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ABSTRACT 
 

Anoikis, a form of apoptotic cell death resulting from inadequate cell-matrix interactions, has been implicated 
in tumor progression by regulating tumor angiogenesis and metastasis. However, the potential roles of anoikis-
related long non-coding RNAs (arlncRNAs) in the tumor microenvironment are not well understood. In this 
study, five candidate lncRNAs were screened through least absolute shrinkage and selection operator (LASSO), 
and multivariate Cox regression analysis based on differentially expressed lncRNAs associated with anoikis-
related genes (ARGs) from TCGA and GSE40595 datasets. The prognostic accuracy of the risk model was 
evaluated using Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves. Furthermore, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) analyses revealed 
significant differences in immune-related hallmarks and signal transduction pathways between the high-risk 
and low-risk groups. Additionally, immune infiltrate analysis showed significant differences in the distribution 
of macrophages M2, follicular T helper cells, plasma cells, and neutrophils between the two risk groups. Lastly, 
silencing the expression of PRR34_AS1 and SPAG5_AS1 significantly increased anoikis-induced cell death in 
ovarian cancer cells. In conclusion, our study constructed a risk model that can predict clinicopathological 
features, tumor microenvironment characteristics, and prognosis of ovarian cancer patients. The immune-
related pathways identified in this study may offer new treatment strategies for ovarian cancer. 
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INTRODUCTION 
 

Anoikis is a specialized form of programmed cell death 

triggered by detachment from the extracellular matrix 

(ECM) [1]. Anoikis resistance has been shown to play  

a significant role in various cancers, including lung 

cancer, Ewing sarcoma, prostate cancer, and ovarian 

cancer [2–6]. Ovarian cancer is the leading cause of 

death among malignant gynecological cancers, and  

the majority of patients with advanced-stage disease 

(stage III or IV) present with malignant ascites [7]. 

Tumor cells in ascites exhibit anchorage-independent 

survival, contributing to the metastasis and recurrence 

of ovarian cancer [8]. Therefore, a comprehensive 

analysis to identify key drivers of anoikis in ovarian 

cancer is crucial. 

 

During the process of metastasis, tumor cells with 

anoikis resistance can survive in the tumor micro-

environment (TME), which is heavily influenced by  

the ECM [6]. Emerging evidence suggests that cancer 

cells shape the ECM, creating an immune-suppressive 

microenvironment that reduces the efficacy of immuno-

therapies [9, 10]. The TME encompasses the complex 

relationship between tumor occurrence, growth, and 

metastasis, and the internal and external environment  

of tumor cells. It consists of various cellular and non-

cellular components, including tumor cells, immune 

cells, extracellular matrix, cytokines, chemokines,  

and more [11]. It has been demonstrated that ECM 

components, such as collagens, confer anoikis resistance 

through B-cell lymphoma (BCL) family proteins [9]. 

Collagen density and tissue stiffness play a vital role in 

regulating the infiltration of immune cells. For instance, 

a high-density matrix leads to a higher ratio of CD4 to 

CD8 cells, suppressing the activity of cytotoxic T cells 

in the tumor microenvironment [12]. Moreover, ECM 

stiffness hampers T-cell migration, while reduction of 

collagenase reduces stiffness and improves the situation 

[13]. Therefore, further exploration of the relationship 

between immune suppression and anoikis resistance  

in cancer is warranted, as it may provide potential 

therapeutic targets for immunotherapy. 

 

Multiple evidence proved that long non-coding  

RNAs (lncRNAs) promote metastasis via regulating 

anoikis-resistance, which leads to the poor progression 

of cancer patients [14–16]. LncRNAs have been defined 

as non-coding RNAs longer than 200 nucleotides, 

which do not possess the capacity of coding proteins 

and involving in post-transcriptional regulation of 

genes, stability of RNA, processing RNA, etc., [17].  

For example, silencing the expression of lncRNA 

APOC1P1-3 decreases anoikis resistance by sponging 

miRNA-188-3p, thereby blocking the inhibition of 

Bcl-2 [14]. Additionally, AKT-induced lncRNA VAL 

promotes anoikis resistance by binding to vimentin and 

decreasing Trim16-dependent vimentin degradation [15]. 

