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INTRODUCTION 
 

Originating from renal tubular epithelial cells, renal 
cell carcinoma is a malignant tumor accounts for 

nearly 80% of renal malignancies [1]. Kidney renal 

clear cell carcinoma (KIRC), with rising incidence 

and dismal prognosis, is the most common type of 

renal cell carcinoma [2]. Unfortunately, KIRC is 

intrinsically resistant to radiation and chemotherapy 

and only a limited number of treatments such as 
targeted therapy can be taken [3]. It is not only urgent 

but also necessary to explore sensitive biomarkers and 

treatment options for KIRC patients to improve the 

prognosis. 
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ABSTRACT 
 

The MAPK signaling pathway significantly impacts cancer progression and resistance; however, its functions remain 
incompletely assessed across various cancers, particularly in kidney renal clear cell carcinoma (KIRC). Therefore, 
there is an urgent need for comprehensive pan-cancer investigations of MAPK signaling, particularly within the 
context of KIRC. In this research, we obtained TCGA pan-cancer multi-omics data and conducted a comprehensive 
analysis of the genomic and transcriptomic characteristics of the MAPK signaling pathway. For in-depth 
investigation in KIRC, status of MAPK pathway was quantitatively estimated by ssGSEA and Ward algorithm was 
utilized for cluster analysis. Molecular characteristics and clinical prognoses of KIRC patients with distinct MAPK 
activities were comprehensively explored using a series of bioinformatics algorithms. Subsequently, a combination 
of LASSO and COX regression analyses were utilized sequentially to construct a MAPK-related signature to help 
identify the risk level of each sample. Patients in the C1 subtype exhibited relatively higher levels of MAPK signaling 
activity, which were associated with abundant immune cell infiltration and favorable clinical outcomes. Single-cell 
RNA sequencing (scRNA-seq) analysis of KIRC samples identified seven distinct cell types, and endothelial cells in 
tumor tissues had obviously higher MAPK scores than normal tissues. The immunohistochemistry results indicated 
the reduced expression levels of PAPSS1, MAP3K11, and SPRED1 in KIRC samples. In conclusion, our study 
represents the first integration of bulk RNA sequencing and single-cell RNA sequencing to elucidate the molecular 
characteristics of MAPK signaling in KIRC, providing a solid foundation for precision oncology. 
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The mitogen-activated protein kinase (MAPK) 

signaling pathway is significant in inter- and intra-

cellular communication, which affects the cellular 

processes such as cell proliferation and differentiation 

[4]. Through three capital kinases: mitogen-activated 

protein kinase (MAPK), mitogen-activated protein 

kinase kinase, and mitogen-activated protein kinase 

kinase kinase, MAPK pathway transforms external 

stimuli into cellular responses [5]. Current studies 

concentrating on the influence of the MAPK pathway 

on the development and metastasis of cancer indicate 

that the signaling pathway actually acts as a regulator 

in many cancers such as colorectal cancer and non-

small cell lung cancer [5–8]. In addition, MAPK 

signaling was identified as a potential mechanism to 

regulate and tumor resistance and drug sensitivity [9].  

 

However, few in-depth researches are reported to 

reveal the influence of MAPK pathway in KIRC  

and other cancers. In this research, the roles of  

MAPK pathway in pan-cancer are summarized and 

the relation between MAPK pathway and KIRC  

is purposefully explored. First, 3 different KIRC 

subtypes with different MAPK signaling activity  

were identified. Subsequently, the influences of  

MAPK signaling on the metabolism-related pathways, 

immune-related pathways, immune response, and ICG 

expression were investigated. Then 11 hub genes  

(i.e., SPRED3, ACTB, ARAF, MAP3K11, PAPSS1, 

TLN1, CALM1, AGK, MAP2K2, MAPK1, SPRED1), 

selected from all the MAPK-related genes, were 

utilized to construct a prognostic signature. The 

signature helped to distinguish KIRC samples with 

different risk levels. Endothelial cells in tumor tissues 

had obviously higher MAPK scores than normal 

tissues. The immunohistochemistry indicated that  

the PAPSS1, MAP3K11, and SPRED1 showed lower 

IHC score in KIRC compared with para-cancer 

samples. All the discrepancies between high- and low-

risk subgroups were explored and all these could be 

potential therapy targets in KIRC.  

