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ABSTRACT

The MAPK signaling pathway significantly impacts cancer progression and resistance; however, its functions remain
incompletely assessed across various cancers, particularly in kidney renal clear cell carcinoma (KIRC). Therefore,
there is an urgent need for comprehensive pan-cancer investigations of MAPK signaling, particularly within the
context of KIRC. In this research, we obtained TCGA pan-cancer multi-omics data and conducted a comprehensive
analysis of the genomic and transcriptomic characteristics of the MAPK signaling pathway. For in-depth
investigation in KIRC, status of MAPK pathway was quantitatively estimated by ssGSEA and Ward algorithm was
utilized for cluster analysis. Molecular characteristics and clinical prognoses of KIRC patients with distinct MAPK
activities were comprehensively explored using a series of bioinformatics algorithms. Subsequently, a combination
of LASSO and COX regression analyses were utilized sequentially to construct a MAPK-related signature to help
identify the risk level of each sample. Patients in the C1 subtype exhibited relatively higher levels of MAPK signaling
activity, which were associated with abundant immune cell infiltration and favorable clinical outcomes. Single-cell
RNA sequencing (scRNA-seq) analysis of KIRC samples identified seven distinct cell types, and endothelial cells in
tumor tissues had obviously higher MAPK scores than normal tissues. The immunohistochemistry results indicated
the reduced expression levels of PAPSS1, MAP3K11, and SPRED1 in KIRC samples. In conclusion, our study
represents the first integration of bulk RNA sequencing and single-cell RNA sequencing to elucidate the molecular
characteristics of MAPK signaling in KIRC, providing a solid foundation for precision oncology.

INTRODUCTION renal cell carcinoma [2]. Unfortunately, KIRC is
intrinsically resistant to radiation and chemotherapy
and only a limited number of treatments such as

targeted therapy can be taken [3]. It is not only urgent

Originating from renal tubular epithelial cells, renal
cell carcinoma is a malignant tumor accounts for

nearly 80% of renal malignancies [1]. Kidney renal
clear cell carcinoma (KIRC), with rising incidence
and dismal prognosis, is the most common type of

but also necessary to explore sensitive biomarkers and
treatment options for KIRC patients to improve the
prognosis.
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The mitogen-activated protein kinase (MAPK)
signaling pathway is significant in inter- and intra-
cellular communication, which affects the cellular
processes such as cell proliferation and differentiation
[4]. Through three capital kinases: mitogen-activated
protein kinase (MAPK), mitogen-activated protein
kinase kinase, and mitogen-activated protein kinase
kinase kinase, MAPK pathway transforms external
stimuli into cellular responses [5]. Current studies
concentrating on the influence of the MAPK pathway
on the development and metastasis of cancer indicate
that the signaling pathway actually acts as a regulator
in many cancers such as colorectal cancer and non-
small cell lung cancer [5-8]. In addition, MAPK
signaling was identified as a potential mechanism to
regulate and tumor resistance and drug sensitivity [9].

However, few in-depth researches are reported to
reveal the influence of MAPK pathway in KIRC
and other cancers. In this research, the roles of
MAPK pathway in pan-cancer are summarized and
the relation between MAPK pathway and KIRC
is purposefully explored. First, 3 different KIRC
subtypes with different MAPK signaling activity
were identified. Subsequently, the influences of
MAPK signaling on the metabolism-related pathways,
immune-related pathways, immune response, and ICG
expression were investigated. Then 11 hub genes
(i.e., SPRED3, ACTB, ARAF, MAP3K11, PAPSS1,
TLN1, CALM1, AGK, MAP2K2, MAPK1, SPRED1),
selected from all the MAPK-related genes, were
utilized to construct a prognostic signature. The
signature helped to distinguish KIRC samples with
different risk levels. Endothelial cells in tumor tissues
had obviously higher MAPK scores than normal
tissues. The immunohistochemistry indicated that
the PAPSS1, MAP3K11, and SPRED1 showed lower
IHC score in KIRC compared with para-cancer
samples. All the discrepancies between high- and low-
risk subgroups were explored and all these could be
potential therapy targets in KIRC.