Moreover, dysregulation of lncRNAs is involved in the 

TME and is associated with immune cell infiltration and 

the response of cancer cells to immunotherapy [18].  

In ovarian cancer, lncRNA HOTTIP upregulates the 

expression of PD-L1 in neutrophils via IL-6 secretion, 

inhibiting T-cell immunity and contributing to immune 

evasion by cancer cells [19]. However, the mechanisms 

by which arlncRNAs regulate the TME in ovarian cancer 

remain unclear. 

 

In this study, we constructed a novel prognostic 

signature comprising five arlncRNAs to predict the 

prognosis of ovarian cancer. Furthermore, we conducted 

GSEA and immune infiltration analysis to elucidate the 

regulatory mechanisms of these lncRNAs in ovarian 

cancer. Additionally, we validated the expression and 

function of two lncRNAs in ovarian cancer cells to 

understand their role in regulating anoikis resistance 

in vitro. Our findings provide potential prognostic bio-

markers for ovarian cancer and are essential for the 

development of immunotherapy strategies. 

 

MATERIALS AND METHODS 
 

Patients and datasets 

 

The gene expression RNA sequencing (RNA-seq)  

data of 421 ovarian cancer samples were obtained  

from The Cancer Genome Atlas (TCGA) database 

(https://cancergenome.nih.gov) and included complete 

clinicopathological and survival data. Since the TCGA 

database lacks normal ovarian tissue data, 32 ovarian 

cancer samples and 6 normal ovarian samples from  

the Gene Expression Omnibus (GEO) database were 

obtained (https://www.ncbi.nlm.nih.gov/geo/). Clinical 

information for ovarian cancer patients from TCGA is 

available in Supplementary Table 1, while GSE40595 

lacks corresponding clinical information. 

 

Identification of anoikis-related lncRNAs 

 

Differential expression analysis was performed using 

the “limma” package (v3.46.0) in R to identify genes 

differentially expressed between ovarian cancer samples 

and normal ovarian samples, using the criteria of fold 

change (|Fc|) > 1 and p < 0.01. A total of 434 ARGs 

with detailed clinical information and prognostic data 

from the published literature were retrieved [20]. 

Pearson correlation analysis was conducted to identify 

lncRNAs correlated with anoikis in ovarian cancer, 

using a cutoff value of |r| > 0.4 and p < 0.001. Kaplan-

Meier analysis was performed using the “survival” 

package (v3.2.7) in R to screen arlncRNAs relevant to 

the prognosis of ovarian cancer. 

https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Construction of lncRNA signature model 

 

Univariate Cox regression analysis was performed  

to assess the prognostic value of each preliminarily 

screened lncRNA. Multivariate Cox regression and 

LASSO Cox regression were employed using the 

“glmnet” package (v4.1.6) in R to identify five 

characteristic arlncRNAs. A risk model was constructed 

using these arlncRNAs to predict the prognosis of 

ovarian cancer. The ovarian cancer patients were 

divided into high-risk and low-risk groups based on  

the median risk score calculated using the following 

formula: Σ (Exp(lncRNA) × Coef(lncRNA)). “Exp” 

represents the expression level of the lncRNA, and 

“Coef” represents the coefficient of the corresponding 

lncRNA. The TCGA samples were randomly divided 

into two cohorts using the “rsample” package (v1.1.1) 

in R. The differences in overall survival (OS) between 

the high-risk and low-risk groups were compared using 

the “survival” package in R, and Kaplan-Meier survival 

curves were plotted. The predictive power of the model 

was validated using ROC curves and the area under the 

curve (AUC) for 1, 3, and 5 years, using the R package 

“timeROC.” 

 

Construction of nomogram 

 

Based on the signature model, a nomogram was 

established using the R package “rms” (v6.5.0) to 

predict the 1-, 3-, and 5-year OS of ovarian cancer 

patients. The nomogram included age, stage, and  

risk score as variables. Total points were calculated 

according to the corresponding score of age, stage, and 

risk score in the nomogram to predict the survival rate 

at 1, 3, and 5 years. Calibration curves were drawn 

using the “rms” package in R to assess the predictive 

accuracy of the nomogram. 

 
Gene set enrichment analysis 

 

Each ovarian cancer patient was assigned a risk  

score calculated using the aforementioned formula.  