 

MATERIALS AND METHODS 
 

Data acquisition 

 

In the current study, the pan-cancer mRNA  

expression, single nucleotide variation (SNV), copy 

number variation (CNV), DNA methylation data  

were obtained from The Cancer Genome Atlas 

(TCGA) database (https://portal.gdc.cancer.gov/). In 

addition, the clinical parameters of KIRC were 

downloaded simultaneously. The KIRC transcriptome 

profiles were also searched in the ArrayExpress 

database (https://www.ebi.ac.uk/arrayexpress/). The 

Molecular Signatures Database (MSigDB) were searched 

to obtain the MAPK pathway and other signaling 

pathways (https://www.gsea-msigdb.org/gsea/msigdb/ 

human/geneset/REACTOME_ONCOGENIC_MAPK_S

IGNALING.html?keywords=REACTOME_ONCOGE

NIC_MAPK_SIGNALING). Immune checkpoint genes 

(ICGs) were summarized according to the review [10].  

 

Comprehensive assessment of MAPK pathway in 

pan-cancer 

 

Recent studies indicated that MAPK pathway affect 

the biological behavior and prognosis of malignancies 

and targeting MAPK pathway may be a novel 

perspective for cancer therapy [9, 11–14]. Nonetheless, 

the prognostic value, expression level, CNV, SNV  

and methylation of key genes in MAPK pathway  

in pan-cancer are reported dispersedly and sparsely. 

Subsequently, comprehensive assessments of genes 

regulating MAPK pathway were conducted in pan-

cancer. First, the expression of MAPK genes in each 

cancer were compared with those in corresponding 

normal tissues and each fold change was calculated 

respectively [15]. Then the CNV gain, CNV loss, and 

SNV were summarized and presented utilizing heatmap. 

In addition, the estimations of DNA methylation  

of MAPK genes in pan-cancer were conducted by 

comparing with corresponding normal samples [16].  

 
MAPK-based cluster analysis in KIRC 

 

Due to the potential role of MAPK signaling pathway 

in KIRC, the activation of the pathway was assessed 

for the first step. With the expression levels of  

the MAPK genes in KIRC, the status of MAPK  

pathway was quantitatively estimated by ssGSEA. 

After acquiring the MAPK score, KIRC samples  

were grouped into cluster1 with MAPK-active status, 

cluster2 with MAPK-normal status, and cluster3 with 

MAPK-inactive status through cluster analysis by 

Ward algorithm. Then the violin plots of MAPK 

scores were constructed and the survival curves were 

plotted to explore the survival discrepancies among 

these three clusters. Following a methodology similar 

to previous studies [17, 18], we curated a selection  

of classical immune pathways, metabolic pathways, 

and cell death pathways. Initially, we computed 

pathway scores using the “gsva” package, providing  

a measure of each pathway’s activity. Subsequently, 

we consolidated these scores and visually represented 

them in a heatmap format. Statistical analyses were 

carried out using the “kruskal.test” function in R. 

 
For investigation of the tumor microenvironment 

(TME) in the three clusters, the “ESTIMATE” package 

in R and various immune-related algorithms including 

TIMER, QUANTISEQ, MCPCOUNTER, XCELL, 

https://portal.gdc.cancer.gov/
https://www.ebi.ac.uk/arrayexpress/
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https://www.gsea-msigdb.org/gsea/msigdb/%20human/geneset/REACTOME_ONCOGENIC_MAPK_SIGNALING.html?keywords=REACTOME_ONCOGENIC_MAPK_SIGNALING
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EPIC, and CIBERSORT were utilized for further 

analyses [19]. Additionally, the expression levels of 

common immune checkpoint genes were compared  

in the three clusters utilizing Kruskal-Wallis test. By 

applying the ssGSEA, the immune response was 

estimated. Next, we delved into the correlations between 

MAPK signaling and the infiltration of immune cells, 

and the findings were visually presented in a heatmap.  

 

For further exploration about the discrepancies of the 

drug sensitivity in the three clusters, the Genomics  

of Drug Sensitivity in Cancer database (GDSC; 

https://www.cancerRxgene.org) was utilized to predict 

therapy response. The GDSC database linked drug 

sensitivity to genomic data then the IC50 of the samples 

were obtained. Of note, a lower IC50 suggests that the 

cancer cells are more sensitive to the compound.  

 

Construction and validation of a MAPK-related 

signature  

 

In view of the significant role of MAPK pathway in 

KIRC, then all the MAPK genes were utilized to 

construct a signature to help distinguish KIRC samples. 

To ensure adequate validation, all samples in TCGA 

were randomly divided into a training set and a test set 

1 at a nearly 1:1 ratio. In addition, all samples from 

TCGA and ArrayExpress were defined as test2 cohort 

and test3 cohort, respectively.  