MATERIALS AND METHODS
Data acquisition

In the current study, the pan-cancer mMRNA
expression, single nucleotide variation (SNV), copy
number variation (CNV), DNA methylation data
were obtained from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/). In
addition, the clinical parameters of KIRC were
downloaded simultaneously. The KIRC transcriptome
profiles were also searched in the ArrayExpress
database (https://www.ebi.ac.uk/arrayexpress/). The
Molecular Signatures Database (MSigDB) were searched

to obtain the MAPK pathway and other signaling
pathways (https://www.gsea-msigdb.org/gsea/msigdb/
human/geneset/REACTOME_ONCOGENIC_MAPK_S
IGNALING.html?keywords=REACTOME_ONCOGE
NIC_MAPK_ SIGNALING). Immune checkpoint genes
(1CGs) were summarized according to the review [10].

Comprehensive assessment of MAPK pathway in
pan-cancer

Recent studies indicated that MAPK pathway affect
the biological behavior and prognosis of malignancies
and targeting MAPK pathway may be a novel
perspective for cancer therapy [9, 11-14]. Nonetheless,
the prognostic value, expression level, CNV, SNV
and methylation of key genes in MAPK pathway
in pan-cancer are reported dispersedly and sparsely.
Subsequently, comprehensive assessments of genes
regulating MAPK pathway were conducted in pan-
cancer. First, the expression of MAPK genes in each
cancer were compared with those in corresponding
normal tissues and each fold change was calculated
respectively [15]. Then the CNV gain, CNV loss, and
SNV were summarized and presented utilizing heatmap.
In addition, the estimations of DNA methylation
of MAPK genes in pan-cancer were conducted by
comparing with corresponding normal samples [16].

MAPK-based cluster analysis in KIRC

Due to the potential role of MAPK signaling pathway
in KIRC, the activation of the pathway was assessed
for the first step. With the expression levels of
the MAPK genes in KIRC, the status of MAPK
pathway was quantitatively estimated by ssGSEA.
After acquiring the MAPK score, KIRC samples
were grouped into clusterl with MAPK-active status,
cluster2 with MAPK-normal status, and cluster3 with
MAPK-inactive status through cluster analysis by
Ward algorithm. Then the violin plots of MAPK
scores were constructed and the survival curves were
plotted to explore the survival discrepancies among
these three clusters. Following a methodology similar
to previous studies [17, 18], we curated a selection
of classical immune pathways, metabolic pathways,
and cell death pathways. Initially, we computed
pathway scores using the “gsva” package, providing
a measure of each pathway’s activity. Subsequently,
we consolidated these scores and visually represented
them in a heatmap format. Statistical analyses were
carried out using the “kruskal.test” function in R.

For investigation of the tumor microenvironment
(TME) in the three clusters, the “ESTIMATE” package
in R and various immune-related algorithms including
TIMER, QUANTISEQ, MCPCOUNTER, XCELL,
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EPIC, and CIBERSORT were utilized for further
analyses [19]. Additionally, the expression levels of
common immune checkpoint genes were compared
in the three clusters utilizing Kruskal-Wallis test. By
applying the ssGSEA, the immune response was
estimated. Next, we delved into the correlations between
MAPK signaling and the infiltration of immune cells,
and the findings were visually presented in a heatmap.

For further exploration about the discrepancies of the
drug sensitivity in the three clusters, the Genomics
of Drug Sensitivity in Cancer database (GDSC;
https://www.cancerRxgene.org) was utilized to predict
therapy response. The GDSC database linked drug
sensitivity to genomic data then the 1C50 of the samples
were obtained. Of note, a lower IC50 suggests that the
cancer cells are more sensitive to the compound.

Construction and validation of a MAPK-related
signature

In view of the significant role of MAPK pathway in
KIRC, then all the MAPK genes were utilized to
construct a signature to help distinguish KIRC samples.
To ensure adequate validation, all samples in TCGA
were randomly divided into a training set and a test set
1 at a nearly 1:1 ratio. In addition, all samples from
TCGA and ArrayExpress were defined as test2 cohort
and test3 cohort, respectively.