The patients were stratified into high-risk and low- 

risk groups based on the median risk score. GSEA  

was conducted using the R package “clusterProfiler” 

(v3.18.1) with hallmark gene sets and KEGG path- 

ways to explore the potential molecular mechanisms 

promoting ovarian cancer. 

 

Immune infiltrate analysis 

 

CIBERSORTX (https://cibersortx.stanford.edu/) was 

used to characterize the proportions of infiltrating 

immune cells in the different risk groups. The 

proportions of 22 different immune cell types were 

evaluated separately in the high-risk and low-risk 

groups using CIBERSORTX. Genes in the high-risk 

and low-risk groups were analyzed, and a volcano plot 

was generated using the “ggplot2” package (v3.4.2) in 

R, with the criteria of |log2Foldchange| > 1 and p < 0.05. 
 

Cell culture 
 

Caov-3, OVCAR3, and SKOV3 cell lines were obtained 

from the American Type Culture Collection (ATCC, 

Manassas, VA, USA). HOSEpiC cells were obtained 

from ScienCell Research Laboratories (Carlsbad, CA, 

USA), and HO-8910PM cells were obtained from the 

Shanghai Cell Library of the Chinese Academy of 

Sciences (Shanghai, China). All cells were cultured 

according to the manufacturer’s instructions in a 

humidified incubator at 37°C with 5% CO2, using 

culture media supplemented with 10% fetal calf serum 

and 1% penicillin-streptomycin. 
 

Reverse transcription and quantitative real-time 

PCR (qRT-PCR) 
 

Total RNA was extracted from HOSEpiC, Caov-3, HO-

8910PM, OVCAR3, and SKOV3 cells using the EZ-

press RNA Purification Kit (EZBioscience; Roseville, 

MN, USA) according to the manufacturer’s protocol. 

RNA quantification was performed using a micro-

spectrophotometer (KAIAO; Beijing, China). cDNA was 

synthesized by reverse transcription of RNA using the 

HiScript III RT SuperMix (Vazyme; Nanjing, China). 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

was used as an internal reference gene. qRT-PCR was 

performed using the C1000 Touch™ Thermal Cycler 

(Bio-Rad; Hercules, CA, USA) with ChamQ Universal 

SYBR qPCR Master Mix (Vazyme; Nanjing, China) 

The specific primer sequences required for qRT-PCR 

are provided in Supplementary Table 2. The relative 

RNA expression was calculated using the 2−ΔΔCt method. 
 

Cell transfection 
 

Small interfering RNAs (siRNAs) targeting PRR34_ 

AS1 or SPAG5_AS1 were purchased from Tsingke 

(Guangzhou, China). A total of 20 nM siPRR34_AS1 

and siSPAG5_AS1 were transfected into SKOV3  

and OVCAR3 cells using Lipofectamine RNAiMAX 

(Invitrogen, Carlsbad, CA, USA) Reagent according to 

the manufacturer’s instructions. Cells were collected after 

48 hours for quantitative real-time PCR to measure the 

knockdown efficiency and other experiments. The siRNA 

sequences are provided in Supplementary Table 2. 
 

Flow cytometry 
 

Cells were seeded in six-well plates after transfection at 

a density of 1 × 105 cells per well. After 48 hours of 

incubation, the apoptosis rate of cells was measured 

https://cibersortx.stanford.edu/
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using the Annexin V-FITC Apoptosis Detection Kit 

(KeyGEN, Nanjing, China). Cells were washed twice 

with PBS, centrifuged at 3000 rpm for 5 minutes, re-

suspended in 500 μL of binding buffer, and stained with 

5 μL of Annexin V-FITC and 5 μL of Propidium Iodide 

(PI) in the dark for 15 minutes at room temperature.  

The apoptosis rate of the cells was measured using a 

Beckman Coulter Flow Cytometry (Beckman, Krefeld, 

Germany). 
 

Anoikis assay 
 

A total of 1 × 105 cells were seeded in ultra-low-

attachment 96-well plates and incubated for 24 hours. 

The Calcein/PI Assay Kit (Beyotime, Shanghai, China) 

was used to analyze the levels of living and dead cells. 