 

In train cohort, LASSO and Cox regression analysis 

were utilized to identify the hub genes and construct a 

MAPK-related signature (MAPKS) to help distinguish 

KIRC samples. After identifying the MAPKS, the 

“predict” function in R was utilized to calculate the 

risk score. Then all the samples were grouped into 

high- and low-risk subgroups based on the median 

risk score in train cohort. In the four cohorts, the 

following discrepancies between high- and low- 

risk subgroups were investigated for comprehensive 

validation: (1) the survival analysis was performed to 

identify the survival discrepancy; (2) the receiver-

operating characteristic (ROC) curves were utilized  

to determine the diagnostic value of MAPKS; (3) 

“ESTIMATE” package in R was utilized to assess  

the tumor microenvironment [20]; (4) TIMER, 

QUANTISEQ, and many other algorithms introduced 

above were utilized to assess the immune response in 

the TME [21]; (5) the expression levels of ICGs in 

high- and low-risk subgroups were compared.  

 

The estimation of MAPK pathway and gene expression 

of MAPKS genes on the basis of scRNA-seq data 

 

KIRC scRNA-seq data, GSE159115, was obtained 

from the GEO database. The scRNA-seq data of KIRC 

were analyzed based on the standard protocols of 

Seurat [22]. Those cells with less than 200 or  

more than 7000 count features were removed. In 

addition, cells with mitochondrial RNA percentage > 

10 were also excluded. Then the data were normalized, 

scaled and processed for PCA analysis. The Harmony 

package was utilized to remove the batch effect. The 

“FindClusters” function was used to cluster cells at  

an appropriate resolution. The t-SNE was utilized  

to visualize the data. Based on the typical cell-type 

markers, all the subpopulations were annotated. The 

activity of MAPK pathway was estimated utilizing 

five well-known algorithms (i.e. AUCell, UCell, 

singscore, Add, and GSVA). Of note, the scores from 

the five algorithms mentioned above were summed to 

obtain a total score, which we referred to as “Scoring”. 

We employed the “wilcox.test” to compare pathway 

activities between KIRC and normal samples at the 

single-cell resolution. 

 

Identification of hub genes in the occurrence of 

KIRC 

 

On the basis of the genes in the MAPKS, in-depth 

exploration was conducted to identify hub genes in 

KIRC. First, the GEPIA online server was utilized to 

compare the mRNA expression of all the module genes 

in our signature. Then the relationship between the 

expression of each gene and tumor stage in KIRC was 

explored. In addition, the Biomarker Exploration for 

Solid Tumors (BEST) web server was used for further 

investigation of the relationship between the expression 

of each gene and tumor grade.  

 

External validation of hub genes in MAPKS based 

on the tissue microarray and immunohistochemistry 

(IHC) 

 

Human KIRC tissue chips were purchased  

from Zhuoli Biotechnology Co., Shanghai, China. 

First, EDTA was used to extract antigens after tissue 

dewaxing. After placing with the primary antibodies, 

the tissue sections were incubated with the secondary 

antibodies. Then the diaminoaniline staining was made 

and hematoxylin was utilized to re-stain. Finally, the 

IHC morphology of 80 KIRC samples and 80 normal 

samples were completed. The IHC scores were analyzed 

by two independent pathologists based on the staining 

intensity and the percentage of positive-stained cells 

intensity.  

 

Availability of data and materials 

 
The datasets analyzed in this work may be found  

in the Supplementary Materials or contact with the 

corresponding author. 

https://www.cancerrxgene.org/
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RESULTS 
 

Changes of mRNA expression, CNV, SNV, and 

methylation of MAPK-related genes in pan-cancer 

 

First, the expression levels of MAPK-related genes 

were summarized in pan-cancer. It was shown in Figure 

1A that obvious up-regulation of ESRP1 existed in 

CESC, perceptible up-regulation of DUSP9 existed in 

LUSC, while significant down-regulation of DUSP9 

existed in KIRC and KIRP. As a major influence in the 

gene expression levels, the CNV gain and CNV loss 

needed to be paid more attention to. As shown in Figure 

1B, the pinker the color, the higher the CNV gain 

frequency. In KICH, the number of MAPK genes with 

high CNV gain frequency is maximum. And in KIRC, 

CAMK2A and FAM114A2 had obviously high CNV 

gain frequency. As for the CNV loss frequency in  

the Figure 1C, the number of MAPK genes with high 

CNV loss frequency is also maximum in KICH. And  

in KIRC, ATG7, RAF1, and TRAK1 had high CNV 

loss frequency. In addition, increasing SNV frequency 

of KRAS existed in COAD, LUAD, PAAD, READ,  

and UCEC (Figure 1D). As for the DNA methylation, 

the cancers and the corresponding genes with hyper-

methylation were as follows: BRCA: VWF and ITGB3; 

COAD: QKI, DUSP9, and CNKSR2; KIRC: CNKSR1; 

PRAD: VWF, LMNA, and ITGB3; UCEC: ITGB3 and 

APBBAIP (Figure 1E).  