In train cohort, LASSO and Cox regression analysis
were utilized to identify the hub genes and construct a
MAPK-related signature (MAPKS) to help distinguish
KIRC samples. After identifying the MAPKS, the
“predict” function in R was utilized to calculate the
risk score. Then all the samples were grouped into
high- and low-risk subgroups based on the median
risk score in train cohort. In the four cohorts, the
following discrepancies between high- and low-
risk subgroups were investigated for comprehensive
validation: (1) the survival analysis was performed to
identify the survival discrepancy; (2) the receiver-
operating characteristic (ROC) curves were utilized
to determine the diagnostic value of MAPKS; (3)
“ESTIMATE” package in R was utilized to assess
the tumor microenvironment [20]; (4) TIMER,
QUANTISEQ, and many other algorithms introduced
above were utilized to assess the immune response in
the TME [21]; (5) the expression levels of ICGs in
high- and low-risk subgroups were compared.

The estimation of MAPK pathway and gene expression
of MAPKS genes on the basis of scRNA-seq data

KIRC scRNA-seq data, GSE159115, was obtained
from the GEO database. The scRNA-seq data of KIRC

were analyzed based on the standard protocols of
Seurat [22]. Those cells with less than 200 or
more than 7000 count features were removed. In
addition, cells with mitochondrial RNA percentage >
10 were also excluded. Then the data were normalized,
scaled and processed for PCA analysis. The Harmony
package was utilized to remove the batch effect. The
“FindClusters” function was used to cluster cells at
an appropriate resolution. The t-SNE was utilized
to visualize the data. Based on the typical cell-type
markers, all the subpopulations were annotated. The
activity of MAPK pathway was estimated utilizing
five well-known algorithms (i.e. AUCell, UCell,
singscore, Add, and GSVA). Of note, the scores from
the five algorithms mentioned above were summed to
obtain a total score, which we referred to as “Scoring”.
We employed the “wilcox.test” to compare pathway
activities between KIRC and normal samples at the
single-cell resolution.

Identification of hub genes in the occurrence of
KIRC

On the basis of the genes in the MAPKS, in-depth
exploration was conducted to identify hub genes in
KIRC. First, the GEPIA online server was utilized to
compare the mRNA expression of all the module genes
in our signature. Then the relationship between the
expression of each gene and tumor stage in KIRC was
explored. In addition, the Biomarker Exploration for
Solid Tumors (BEST) web server was used for further
investigation of the relationship between the expression
of each gene and tumor grade.

External validation of hub genes in MAPKS based
on the tissue microarray and immunohistochemistry
(IHC)

Human KIRC tissue chips were purchased
from Zhuoli Biotechnology Co., Shanghai, China.
First, EDTA was used to extract antigens after tissue
dewaxing. After placing with the primary antibodies,
the tissue sections were incubated with the secondary
antibodies. Then the diaminoaniline staining was made
and hematoxylin was utilized to re-stain. Finally, the
IHC morphology of 80 KIRC samples and 80 normal
samples were completed. The IHC scores were analyzed
by two independent pathologists based on the staining
intensity and the percentage of positive-stained cells
intensity.

Availability of data and materials
The datasets analyzed in this work may be found

in the Supplementary Materials or contact with the
corresponding author.
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RESULTS

Changes of mRNA expression, CNV, SNV, and
methylation of MAPK-related genes in pan-cancer

First, the expression levels of MAPK-related genes
were summarized in pan-cancer. It was shown in Figure
1A that obvious up-regulation of ESRP1 existed in
CESC, perceptible up-regulation of DUSP9 existed in
LUSC, while significant down-regulation of DUSP9
existed in KIRC and KIRP. As a major influence in the
gene expression levels, the CNV gain and CNV loss
needed to be paid more attention to. As shown in Figure
1B, the pinker the color, the higher the CNV gain
frequency. In KICH, the number of MAPK genes with
high CNV gain frequency is maximum. And in KIRC,
CAMK2A and FAM114A2 had obviously high CNV
gain frequency. As for the CNV loss frequency in
the Figure 1C, the number of MAPK genes with high
CNV loss frequency is also maximum in KICH. And
in KIRC, ATG7, RAF1, and TRAK1 had high CNV
loss frequency. In addition, increasing SNV frequency
of KRAS existed in COAD, LUAD, PAAD, READ,
and UCEC (Figure 1D). As for the DNA methylation,
the cancers and the corresponding genes with hyper-
methylation were as follows: BRCA: VWF and ITGB3;
COAD: QKI, DUSP9, and CNKSR2; KIRC: CNKSR1,
PRAD: VWF, LMNA, and ITGB3; UCEC: ITGB3 and
APBBAIP (Figure 1E).