The plate was centrifuged at 400 × g for 5 minutes, and 

the cells were washed once with PBS. Cells were 

stained with 100 μL of Calcein AM/PI (1:1) in the  

dark for 30 minutes at 37°C. Cell immunofluorescence  

was performed using the Electronic Ballast EBQ 100–

04 (Leistungselektronik JENA GmbH, Jena, Germany). 

Living cells appeared green, while dead cells appeared 

red in the fluorescent images. 
 

Statistical analysis 
 

All statistical analyses were conducted using R version 

in RStudio and GraphPad Prism 9.0 software. Graphs 

were produced using the “ggplot2” package in RStudio. 

Kaplan-Meier survival analysis and ROC curves were 

used to assess the predictive value of the signature 

model in different groups. Univariate, multivariate, and 

LASSO Cox regression analyses were performed to 

screen for anoikis-related lncRNAs. Pearson correlation 

analysis was conducted to explore the correlation 

between different immune cells and ovarian cancer. 

Statistical significance was defined as a p-value < 0.05. 
 

Availability of data and materials 
 

Data are available from the corresponding author upon 

reasonable request. 
 

RESULTS 
 

Screening of prognostic anoikis-related differentially 

expressed lncRNAs in ovarian cancer 
 

The research flow diagram is shown in Figure 1. We 

downloaded gene expression RNA-seq data of 421 

ovarian cancer samples from the TCGA database. 

Additionally, microarray data of 32 ovarian cancer 

samples and 6 normal ovarian cell samples were 

obtained from the GEO database (GSE40595). Using 

differential expression analysis with the criteria of  

|Fc| > 1 and p < 0.01, we identified 7763 differentially 

expressed lncRNAs between ovarian cancer and normal 

ovarian cells. To identify lncRNAs involved in the 

process of anoikis resistance, we obtained 434 ARGs 

from published literature. By performing Pearson 

correlation analysis (|r| > 0.4, p < 0.001), we identified 

4108 arlncRNAs. Taking the intersection of differentially 

expressed lncRNAs (DEGs) and arlncRNAs, we 

obtained 66 candidate lncRNAs. Kaplan-Meier survival 

analysis revealed 5176 prognostic lncRNAs in ovarian 

cancer based on p < 0.05. Using a Venn diagram 

analysis, we identified 30 candidates prognostic 

arlncRNAs (Figure 2A). We constructed a lncRNA-

gene co-expression network (Figure 2B) and visualized 

the degree of correlation between the candidate 

arlncRNAs and ARGs (Figure 2C). The Sankey diagram 

displayed the links between the candidate lncRNAs and 

ARGs (Figure 2D). Univariate Cox regression analysis 

revealed that the 30 candidate arlncRNAs were signi-

ficantly associated with the prognostic value of ovarian 

cancer patients, as shown in the forest plot (Figure 2E). 

 
Construction and validation of anoikis-related 

lncRNAs 

 
To further validate the prognostic potential of 

arlncRNAs, we conducted LASSO Cox regression 

analysis, identifying 15 arlncRNAs (Figure 3A). 

Subsequently, four arlncRNAs were eliminated through 

multivariate Cox regression analysis (Figure 3B). 

Following the proportional hazards assumption, we 

retained nine arlncRNAs (Figure 3C). The final step 

involved performing multivariate Cox regression 

analysis, resulting in the identification of five 

arlncRNAs with significant prognostic value (Figure 

3D). Ultimately, we identified 5 prognostic arlncRNAs 

as a novel cancer signature model for ovarian cancer 

patients. The risk score in this model was calculated 

using the following formula: Risk score = (LINC01094 

× 0.26153966441116) + (AC106801.1 × 

−4.44168323698003) + (PRR34_AS1 × 

0.0806604036265822) + (SPAG5_AS1 × 

1.50780023844841) + (CACNA1G_AS1 × 

1.09115566233272). Univariate and multivariate Cox 

regression analysis revealed that age and the risk  

score of the 5 arlncRNAs were independent prognostic 

factors in ovarian cancer. The Hazard Ratio (HR) of age 

was 1.023 (95% CI: 1.012–1.035), while the HR of the 

risk score was 2.781 (95% CI: 1.987–3.719) (Figure 

3E). The risk score performed better than age in terms  

of prognostic value. We established a nomogram to 

predict one-, three-, and five-year overall survival for 

ovarian cancer patients by incorporating clinicopatho- 

logical features and the risk score (Supplementary  

Figure 1A). Calibration curves were employed to assess  

the alignment between observed overall survival and 

predicted ovarian cancer survival. The results indicate 
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Figure 1. Flowchart of the study. Thirty candidate lncRNAs were identified through Venn diagram analysis of differentially expressed 