 

MAPK-based cluster analysis in KIRC 

 

For further demonstration of the role of MAPK pathway 

in KIRC, all KIRC samples were classified into three 

clusters (Figure 2A). Subsequently, the MAPK scores in 

these three clusters were compared and the violin plots in 

Figure 2B indicated that the cluster1 was MAPK-active 

cluster, cluster2 was the MAPK-normal cluster while  

C3 was the MAPK-inactive cluster (Enrichment score: 

C1>C2>C3, p<0.01). The survival analysis indicated that 

the prognosis of cluster 1 was better than that of cluster  

2 and the prognosis of cluster 3 was worse than that of 

cluster 2. All the discrepancies of the survival rate in the 

three clusters were statistical (Figure 2C).  

 

MAPK-based discrepancies in signaling activity and 

cell death status 

 

With different activity of MAPK signaling, these three 

clusters had different metabolism signaling, immune 

signaling. All the statistical discrepancies were exhibited 

in the form of heatmap. As is shown in Figure 2D, most 

metabolism signaling had decreasing activity in C2,  

but AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_ 

METABOLISM, CYSTEINE_AND_METHIONINE_ 

METABOLISM, and SULFUR_METABOLISM had 

decreasing activity in C1 and INOSITOL_PHOSPHATE_ 

METABOLISM had decreasing activity in C3. The 

discrepancies of immune signaling shown in Figure 2E 

indicated that most immune pathways had decreasing 

activity in C3 except BASE_EXCISION_REPAIR and 

PROTEASOME. As for the cell death status shown in 

Figure 2F, it was indicated that all the types of cell death 

(i.e., curroptosis, immunogenic cell death, necroptosis, 

apoptosis, autophagy, ferropotosis, phagocytosis, necrosis, 

pyroptosis, PANoptosis, disulfidptosis) had decreasing 

activation in C3.  

 
MAPK-based discrepancies in immune 

microenvironment 

 

As is known, immune cells are primary components  

in TME. With various algorithms including TIMER, 

QUANTISEQ, MCPCOUNTER, XCELL, EPIC, and 

CIBERSORT, it was found that the infiltration of 

immune cells differed in the three clusters and most 

immune cells including B cell, CD4+ T cell, macro-

phage, neutrophil, and mast cell had lower proportions 

in C3 (Figure 3A). Further exploration about the 

correlations between MAPK genes and immune cell 

infiltration were shown in a heatmap in Figure 3B. The 

redder the color, the closer the positive correlation. The 

bluer the color, the closer the negative correlation. As 

for the correlation between MAPK score and the 

infiltration of immune cells, it was found that the 

infiltration of most immune cells except Tfh had 

positive correlation with MAPK score (Figure 3C). Of 

note, the responses of mast cell, Treg, neutrophil, and 

type-II-IFN-Response are positively related to the MAPK 

score (R>0.3, p<0.05) (Figure 3D). Additionally, the 

immune checkpoint genes had different expression 

levels in the three clusters. The following genes had 

lowest expression level in C3: TNFSF15, JAK2, 

PDCD1LG2, LDHA, CD244, CD28, YTHDF1, NRP1, 

SIGLEC15, ICOS, CD86, CD44, TNFSF4, CD274, 

CD200R1, HAVCR2, CD276, PVR, LAIR1, CD80, 

B2M, BTLA, and PTPRC (p<0.05) (Figure 3E).  

 
MAPK-based drug sensitivity analysis in KIRC 

 

Currently, the treatment of advanced KIRC mostly 

depends on molecular targeted drugs. Till now, many 

types of targeted drugs including sorafenib and sunitinib 

have been listed in NCCN for a first- or second-line 

treatment of metastatic kidney cancer [23]. In view of 

the significant role of the targeted therapy in KIRC, 

common targeted drugs were taken into consideration 

for the exploration of the sensitive drugs. The lower  

the IC50, the more sensitive the compound. For  

Irinotecan and Topotecan, samples in cluster1 had lowest  

IC50. For Cisplatin, Cyclophosphamide, Cytarabine, 

Docetaxel, Gefitinib, Lapatinib, Nilotinib, Sorafenib, 
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Figure 1. Comprehensive assessment of MAPK pathway in pan-cancer. (A) mRNA expression of MAPK-related genes. (B) CNV gain of 
MAPK-related genes. (C) CNV loss of MAPK-related genes. (D) SNV frequency of MAPK-related genes. (E) DNA methylation of MAPK-related 
genes.  
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Temozolomide, and Vinblastine, samples in cluster3 

had lowest IC50 (Figure 4). 