MAPK-based cluster analysis in KIRC

For further demonstration of the role of MAPK pathway
in KIRC, all KIRC samples were classified into three
clusters (Figure 2A). Subsequently, the MAPK scores in
these three clusters were compared and the violin plots in
Figure 2B indicated that the clusterl was MAPK-active
cluster, cluster2 was the MAPK-normal cluster while
C3 was the MAPK-inactive cluster (Enrichment score:
C1>C2>C3, p<0.01). The survival analysis indicated that
the prognosis of cluster 1 was better than that of cluster
2 and the prognosis of cluster 3 was worse than that of
cluster 2. All the discrepancies of the survival rate in the
three clusters were statistical (Figure 2C).

MAPK-based discrepancies in signaling activity and
cell death status

With different activity of MAPK signaling, these three
clusters had different metabolism signaling, immune
signaling. All the statistical discrepancies were exhibited
in the form of heatmap. As is shown in Figure 2D, most
metabolism signaling had decreasing activity in C2,
but AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_
METABOLISM, CYSTEINE_AND_METHIONINE_
METABOLISM, and SULFUR_METABOLISM had

decreasing activity in C1 and INOSITOL_PHOSPHATE _
METABOLISM had decreasing activity in C3. The
discrepancies of immune signaling shown in Figure 2E
indicated that most immune pathways had decreasing
activity in C3 except BASE_EXCISION_REPAIR and
PROTEASOME. As for the cell death status shown in
Figure 2F, it was indicated that all the types of cell death
(i.e., curroptosis, immunogenic cell death, necroptosis,
apoptosis, autophagy, ferropotosis, phagocytosis, necrosis,
pyroptosis, PANoptosis, disulfidptosis) had decreasing
activation in C3.

MAPK-based
microenvironment

discrepancies in immune

As is known, immune cells are primary components
in TME. With various algorithms including TIMER,
QUANTISEQ, MCPCOUNTER, XCELL, EPIC, and
CIBERSORT, it was found that the infiltration of
immune cells differed in the three clusters and most
immune cells including B cell, CD4+ T cell, macro-
phage, neutrophil, and mast cell had lower proportions
in C3 (Figure 3A). Further exploration about the
correlations between MAPK genes and immune cell
infiltration were shown in a heatmap in Figure 3B. The
redder the color, the closer the positive correlation. The
bluer the color, the closer the negative correlation. As
for the correlation between MAPK score and the
infiltration of immune cells, it was found that the
infiltration of most immune cells except Tfh had
positive correlation with MAPK score (Figure 3C). Of
note, the responses of mast cell, Treg, neutrophil, and
type-11-IFN-Response are positively related to the MAPK
score (R>0.3, p<0.05) (Figure 3D). Additionally, the
immune checkpoint genes had different expression
levels in the three clusters. The following genes had
lowest expression level in C3: TNFSF15, JAK2,
PDCD1LG2, LDHA, CD244, CD28, YTHDF1, NRP1,
SIGLEC15, ICOS, CD86, CD44, TNFSF4, CD274,
CD200R1, HAVCR2, CD276, PVR, LAIR1, CD8O0,
B2M, BTLA, and PTPRC (p<0.05) (Figure 3E).