lncRNAs, Kaplan-Meier survival analysis, and lncRNAs associated with ARGs (anoikis-related genes). Subsequently, a novel cancer signature 
model consisting of five prognostic arlncRNAs was developed for ovarian cancer patients using univariate Cox regression, LASSO analysis, 
and multivariate Cox regression analysis. The five arlncRNAs signature model was established and the patients were divided into two risk 
groups based on the risk scores. The accuracy and potential function of this signature were assessed through various analyses, including OS 
(overall survival) Kaplan-Meier analysis, risk plot analysis, ROC (receiver operating characteristic) curve analysis, nomogram construction, 
hallmark analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, GSEA (gene set enrichment analysis), and immune infiltrate 
analysis. OV refers to ovarian cancer, TCGA refers to The Cancer Genome Atlas, lncRNAs stands for long noncoding RNAs, DEGs represents 
differentially expressed genes, ARGs denotes anoikis-related genes, LASSO refers to least absolute shrinkage and selection operator, OS 
refers to overall survival, ROC stands for receiver operating characteristic, KEGG refers to Kyoto Encyclopedia of Genes and Genomes, and 
GSEA represents gene set enrichment analysis. 
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that the prediction of overall survival was accurate  

in capturing the dynamics of ovarian cancer survival 

(Supplementary Figure 1B). We further evaluated the 

prognostic value of the 5 arlncRNAs signature model  

in various aspects. Ovarian cancer samples from  

TCGA were randomly divided into two cohorts, and the 

 

 
 

Figure 2. Identification of anoikis-related lncRNAs in ovarian cancer (OV). (A) Venn diagram showing the 30 lncRNAs identified through 
the intersection of differentially expressed lncRNAs, Kaplan-Meier survival analysis, and lncRNAs associated with ARGs. (B) Coexpression network 
depicting the relationship between the 30 differentially expressed lncRNAs, DEGs (differentially expressed genes), and ARLs (anoikis-related 
lncRNAs) based on Pearson's correlation coefficient (R > 0.4, p < 0.001). (C) Correlation heatmap illustrating the correlation between the 30 
lncRNAs and ARGs. The color intensity represents the strength of the correlation. (D) Sankey diagram demonstrating the connections between 
the 30 lncRNAs and ARGs. (E) Forest plots displaying the results of univariate Cox regression analysis for the 30 lncRNAs. OV refers to ovarian 
cancer, DEGs stands for differentially expressed genes, ARGs denotes anoikis-related genes, and ARLs represents anoikis-related lncRNAs. 
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ovarian cancer samples in each cohort were stratified 

into high-risk and low-risk groups based on the median 

score calculated using the risk score formula (Figure 

4A). As shown in Figure 4B, ovarian cancer patients in 

the high-risk group had worse prognosis, while the low-

risk group had a higher survival rate. The accuracy of 

this model was validated using ROC curves, with AUC 

values of 0.69, 0.603, and 0.672 for one, three, and five 

years, respectively, indicating superior predictive value 

of the prognostic signature model (Figure 4C). ROC 

 

 
 

Figure 3. Construction of a prognostic model consisting of five anoikis-related lncRNAs. (A) LASSO regression analysis and partial 

likelihood deviance were performed to identify the prognostic lncRNAs. (B) Four lncRNAs were excluded based on the multivariate Cox 
regression analysis. (C) Two lncRNAs were excluded based on the PH assumption (proportional hazards assumption). (D) Five arlncRNAs 
were finally identified by performing multivariate Cox regression analysis. (E) Univariate and multivariate Cox regression analysis was 
conducted to determine the independent risk factors. 
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curves were also used to compare the performance of 

the risk score with stage and age, demonstrating that  

the risk score performed better (Figure 4D). Therefore, 

the risk score based on the 5 prognostic arlncRNAs 

accurately predicted the survival of ovarian cancer 

patients. 