 

Construction and validation of a MAPK-related 

signature 

 

Samples in the train cohort were utilized to construct 

MAPKS. After conducting LASSO regression analysis, 

univariate Cox regression analysis and multivariate  

Cox regression analysis, 11 hub genes (i.e., SPRED3, 

ACTB, ARAF, MAP3K11, PAPSS1, TLN1, CALM1, 

AGK, MAP2K2, MAPK1, SPRED1) were selected to 

construct a MAPKS. On the basis of the expression 

levels of these 11 genes, the risk score of each sample 

was calculated utilizing the “predict” function in R. 

Based on the median risk score, samples were divided 

 

 
 

Figure 2. MAPK-based cluster analysis in KIRC. (A) Three clusters were obtained and displayed by the heatmap. (B) The violin plot 
showing the enrichment scores of these three clusters. (C) The distinct of survival probability in these three clusters. (D) The discrepancies of 
metabolism pathway activity in the three clusters. (E) The discrepancies of immune pathway activity in the three clusters. (F) The 
discrepancies of cell death status in the three clusters. 
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Figure 3. The discrepancies of TME in the three clusters. (A) A heatmap showing the infiltration of various immune cells. (B) The 
correlations between the expression of MAPK genes and the infiltration of various immune cells. (C) The correlations between MAPK score 
and the infiltration of various immune cells. (D) The correlations between MAPK score and the response of mast cell, Treg, neutrophil, and 
type-II-IFN-Response. (E) The discrepancies of ICG expression in the three clusters. 
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into high- and low-risk subgroups (Figure 5A). Then the 

Figure 5B depicted the distributions of the risk score 

and survival status. Likewise, the survival analysis 

indicated that patients in high-risk subgroup had lower 

survival probability (Figure 5C). The AUCs of the ROC 

curves had values of 0.768, 0.772, and 0.804, respec-

tively, for 1-, 3-, and 5-year survival (Figure 5D). Based 

on the “ESTIMATE”, it was found that samples in high-

risk subgroup had higher immune score but lower tumor 

purity (Figure 5E). As for immune response in the two 

subgroups, Treg, Tfh, and gamma delta T cell had higher 

proportion, while Neutrophil and Endothelial cell had 

lower proportion in high-risk subgroup in train cohort 

(Figure 5F). The expression of ICGs in the high- and 

low-risk subgroups also differed from each other. The 

expression of most ICGs (i.e., CD40LG, TNFRSF25, 

CD27, CD70, TNFRSF9, CD48, LAG3, PTPRC, 

TNFRSF4, PDCD1, CD80, CD28, ICOS, IL23A, TIGIT, 

SIGLEC15) up-regulated while NRP1 and JAK2 down-

regulated in the high-risk subgroup (Figure 5G). 

For further signature validation, all the analyses 

conducted above were performed in the test1, test2, and 

test3 cohorts. In the three test cohorts, similar results 

were obtained. First, risk scores were calculated and 

then all the samples were grouped into high- and low-

risk subgroups in the three test cohorts respectively 

(Figures 6A, 7A, 8A). The distributions of the risk 

scores and survival status were showed in Figures 6B, 

7B, 8B. The survival analysis revealed that samples  

in the high-risk subgroup were more likely to die 

(Figures 6C, 7C, 8C). The AUCs of the ROC curves 

also demonstrated the diagnostic value of the MAPKS: 

the AUCs had values of 0.672, 0.621, and 0.613 in test1 

cohort, 0.719, 0.697, and 0.712 in test2 cohort, and 

0.909, 0.811, and 0.846 in test3 cohort for 1-, 3-, and 5-

year respectively (Figures 6D,7D,8D). Samples in the 

high-risk subgroup in the three cohorts also showed 

higher immune score but lower tumor purity (Figures 

6E, 7E, 8E). As for the immune response, Treg had 

higher proportion while Endothelial cell had lower 

 

 
 