MAPK-based drug sensitivity analysis in KIRC

Currently, the treatment of advanced KIRC mostly
depends on molecular targeted drugs. Till now, many
types of targeted drugs including sorafenib and sunitinib
have been listed in NCCN for a first- or second-line
treatment of metastatic kidney cancer [23]. In view of
the significant role of the targeted therapy in KIRC,
common targeted drugs were taken into consideration
for the exploration of the sensitive drugs. The lower
the 1C50, the more sensitive the compound. For
Irinotecan and Topotecan, samples in clusterl had lowest
IC50. For Cisplatin, Cyclophosphamide, Cytarabine,
Docetaxel, Gefitinib, Lapatinib, Nilotinib, Sorafenib,
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Temozolomide, and Vinblastine, samples in cluster3 univariate Cox regression analysis and multivariate
had lowest IC50 (Figure 4). Cox regression analysis, 11 hub genes (i.e., SPRED3,

ACTB, ARAF, MAP3K11, PAPSS1, TLN1, CALM1,
Construction and validation of a MAPK-related AGK, MAP2K2, MAPK1, SPRED1) were selected to
signature construct a MAPKS. On the basis of the expression

levels of these 11 genes, the risk score of each sample
Samples in the train cohort were utilized to construct was calculated utilizing the “predict” function in R.
MAPKS. After conducting LASSO regression analysis, Based on the median risk score, samples were divided
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Figure 2. MAPK-based cluster analysis in KIRC. (A) Three clusters were obtained and displayed by the heatmap. (B) The violin plot
showing the enrichment scores of these three clusters. (C) The distinct of survival probability in these three clusters. (D) The discrepancies of
metabolism pathway activity in the three clusters. (E) The discrepancies of immune pathway activity in the three clusters. (F) The
discrepancies of cell death status in the three clusters.
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Figure 3. The discrepancies of TME in the three clusters. (A) A heatmap showing the infiltration of various immune cells. (B) The
correlations between the expression of MAPK genes and the infiltration of various immune cells. (C) The correlations between MAPK score
and the infiltration of various immune cells. (D) The correlations between MAPK score and the response of mast cell, Treg, neutrophil, and
type-lI-IFN-Response. (E) The discrepancies of ICG expression in the three clusters.
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into high- and low-risk subgroups (Figure 5A). Then the
Figure 5B depicted the distributions of the risk score
and survival status. Likewise, the survival analysis
indicated that patients in high-risk subgroup had lower
survival probability (Figure 5C). The AUCs of the ROC
curves had values of 0.768, 0.772, and 0.804, respec-
tively, for 1-, 3-, and 5-year survival (Figure 5D). Based
on the “ESTIMATE?”, it was found that samples in high-
risk subgroup had higher immune score but lower tumor
purity (Figure 5E). As for immune response in the two
subgroups, Treg, Tth, and gamma delta T cell had higher
proportion, while Neutrophil and Endothelial cell had
lower proportion in high-risk subgroup in train cohort
(Figure 5F). The expression of ICGs in the high- and
low-risk subgroups also differed from each other. The
expression of most 1ICGs (i.e., CD40LG, TNFRSF25,
CD27, CD70, TNFRSF9, CD48, LAG3, PTPRC,
TNFRSF4, PDCD1, CD80, CD28, ICOS, IL23A, TIGIT,
SIGLEC15) up-regulated while NRP1 and JAK2 down-
regulated in the high-risk subgroup (Figure 5G).