Relationship between the 5 arlncRNAs signature and 

clinicopathological parameters in ovarian cancer 

patients 

 

Among the five lncRNAs, four were considered risk 

lncRNAs, and they were upregulated in the high-risk 

 

 
 

Figure 4. Construction and validation of the prognostic model consisting of anoikis-related lncRNAs. (A) Distribution diagrams 

showing the risk scores and survival status of the overall cohort, cohort 1, and cohort 2. (B) Kaplan-Meier curves illustrating significant differences 
in the overall survival rate between the high-risk group and low-risk group in the overall cohort, cohort 1, and cohort 2. (C) ROC curves depicting 
the predictive performance of the risk model for 1-year, 3-year, and 5-year overall survival in the overall cohort, cohort 1, and cohort 2. (D) ROC 
curves comparing the AUC (area under the curve) values of the risk score, age, and stage in the overall cohort, cohort 1, and cohort 2. 
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group in the ovarian cancer database, except for 

AC106801.1, which was a protective marker (Figure 

5A). To explore independent factors in the signature 

model, we compared different clinicopathological para-

meters between the high-risk and low-risk groups. The 

heatmap displayed the correlation of age, stage, and 

fustat in the high-risk and low-risk groups (Figure 5A). 

Interestingly, we found a significant difference in age 

between the high-risk and low-risk groups (p < 0.05). 

Kaplan-Meier survival analysis showed that ovarian 

cancer patients in the low-risk group had a higher 

survival rate than those in the high-risk group at stage 

III and stage III-IV (Figure 5B), while there was no 

significant difference observed in early-stage ovarian 

cancer patients. Due to the non-specific symptoms 

contributing to over 75% of ovarian cancer diagnoses at 

an advanced stage [21], the clinical study’s inclusion of 

early-stage ovarian cancer patients is restricted. The 

limited sample size in the early-stage group may hinder 

the adequate detection of survival rate differences 

between low-risk and high-risk stages I-II, necessitating 

further examination. Therefore, these results indicated 

 

 
 

Figure 5. Relationship between the prognostic model consisting of five anoikis-related lncRNAs and clinicopathological features 
in ovarian cancer patients. (A) Heatmap displaying the distribution of the expression levels of the five lncRNAs in the high-risk group and low-

risk group based on different clinicopathological features. (B) Kaplan-Meier curves illustrating the overall survival in different stages. 
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that the five arlncRNAs had an excellent ability to 

predict prognosis in ovarian cancer patients, especially 

at late stages (III/IV). 

 

Discovery of molecular functions and pathways of 

the 5 arlncRNAs through KEGG and GSEA 

enrichment analysis 

 

To further explore the underlying biological  

functions and mechanisms associated with the risk 

groups defined by the 5 arlncRNAs signature, we 

performed KEGG and GSEA enrichment analyses. 

The enrichment plot visualized the results of Hall-

mark and KEGG pathway enrichment analyses (Figure 

6A and Supplementary Figure 2A), revealing that 

oxidative phosphorylation (OXPHOS) and immune-

related pathways were significantly enriched in the 

high-risk group. GSEA analysis further demonstrated 

enrichment of the interferon gamma response (IFN- 

γ), OXPHOS, IL-6/JAK/STAT3 signaling pathway, 

chemical carcinogenesis-reactive oxygen species 

(ROS), chemokine signaling pathway, and cytokine-

cytokine receptor interaction in the high-risk group, 

indicating their involvement in promoting ovarian 

cancer (Figure 6B and Supplementary Figure 2B). In 

summary, these results suggested that the risk score  

of the 5 arlncRNAs signature predominantly predicts 

prognostic survival through immune-related pathways 

and OXPHOS in ovarian cancer. 

