms 

of RA. 

 

Molecular subtype characterization based on CRGs-

related biomarkers 

 

Using the expression profiles of IGLC1, IGHM, and 

GDF15, we thoroughly classified RA samples into 

distinct molecular subtypes and analyzed the immune 

infiltration characteristics between the subtypes. The 

optimal clustering k = 2, based on consensus clustering 

analysis, was applied to categorize the RA samples into 

two distinct molecular subtypes, with subtype A 

comprising of 74 samples and subtype B comprising of 

37 samples (Figure 7A). The unsupervised PCA results 

demonstrated that the molecular subtypes exhibited 

 

 
 

Figure 5. Expression level and nomogram construction of CRGs for RA. (A–C) The expression analysis of IGLC1, IGHM and GDF15 in 

HC and RA groups. (D) Nomogram development of IGLC1, IGHM and GDF15. (E) Diagnostic effectiveness exploration of IGLC1, IGHM, GDF15 
and nomogram score.  
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independent distribution patterns, which signified 

significant differences between the two analyzed 

subtypes of RA (Figure 7B). Remarkably, the expression 

profiles of IGLC1, IGHM, and GDF15 indicated that the 

expression of IGLC1 and IGHM was substantially 

reduced in subtype B compared to subtype A, while there 

was no significant difference in the expression of GDF15 

between the two groups (Figure 7C). The quantitative 

results of immune infiltration characteristics revealed that 

RA samples in subtype A exhibited a higher immune 

state, with significantly increased content of immune 

cells such as activated B cell, CD4+ T cell, CD8+ T cell, 

and activated dendritic cell compared to subtype B 

(Figure 7D). These findings suggest that RA can be 

precisely stratified into distinct molecular subtypes based 

on CRGs-related biomarkers, which are likely to be 

associated with immune infiltration. 

 

IGLC1, IGHM, and GDF15 expression level in RA 

samples 

 

15 HC samples and 15 RA samples were collected to 

confirm the expressions of selected biomarkers in RA 

patients. The mRNA level of GDF15 was lower in RA 

samples (Figure 8A), while the mRNA level of IGHM 

(Figure 8B) and IGLC1 (Figure 8C) were higher in RA 

samples compared with HC samples. The same results 

were also observed in protein level (Figure 8D).  

DISCUSSION 
 

As an autoimmune disease, the dysfunction of immune 

cells plays an important role in the occurrence of RA. 

Despite significant advances in current therapies, there 

are still a lot of patients who do not respond to current 

therapies. Therefore, elucidating the pathogenesis of RA 

is important. Here, we attempt to investigate the 

biomarkers and draw the infiltration patterns of RA, 

which can not only provide reference for clinical 

diagnosis, but also provide new therapeutic targets for 

drug development. 

 

In our study, we identified a total of 92 DEGs, 

including 40 risen and 52 declined DEGs. Then 

GSEA analysis revealed significant enrichment of 

adipocytokine signaling pathway, spliceosome, and 

tyrosine metabolism pathways in the HC group. But 

in the RA group, a significant enrichment of immune-

related signaling pathways, such as cell adhesion 

molecules (CAMs), chemokine signaling pathway, 

lysosome, and primary immunodeficiency was 

observed. This suggested that the immune system 

was activated in RA, accompanied by a large number 

of immune cell infiltration. This is consistent with the 

conclusion that RA, an autoimmune disease, is 

closely related to imbalance of the immune system 

[22, 23].  

 

 
 

Figure 6. Association exploration of CRGs-related biomarkers and immune infiltration characteristic. (A) Relative quantities of 

23 immune cells in the HC and RA groups. (B–D) Correlation analysis of IGLC1, IGHM, GDF15, and 23 immune infiltration features. 
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Furthermore, we investigated the gene modules that 

were primarily associated with the immune system in 

RA. We identified a total of 14 gene modules, and 

determined the correlation between the gene modules 

and 22 kinds of immune cells. The results showed that 

the blue module had the most significant correlation 

 

 
 

Figure 7. Molecular subtype analysis based on CRGs. (A) Optimal classification analysis based on consensus clustering of CRGs. 

(B) PCA analysis of different molecular subtypes of RA. (C) Expression analysis of IGLC1, IGHM, and GDF15 in different molecular subtypes. 
(D) Analysis of immune infiltration characteristics in molecular subtypes of RA samples. 
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with CD8+ T cells. As previously reported, the absolute 

number of CD8+ T cells in the peripheral blood of 

patients with early RA was higher than that of healthy 

controls [24], which indicated the important role of 

CD8+ T cells in RA. Next, we picked 47 DE-CRGs for 

PPI, KEGG and GO analysis and the results show 

robust immune activation in RA. 