Figure 4. The discrepancies of drug sensitivities in the three clusters. 
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Figure 5. Identification of a MAPK-related signature in train cohort. (A) The distinguishment of high- and low-risk subgroups on the 
basis of the median risk score. (B) The distributions of the risk score and survival status. (C) Survival analysis in train cohort. (D) ROC curves of 
1-, 3-, and 5-year survival. (E) Assessment of TME by “ESTIMATE”. (F) The discrepancies of immune response in high- and low-risk subgroups. 
(G) The discrepancies of ICD expression in high- and low-risk subgroups. 
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Figure 6. Internal validation of a MAPK-related signature in test1 cohort. (A) The distinguishment of high- and low-risk subgroups 
based on the median risk score in train cohort. (B) The distributions of the risk score and survival status. (C) Survival analysis in test1 cohort. 
(D) ROC curves of 1-, 3-, and 5-year survival. (E) Assessment of TME by “ESTIMATE”. (F) The discrepancies of immune response in high- and 
low-risk subgroups. (G) The discrepancies of ICD expression in high- and low-risk subgroups. 
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Figure 7. Internal validation of a MAPK-related signature in test2 cohort. (A) The distinguishment of high- and low-risk subgroups 

based on the median risk score in train cohort. (B) The distributions of the risk score and survival status. (C) Survival analysis in test2 cohort. 
(D) ROC curves of 1-, 3-, and 5-year survival. (E) Assessment of TME by “ESTIMATE”. (F) The discrepancies of immune response in high- and 
low-risk subgroups. (G) The discrepancies of ICD expression in high- and low-risk subgroups. 
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Figure 8. External validation of a MAPK-related signature in test3 cohort. (A) The distinguishment of high- and low-risk subgroups 
based on the median risk score in train cohort. (B) The distributions of the risk score and survival status. (C) Survival analysis in test3 cohort. 
(D) ROC curves of 1-, 3-, and 5-year survival. (E) Assessment of TME by “ESTIMATE”. (F) The discrepancies of immune response in high- and 
low-risk subgroups. (G) The discrepancies of ICD expression in high- and low-risk subgroups. 
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proportion in high-risk subgroup in the three test 

cohorts consistently (Figures 6F, 7F, 8F). The 

expression levels of ICGs in high- and low-risk 

subgroups were also compared and it was found  

that CD27, CD70, TNFRSF9, LAG3, PDCD1, ICOS, 

IL23A, and TIGIT up-regulated while NRP1 down-

regulated in the high-risk subgroup in all three test 

cohorts (Figures 6G, 7G, 8G).  

 

The estimation of MAPK pathway and the 

expression of genes in the MAPKS in different 

celltypes 

 

The scRNA-seq data of 7 KIRC samples and 5 normal 

samples were integrated. After the quality control 

(Supplementary Figure 1), 56602 cells were grouped 

into 43 clusters (Figure 9A and Supplementary Figure 

2A, 2B). Then these clusters were defined as different 

cell types based on the specific markers (Figure 9B–9D 

and Supplementary Figure 2C). The pathway score of 

MAPK signaling in different cell type was estimated. It 

suggested that the MAPK pathway was active in each 

celltype. Especially, it had superior score in endothelial 

cells (Figure 10A). After comparing the MAPK activity 

of each cell type between tumor samples and normal 

samples, we found that the statistical discrepancies 

existed in myeloid, epithelial, NK, B, and endothelial 

cells (Figure 10B, 10C).  

 

Identification and validation of hub genes in the 

occurrence of KIRC 

 

Among all the 11 genes in the MAPKS, 3 genes showed 

statistically distinct mRNA expression between KIRC 

and normal samples. Compared with normal samples, 

the mRNA levels of MAP3K11 and SPRED1 increased 

while the mRNA level of PAPSS1 decreased in KIRC 

(Supplementary Figure 3A). In addition, the expression 

levels of the three genes were lower in advanced KIRC 

(Supplementary Figure 3B, 3C). Then the tissue micro-

array and immunohistochemistry (IHC) was performed 

to demonstrate the expression level of these three genes. 

And the PAPSS1, MAP3K11, and SPRED1 showed 

lower IHC scores in KIRC compared with para-cancer 

samples (p<0.05) (Figure 11 and Supplementary Figures 

4, 5). 

 

DISCUSSION 
 

As the major subtype of RCC, KIRC is characterized 

with high heterogeneity and poor prognosis [24–26]. 

Due to the profound influence of MAPK signaling 

pathway on the metabolism and progression of cancer 

[27–31], comprehensive alterations of MAPK-related 

genes in pan-cancer need to be summarized. In view  

of the interactions between pathways [32, 33], the 

alteration of MAPK pathway activity may affect various 

pathways in cancer. In the study, the pan-cancer 

analyses about the influence of MAPK pathway 

revealed that the expression of many MAPK-related 

genes varied with the occurrence and development of 

cancers. 