For further signature validation, all the analyses
conducted above were performed in the testl, test2, and
test3 cohorts. In the three test cohorts, similar results
were obtained. First, risk scores were calculated and
then all the samples were grouped into high- and low-
risk subgroups in the three test cohorts respectively
(Figures 6A, 7A, 8A). The distributions of the risk
scores and survival status were showed in Figures 6B,
7B, 8B. The survival analysis revealed that samples
in the high-risk subgroup were more likely to die
(Figures 6C, 7C, 8C). The AUCs of the ROC curves
also demonstrated the diagnostic value of the MAPKS:
the AUCs had values of 0.672, 0.621, and 0.613 in testl
cohort, 0.719, 0.697, and 0.712 in test2 cohort, and
0.909, 0.811, and 0.846 in test3 cohort for 1-, 3-, and 5-
year respectively (Figures 6D,7D,8D). Samples in the
high-risk subgroup in the three cohorts also showed
higher immune score but lower tumor purity (Figures
6E, 7E, 8E). As for the immune response, Treg had
higher proportion while Endothelial cell had lower
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Figure 5. Identification of a MAPK-related signature in train cohort. (A) The distinguishment of high- and low-risk subgroups on the
basis of the median risk score. (B) The distributions of the risk score and survival status. (C) Survival analysis in train cohort. (D) ROC curves of
1-, 3-, and 5-year survival. (E) Assessment of TME by “ESTIMATE”. (F) The discrepancies of immune response in high- and low-risk subgroups.
(G) The discrepancies of ICD expression in high- and low-risk subgroups.
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Figure 6. Internal validation of a MAPK-related signature in testl cohort. (A) The distinguishment of high- and low-risk subgroups
based on the median risk score in train cohort. (B) The distributions of the risk score and survival status. (C) Survival analysis in testl cohort.
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Figure 7. Internal validation of a MAPK-related signature in test2 cohort. (A) The distinguishment of high- and low-risk subgroups
based on the median risk score in train cohort. (B) The distributions of the risk score and survival status. (C) Survival analysis in test2 cohort.
(D) ROC curves of 1-, 3-, and 5-year survival. (E) Assessment of TME by “ESTIMATE”. (F) The discrepancies of immune response in high- and
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Figure 8. External validation of a MAPK-related signature in test3 cohort. (A) The distinguishment of high- and low-risk subgroups
based on the median risk score in train cohort. (B) The distributions of the risk score and survival status. (C) Survival analysis in test3 cohort.
(D) ROC curves of 1-, 3-, and 5-year survival. (E) Assessment of TME by “ESTIMATE”. (F) The discrepancies of immune response in high- and
low-risk subgroups. (G) The discrepancies of ICD expression in high- and low-risk subgroups.
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proportion in high-risk subgroup in the three test
cohorts consistently (Figures 6F, 7F, 8F). The
expression levels of ICGs in high- and low-risk
subgroups were also compared and it was found
that CD27, CD70, TNFRSF9, LAG3, PDCD1, ICOS,
IL23A, and TIGIT up-regulated while NRP1 down-
regulated in the high-risk subgroup in all three test
cohorts (Figures 6G, 7G, 8G).

The estimation of MAPK pathway and the
expression of genes in the MAPKS in different
celltypes

The scRNA-seq data of 7 KIRC samples and 5 normal
samples were integrated. After the quality control
(Supplementary Figure 1), 56602 cells were grouped
into 43 clusters (Figure 9A and Supplementary Figure
2A, 2B). Then these clusters were defined as different
cell types based on the specific markers (Figure 9B-9D
and Supplementary Figure 2C). The pathway score of
MAPK signaling in different cell type was estimated. It
suggested that the MAPK pathway was active in each
celltype. Especially, it had superior score in endothelial
cells (Figure 10A). After comparing the MAPK activity
of each cell type between tumor samples and normal
samples, we found that the statistical discrepancies
existed in myeloid, epithelial, NK, B, and endothelial
cells (Figure 10B, 10C).

Identification and validation of hub genes in the
occurrence of KIRC

Among all the 11 genes in the MAPKS, 3 genes showed
statistically distinct mRNA expression between KIRC
and normal samples. Compared with normal samples,
the mRNA levels of MAP3K11 and SPREDL1 increased
while the mRNA level of PAPSS1 decreased in KIRC
(Supplementary Figure 3A). In addition, the expression
levels of the three genes were lower in advanced KIRC
(Supplementary Figure 3B, 3C). Then the tissue micro-
array and immunohistochemistry (IHC) was performed
to demonstrate the expression level of these three genes.
And the PAPSS1, MAP3K11, and SPRED1 showed
lower IHC scores in KIRC compared with para-cancer
samples (p<0.05) (Figure 11 and Supplementary Figures
4,5).

DISCUSSION

As the major subtype of RCC, KIRC is characterized
with high heterogeneity and poor prognosis [24-26].
Due to the profound influence of MAPK signaling
pathway on the metabolism and progression of cancer
[27-31], comprehensive alterations of MAPK-related
genes in pan-cancer need to be summarized. In view
of the interactions between pathways [32, 33], the

alteration of MAPK pathway activity may affect various
pathways in cancer. In the study, the pan-cancer
analyses about the influence of MAPK pathway
revealed that the expression of many MAPK-related
genes varied with the occurrence and development of
cancers.