 

Immune infiltrate analysis of the signature model 

 

To investigate the relationship between the 5 

arlncRNAs signature and the immune system, we 

 

 
 

Figure 6. Molecular functions and pathways associated with the five anoikis-related lncRNAs identified through hallmark 
and GSEA enrichment analysis. (A) Pathway enrichment analysis using hallmark databases. (B) GSEA analysis revealing enriched 

pathways in the high-risk group and low-risk group. 
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compared the proportions of 22 different immune  

cells in the high-risk and low-risk groups using the 

CIBERSORTX algorithm, and a heatmap was generated 

(Figure 7A). The distribution of macrophages M2, T 

cells follicular helper, plasma cells, and neutrophils 

significantly differed between the two risk groups. Box 

plots showed that the proportion of T cells follicular 

helper was higher in the low-risk group, while the 

proportion of macrophages M2, plasma cells, and 

neutrophils was higher in the high-risk group (Figure 

7B). To identify potential targets in ovarian cancer,  

we analyzed differentially expressed genes between the 

 

 
 

Figure 7. Immune infiltrate analysis of the prognostic model. (A) Heatmap displaying the distribution of 22 different immune cell 

types in the high-risk group and low-risk group. (B) Box plots illustrating the proportion of macrophages M2, T cells follicular helper, plasma 
cells, and neutrophils in the low-risk group and high-risk group. (C) Volcano plot depicting the differentially expressed genes between the 
low-risk group and high-risk group (p < 0.05, |log2Foldchange| > 1). (D) Box plot showing the expression of GPX3 in the low-risk group and 
high-risk group. 
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high-risk and low-risk groups (p < 0.05, |log2Foldchange| 

> 1) and visualized them with a volcano plot (Figure 

7C). A box plot showed that the expression of 

glutathione peroxidase 3 (GPX3) was significantly 

higher in the high-risk group (Figure 7D). GPX3 is an 

extracellular antioxidant enzyme and the main ROS 

scavenger in plasma [22]. It is highly expressed in 

ovarian cancer and associated with platinum resistance 

and survival in ascites by protecting cancer cells  

from extracellular oxidative stressors [23]. Thus, the 5 

arlncRNA signature regulates immune infiltration and 

oxidative stress in ovarian cancer. 

 

Validation of the expression and function of the five 

anoikis-related lncRNAs in ovarian cancer cell lines 

 

To further validate the function of the 5 arlncRNAs  

in ovarian cancer, the expression and apoptosis  

assays were performed. qRT-PCR analysis revealed 

significantly higher expression levels of PRR34_ 

AS1, LINC01094, SPAG5_AS1, AC106801.1, and 

CACNA1G_AS1 in ovarian cancer cell lines (Caov- 

3, HO-8910PM, OVCAR3, and SKOV3) compared  

to HOSEpiC, a cell line of normal ovarian cells (p  

< 0.05) (Figure 8A). However, the inconsistent levels  

of AC106801.1 in ovarian cancer cell lines, which 

possibly due to the limitations of cell line experiments, 

prompt us to further verify in clinical specimens. This 

preliminary inference suggested that these arlncRNAs 

may promote the development of ovarian cancer.  

To investigate the specific effects of these lncRNAs, 

PRR34_AS1 or SPAG5_AS1 was silenced using siRNA 

in SKOV3 and OVCAR3 cells. qRT-PCR confirmed the 

downregulation of PRR34_AS1 and SPAG5_AS1 

expression in SKOV3 and OVCAR3 cells treated with 

siRNA (Figure 8B). Apoptosis assays using PI and 

Annexin V staining, followed by flow cytometry 

analysis, showed a significant increase in the proportion 

of apoptotic cells in SKOV3 and OVCAR3 cells upon 

silencing PRR34_AS1 or SPAG5_AS1 (Figure 8C). 

Furthermore, to assess whether these arlncRNAs are 

involved in anoikis resistance, SKOV3 and OVCAR3 

cells with silenced PRR34_AS1 or SPAG5_AS1 were 

plated into ultra-low attachment plates, and the anoikis 

cells were detected using a calcein/PI assay. The 

fluorescent images showed a significant increase in 

apoptotic cells (red fluorescence) in SKOV3 and 

OVCAR3 cells transfected with siPRR34_AS1 or 

siSPAG5_AS1 (Figure 8D). These findings verified  

that silencing the expression of PRR34_AS1 or 

SPAG5_AS1 induces anoikis in ovarian cancer cells. 