 

Considering the significant role of MAPK pathway in 

pan-cancer and the rare reports about the relationship 

between MAPK pathway and KIRC, we focused on  

the alterations of MAPK pathway and corresponding 

influence in KIRC. Based on the expression of the 

MAPK genes, KIRC samples were group into three 

clusters with different MAPK signaling activity. In the 

in-depth research, it was revealed that MAPK-active 

samples had higher survival rate while MAPK-inactive 

samples had worse survival. With different status of 

MAPK signaling, metabolism pathways and immune 

pathways showed different activities in these three 

clusters. MAPK signaling also showed influence on  

the status of various cell deaths including curroptosis, 

immunogenic cell death, necroptosis, apoptosis, auto-

phagy, ferropotosis, phagocytosis, necrosis, pyroptosis, 

PANoptosis, and disulfidptosis. TME and immune 

response also differed in the three clusters. Most immune 

cells except Tfh had positive correlation with MAPK 

activity. Of note, the responses of mast cells, Treg, 

type-II-IFN, and neutrophil were positively related to 

the MAPK activity.  

 
As for drug therapy, samples with different MAPK 

activity might have different drug sensitivity. MAPK-

active samples might be sensitive to Irinotecan and 

Topotecan, while MAPK-inactive samples may be 

sensitive to Cisplatin, Cyclophosphamide, Cytarabine, 

Docetaxel, Gefitinib, Lapatinib, Nilotinib, Sorafenib, 

Temozolomide, and Vinblastine.  

 
In view of the influence of MAPK pathway  

activity on KIRC in multiple respects especially 

survival, the following analyses aimed to identify a 

signature for distinguish KIRC samples with distinct 

prognosis and microenvironment. Among all the genes 

related to MAPK pathway, 11 genes (i.e., SPRED3, 

ACTB, ARAF, MAP3K11, PAPSS1, TLN1, CALM1, 

AGK, MAP2K2, MAPK1, SPRED1) were identified as 

hub genes and used to construct a MAPKS. Compared 

with normal samples, the mRNA levels of MAP3K11 

and SPRED1 increased while the mRNA level of 

PAPSS1 decreased in KIRC. The following IHC 

indicated that the PAPSS1, MAP3K11, and SPRED1 

showed lower IHC score in KIRC compared with para-

cancer samples. The post-transcriptional modifications 

play an important role in the overall regulation of  

gene expression, which might be the reason of the 

inconsistent changes in protein and mRNA [34, 35]. 
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As for all the 11 genes in MAPSK, ACTB, AGK, 

MAP2K2, and MAPK1 were reported to regulate RCC. 

A single-cell analysis reveals ACTB is involved in the 

regulation of RCC metastasis and progression [36]. 

Also, it is demonstrated as an optimal reference gene  

in RCC by reverse transcription PCR (RT-PCR)  

[37]. AGK is found to promote RCC progression via 

activating the PI3K/AKT/GSK3β signalling pathway 

[38]. MAP2K2, another regulator of RCC, can promote 

its progression by affecting transcriptional activation of 

 

 
 

Figure 9. Identification of different cell types in KIRC and normal samples. (A) The clustree for identifying suitable cell clusters.  
(B) Different types of cells in all samples. (C) Different types of cells in KIRC and normal samples. (D) The expression of marker genes in each 
cell type. 
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the MAP2K2-dependent ERK pathway [39]. MAPK1, 

one of the members of MAPK family, promotes  

RCC metastasis through HCP5/miR-214-3p/MAPK1 

axis [40]. SPRED1, as a negative regulator of the 

MAPK pathway [41], influences tumor growth and 

metastasis in breast cancer. Also, the overexpression  

of SPRED1 can inhibit the proliferation, migration and 

invasion of HCC [42]. SPRED3, is reported to have an 

influence on EGFR mutated NSCLC [43], glioblastoma 

[44], and cervical carcinoma [45]. ARAF, is reported to 

be an oncogene in gallbladder cancer [46]. Its mutations 

imply resistance to the RAF inhibitor belvarafenib in 

melanoma [47]. In addition, mutant ARAF is found to 

be an oncogenic driver in lung adenocarcinoma and can 

be used as an indicator of sorafenib response [48]. 

MAP3K11 acts as a tumor suppressor [49] and a driver 

 

 

 

Figure 10. The estimation of MAPK pathway based on scRNA-Seq data. (A) The pathway score of MAPK signaling in each cell type; 

(B) The discrepancies of MAPK score in each cell type between KIRC and normal samples; (C) The detailed MAPK pathway activity shown in a 
UMAP plot. 
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of cancer cachexia [50]. Also, it can regulate  

the malignancy of oral squamous cell carcinoma  

through facilitating autophagy [51]. Through regulating 

MAP3K11, NSCLC can be suppressed [52]. PAPSS1 is 

demonstrated as a suppressor gene in esophageal 

squamous cancer [53]. Out of this, it is reported to  

be associated with breast tumors previously [54].  