Considering the significant role of MAPK pathway in
pan-cancer and the rare reports about the relationship
between MAPK pathway and KIRC, we focused on
the alterations of MAPK pathway and corresponding
influence in KIRC. Based on the expression of the
MAPK genes, KIRC samples were group into three
clusters with different MAPK signaling activity. In the
in-depth research, it was revealed that MAPK-active
samples had higher survival rate while MAPK-inactive
samples had worse survival. With different status of
MAPK signaling, metabolism pathways and immune
pathways showed different activities in these three
clusters. MAPK signaling also showed influence on
the status of various cell deaths including curroptosis,
immunogenic cell death, necroptosis, apoptosis, auto-
phagy, ferropotosis, phagocytosis, necrosis, pyroptosis,
PANoptosis, and disulfidptosis. TME and immune
response also differed in the three clusters. Most immune
cells except Tfh had positive correlation with MAPK
activity. Of note, the responses of mast cells, Treg,
type-1I-IFN, and neutrophil were positively related to
the MAPK activity.

As for drug therapy, samples with different MAPK
activity might have different drug sensitivity. MAPK-
active samples might be sensitive to Irinotecan and
Topotecan, while MAPK-inactive samples may be
sensitive to Cisplatin, Cyclophosphamide, Cytarabine,
Docetaxel, Gefitinib, Lapatinib, Nilotinib, Sorafenib,
Temozolomide, and Vinblastine.

In view of the influence of MAPK pathway
activity on KIRC in multiple respects especially
survival, the following analyses aimed to identify a
signature for distinguish KIRC samples with distinct
prognosis and microenvironment. Among all the genes
related to MAPK pathway, 11 genes (i.e., SPRED3,
ACTB, ARAF, MAP3K11, PAPSS1, TLN1, CALM1,
AGK, MAP2K2, MAPK1, SPRED1) were identified as
hub genes and used to construct a MAPKS. Compared
with normal samples, the mRNA levels of MAP3K11
and SPRED1 increased while the mRNA level of
PAPSS1 decreased in KIRC. The following IHC
indicated that the PAPSS1, MAP3K11, and SPRED1
showed lower IHC score in KIRC compared with para-
cancer samples. The post-transcriptional modifications
play an important role in the overall regulation of
gene expression, which might be the reason of the
inconsistent changes in protein and mRNA [34, 35].
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As for all the 11 genes in MAPSK, ACTB, AGK,
MAP2K2, and MAPKZ1 were reported to regulate RCC.
A single-cell analysis reveals ACTB is involved in the
regulation of RCC metastasis and progression [36].
Also, it is demonstrated as an optimal reference gene

in RCC by reverse transcription PCR (RT-PCR)
[37]. AGK is found to promote RCC progression via
activating the PI3K/AKT/GSK3p signalling pathway
[38]. MAP2K2, another regulator of RCC, can promote
its progression by affecting transcriptional activation of
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the MAP2K2-dependent ERK pathway [39]. MAPK1,
one of the members of MAPK family, promotes
RCC metastasis through HCP5/miR-214-3p/MAPK1
axis [40]. SPRED1, as a negative regulator of the
MAPK pathway [41], influences tumor growth and
metastasis in breast cancer. Also, the overexpression
of SPREDL can inhibit the proliferation, migration and
invasion of HCC [42]. SPREDS, is reported to have an

influence on EGFR mutated NSCLC [43], glioblastoma
[44], and cervical carcinoma [45]. ARAF, is reported to
be an oncogene in gallbladder cancer [46]. Its mutations
imply resistance to the RAF inhibitor belvarafenib in
melanoma [47]. In addition, mutant ARAF is found to
be an oncogenic driver in lung adenocarcinoma and can
be used as an indicator of sorafenib response [48].
MAP3K11 acts as a tumor suppressor [49] and a driver
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of cancer cachexia [50]. Also, it can regulate
the malignancy of oral squamous cell carcinoma
through facilitating autophagy [51]. Through regulating
MAP3K11, NSCLC can be suppressed [52]. PAPSS1 is
demonstrated as a suppressor gene in esophageal
squamous cancer [53]. Out of this, it is reported to
be associated with breast tumors previously [54].
TLN1, locating in focal adhesion, can regulate integrin
signaling and promote cancer metastasis [55-58]. It can
affect cell proliferation and differentiation in acute