 

Moreover, two machine learning algorithms were 

employed to analyzed the biomarkers. The RF 

algorithm to identify a set of 14 crucial CRG variables 

and the LASSO analysis to identify 34 significant 

feature variables. By combining the results of the RF 

and LASSO analyses, GDF15, IGLC1, and IGHM were 

picked out. At the meantime, high levels of GDF15, 

IGLC1, and IGHM were observed in RA. These results 

suggest that the three genes may contribute to the 

development of RA. Previous research has shown that 

GDF15 serum levels might be a biomarker to predict 

high RA disease activity [25], which could partly prove 

the accuracy of our analytical model. However, their 

molecular function in RA needs to be further verified. 

 

CD8+ T cells is up-regulated proportionally in RA and 

have the characteristics of secreting inflammatory 

mediators [26]. Some reports suggest that CD8+ T cells 

promote the progression of RA by releasing pro-

inflammatory and cytolytic mediators [26, 27]. 

However, due to the complexity of RA disease, there 

are still conflicting results in experimental studies of 

CD8+ T cells in RA. Coupled with the scarcity of data, 

the function of CD8+ T cells in the RA immune-

infiltrating microenvironment remains to be further 

explored [18]. In addition to Th1, Th17 and 

macrophage, previous studies have shown that IL-10 

secreted by Th2 promotes antibody production in RA 

[28] and NK cells might play an important role in bone 

destruction in RA [29]. To explore the potential 

relationship between CRGs-related biomarkers and 

immune infiltration characteristics, correlation analysis 

was performed between CRGs-related biomarkers and 

immune infiltration cells. The results showed that 

GDF15 was positively correlated with mast cells and T 

helper cells type 2, but negatively correlated with most 

other immune cells. On the other hand, IGHM and 

IGLC1 were negatively correlated with CD56dim 

natural killer cells, but positively correlated with other 

immune cells. These results suggest that these three 

CRGs-related biomarkers may be particularly important 

for immune system imbalances. 

 

Finally, optimal classification analysis was conducted to 

classified RA samples into distinct molecular subtypes. 

Compared with subtype A, the expression of IGLC1 

and IGHM in subtype B was significantly decreased, 

while there was no significant difference in GDF15. 

Immune infiltration characteristics analysis showed that 

the immune status of RA samples of subtype A was 

higher, and the contents of activated B cells, CD4+ T 

cells, CD8+ T cells, activated dendritic cells and other 

immune cells were significantly increased compared 

with those of subtype B. These findings clue that RA 

can be accurately stratified into different molecular 

subtypes based on CRGs-related biomarkers, which 

indicate the reliability of the three genes as RA 

biomarkers and provide guidance for personalized 

therapy. 
 

Although we screened out three targets through 

machine learning methods and verified their abnormal 

expression levels through clinical specimens. However, 

due to limited conditions, we were not able to conduct 

further studies on the biological functions of the 

selected targets. Additionally, the correlation analysis 

results obtained by machine learning need to be further 

studied on causality. Further analyze of these three 

targets in future studies will be of great significance 

on RA. 

 

 
 

Figure 8. Expression level of IGLC1, IGHM, and GDF15. (A–C) RT-qPCR was used to test the mRNA level of GDF15 (A), IGHM (B) and 

IGLC1 (C) in HC and RA samples. (D) The protein level of IGLC1, IGHM, and GDF15 in HC and RA samples. 
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CONCLUSION 
 

In brief, this study reported that abnormal activation and 

imbalance of immune cells in RA, and identified 

GDF15, IGLC1, and IGHM as diagnostic markers of 

RA. In addition, GDF15 was positively correlated with 

mast cells and type 2 T helper cells, but negatively 

correlated with most other immune cells. On the other 

hand, IGHM and IGLC1 were negatively correlated 

with CD56dim natural killer cells, while positively 

associated with other immune cells. Finally, RA 

samples in subtype A exhibited a higher immune state, 

with significantly increased content of immune cells. 

This study can provide guidance for the discovery  

of drug targets and personalized therapy for RA 

patients. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. The primer sequence for genes. 

GDF15 
Forward primer GCAAGAACTCAGGACGGTGA 

Reverse primer TGGAGTCTTCGGAGTGCAAC 

IGHM 
Forward primer AGATGGTCTGCTTCAGTGGC 

Reverse primer AGCTGTGAAAACCCACACCA 

IGLC1 
Forward primer CCCACTGTCACTCTGTTCCC 

Reverse primer CCGCGTACTTGTTGTTGCTC 

 