TLN1, locating in focal adhesion, can regulate integrin 

signaling and promote cancer metastasis [55–58]. It can 

affect cell proliferation and differentiation in acute 

myeloid leukemia [59], define the risk of aggressive 

oral squamous cell carcinoma [60], and act as a 

regulator to suppress ovarian serous carcinoma [61]. 

CALM1 can engage in the formation of calmodulin  

and regulate proliferation, motility and differentiation 

through participating in signaling pathways [62]. 

Studies revealed that the expression of CALM1 was 

significantly linked to many types of cancer, such  

as prostate cancer [63], bladder cancer [64], and 

nasopharyngeal carcinoma [65].  

 

 
 

Figure 11. The tissue microarray and immunohistochemistry (IHC) of PAPSS1. (A) Immunohistochemical maps for all samples.  

(B) Immunohistochemical maps of typical cancer samples. (C) Immunohistochemical maps of typical para-cancer samples.  
(D) Immunohistochemical statistical analysis results. 
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Based on the MAPKS, the risk scores of all KIRC 

samples were calculated and two subgroups (i.e., high-

risk subgroup and low-risk subgroup) were obtained  

in accordance with the risk score of the train cohort. 

The MAPKS helped to differentiate high-risk samples 

characterized by lower survival rates, higher immune 

scores, and reduced tumor purities. Of note, the elevated 

presence of Treg cells and the atypical expression  

of immune checkpoint molecules could potentially 

contribute to its adverse prognosis. As is reported, Treg 

cells can suppress effective tumor immunity. It was 

found that increasing infiltration of Treg cells was linked 

to poor prognosis of patients with tumors [66, 67].  

In addition, tumor cells could disguise themselves  

as common components of the human body through 

immune checkpoint pathways [68]. As a consequence, 

the up-regulation of most ICGs in high-risk sub- 

group might account for the poor prognosis. All the 

discrepancies might be the potential therapy targets  

in KIRC and all the results above were demonstrated  

in the three test cohorts. In addition, the single-cell 

RNA sequencing (scRNA-seq) analysis of KIRC samples 

identified seven distinct cell types, which include  

B cells, myeloid cells, endothelial cells, NK cells, 

epithelial cells, T cells, and fibroblast cells. Endothelial 

cells in tumor tissues had obviously higher MAPK 

scores than normal tissues. 

 

It is no doubt that a great signature MAPKS was 

constructed successfully. But there are still some 

limitations that need to be considered. First, the 

MAPKS was constructed utilizing a small number  

of KIRC samples from the TCGA and ArrayExpress 

databases. Then the results were obtained by utilizing 

bioinformatics researches. In the future, a large  

number of clinical samples need to be involved and 

fundamental experiments are necessary to utilize for 

further demonstration. 

 

CONCLUSIONS 
 

With the development of tumors, MAPK  

pathway altered significantly in pan-cancer. Especially  

in KIRC, the status of MAPK pathway linked to  

the survival rate and drug sensitivity. The MAPKS  

was successfully constructed and demonstrated to help 

distinguish KIRC samples into different subgroups 

with distinct prognosis and tumor microenvironment. 

All the findings will contribute to the individualized 

treatment in KIRC. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Single-cell data processing. (A, B) Data quality control of sc-RNA data. (C) Highly variable genes of the data. 

(D, E) Cell distribution before and after removing the batch effect by Harmony. (F) ElbowPlot for identifying suitable PC number.  
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Supplementary Figure 2. Single-cell dimension reduction and annotation process. (A) UMAP dimension reduction plots for all 

samples. (B) UMAP dimension reduction plots for normal and tumor groups. (C) Single-cell annotation process. 
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Supplementary Figure 3. Identification of hub genes in the occurrence of KIRC. (A) The mRNA expression of hub genes. (B) The 
relationship between the expression of each hub gene and tumor stage in KIRC. (C) The relationship between the expression of each hub 
gene and tumor grade in KIRC. 
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Supplementary Figure 4. The tissue microarray and immunohistochemistry (IHC) of SPRED1. (A) Immunohistochemical maps for 

all samples. (B) Immunohistochemical maps of typical cancer samples. (C) Immunohistochemical maps of typical para-cancer samples.  
(D) Immunohistochemical statistical analysis results. 
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Supplementary Figure 5. The tissue microarray and immunohistochemistry (IHC) of MAP3K11. (A) Immunohistochemical maps 
for all samples. (B) Immunohistochemical maps of typical cancer samples. (C) Immunohistochemical maps of typical para-cancer samples.  
(D) Immunohistochemical statistical analysis results. 

 