Para-cancer Cancer Pasa-cancer Cancer Para-cancer Cancer Para

Cancer tissue

cancer

Cancer

myeloid leukemia [59], define the risk of aggressive
oral squamous cell carcinoma [60], and act as a
regulator to suppress ovarian serous carcinoma [61].
CALM1 can engage in the formation of calmodulin
and regulate proliferation, motility and differentiation
through participating in signaling pathways [62].
Studies revealed that the expression of CALM1 was
significantly linked to many types of cancer, such
as prostate cancer [63], bladder cancer [64], and
nasopharyngeal carcinoma [65].
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Figure 11. The tissue microarray and immunohistochemistry (IHC) of PAPSS1. (A) Immunohistochemical maps for all samples.

(B) Immunohistochemical maps of typical cancer samples. (C) Immunohistochemical maps of typical para-cancer samples.
(D) Immunohistochemical statistical analysis results.
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Based on the MAPKS, the risk scores of all KIRC
samples were calculated and two subgroups (i.e., high-
risk subgroup and low-risk subgroup) were obtained
in accordance with the risk score of the train cohort.
The MAPKS helped to differentiate high-risk samples
characterized by lower survival rates, higher immune
scores, and reduced tumor purities. Of note, the elevated
presence of Treg cells and the atypical expression
of immune checkpoint molecules could potentially
contribute to its adverse prognosis. As is reported, Treg
cells can suppress effective tumor immunity. It was
found that increasing infiltration of Treg cells was linked
to poor prognosis of patients with tumors [66, 67].
In addition, tumor cells could disguise themselves
as common components of the human body through
immune checkpoint pathways [68]. As a consequence,
the up-regulation of most ICGs in high-risk sub-
group might account for the poor prognosis. All the
discrepancies might be the potential therapy targets
in KIRC and all the results above were demonstrated
in the three test cohorts. In addition, the single-cell
RNA sequencing (ScCRNA-seq) analysis of KIRC samples
identified seven distinct cell types, which include
B cells, myeloid cells, endothelial cells, NK cells,
epithelial cells, T cells, and fibroblast cells. Endothelial
cells in tumor tissues had obviously higher MAPK
scores than normal tissues.

It is no doubt that a great signature MAPKS was
constructed successfully. But there are still some
limitations that need to be considered. First, the
MAPKS was constructed utilizing a small number
of KIRC samples from the TCGA and ArrayExpress
databases. Then the results were obtained by utilizing
bioinformatics researches. In the future, a large
number of clinical samples need to be involved and
fundamental experiments are necessary to utilize for
further demonstration.

CONCLUSIONS

With the development of tumors, MAPK
pathway altered significantly in pan-cancer. Especially
in KIRC, the status of MAPK pathway linked to
the survival rate and drug sensitivity. The MAPKS
was successfully constructed and demonstrated to help
distinguish KIRC samples into different subgroups
with distinct prognosis and tumor microenvironment.
All the findings will contribute to the individualized
treatment in KIRC.
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Supplementary Figure 1. Single-cell data processing. (A, B) Data quality control of sc-RNA data. (C) Highly variable genes of the data.
(D, E) Cell distribution before and after removing the batch effect by Harmony. (F) ElbowPlot for identifying suitable PC number.
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Supplementary Figure 3. Identification of hub genes in the occurrence of KIRC. (A) The mRNA expression of hub genes. (B) The
relationship between the expression of each hub gene and tumor stage in KIRC. (C) The relationship between the expression of each hub

gene and tumor grade in KIRC.
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Supplementary Figure 4. The tissue microarray and immunohistochemistry (IHC) of SPRED1. (A) Immunohistochemical maps for
all samples. (B) Immunohistochemical maps of typical cancer samples. (C) Immunohistochemical maps of typical para-cancer samples.
(D) Immunohistochemical statistical analysis results.
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Para-cancer tissue

Supplementary Figure 5. The tissue microarray and immunohistochemistry (IHC) of MAP3K11. (A) Immunohistochemical maps
for all samples. (B) Immunohistochemical maps of typical cancer samples. (C) Immunohistochemical maps of typical para-cancer samples.
(D) Immunohistochemical statistical analysis results.

WWWw.aging-us.com 1439 AGING