 

DISCUSSION 
 

An increasing number of studies have been focusing on 

understanding the role of anoikis resistance in cancer,  

as it is considered a crucial factor in cancer metastasis  

[24, 25]. Ovarian cancer is a malignant gynecological 

cancer characterized by widespread peritoneal disse-

mination, which leads to a poor prognosis [26, 27]. The 

dissemination and attachment of ovarian cancer cells  

in the peritoneal cavity, particularly in the omental and 

bowel regions, contribute to anoikis resistance and 

cancer progression [28]. The peritoneal cavity and the 

accumulation of peritoneal fluid, known as ascites, 

consist of diverse cell populations, including macro-

phages, lymphocytes, and leukocytes, which play a 

significant role in the progression of ovarian cancer [29, 

30]. Therefore, there is an urgent need for a systematic 

analysis to identify the key drivers of anoikis resistance 

in ovarian cancer. 

 
However, the combined effect of lncRNAs and anoikis 

in ovarian cancer remains unknown. In this study, we 

comprehensively analyzed 30 candidates prognostic 

lncRNAs related to anoikis from TCGA and GEO 

(GSE40595), which were correlated with 434 ARGs 

identified in published literature. Furthermore, we 

validated five prognostic lncRNAs after a compre-

hensive analysis, and developed a prognostic signature 

model to predict the prognosis of ovarian cancer 

patients. We also constructed a nomogram to predict  

the 1-, 3-, and 5-year survival rates in ovarian cancer 

patients, providing a convenient tool for clinical use. 

The predictive power of the signature model was 

validated using ROC curves. To gain further insights 

into the potential mechanisms underlying ovarian 

cancer progression, we stratified patients into high-risk 

and low-risk groups based on the risk score model. The 

patients in the low-risk group demonstrated a higher 

survival rate compared to those in the high-risk group, 

particularly at stage III and stage III-IV. LncRNA 

exhibit resistance to RNase degradation and stability in 

body fluids [31]. Their higher abundance than protein-

coding genes makes lncRNAs advantageous biomarkers 

[21, 32]. Liquid biopsy advancements enable the 

detection of lncRNAs in blood or urine, exemplified  

by urine PCA3 as a prostate cancer diagnostic marker 

[33]. Targeting lncRNAs with antisense nucleotides 

(ASO), RNA interference (siRNA), or peptide nucleic 

acid (PNA) offers therapeutic avenues [34]. Inhibiting 

lncRNA-SAMMSON and lncRNA-ceruloplasmin de-

monstrated anti-cancer effects in melanoma and ovarian 

cancer, respectively [35, 36]. Future detection of the 

five arlncRNAs in body fluids could predict ovarian 

cancer prognosis and offer therapeutic targets. 

 
Furthermore, we performed KEGG and GSEA  

analyses to explore the differences in enriched path-

ways between the high-risk and low-risk groups, based 

on the risk scores of the five identified lncRNAs. The 

results revealed significant differences in immune-
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related hallmarks and signal transduction pathways 

between the two groups. We found that the IFN-γ 

response and the IL-6/JAK/STAT3 signaling pathway 

were enriched in the high-risk group. Previous studies 

have extensively investigated the anti-tumor role of 

IFN-γ in cancer over the past decades. However, it has 

been found that IFN-γ can upregulate the expression of 

PD-L1, thereby promoting cancer progression. Moreover, 

IFN-γ can activate the JAK/STAT pathway, a classic 

signal transduction pathway involved in cell proliferation, 

migration, and apoptosis [37]. In ovarian cancer, the 

activation of STAT3 has been shown to induce anoikis 

resistance by altering extracellular matrix production, 

thus promoting cancer progression [38]. Additionally, 

we observed enrichment of ROS and OXPHOS in  

the high-risk group. Abnormally elevated levels of ROS 

have been associated with malignant characteristics 

such as migration and invasion [39]. Furthermore, ROS 

 

 

 
Figure 8. Validation of the expression and function of the five anoikis-related lncRNAs in ovarian cancer cell lines. (A) RT-PCR 
detection of the expression levels of PRR34_AS1, LINC01094, SPAG5_AS1, AC106801.1, and CACNA1G_AS1 lncRNAs in various ovarian 
cancer cell lines (Caov3, HO-8910PM, OVCAR3, SKOV3) and normal ovarian cells (HOSEpiC). (B) Validation of the relative RNA expression in 
SKOV3 and OVCAR3 cells after knockdown of PRR34_AS1 or SPAG5_AS1. (C) Flow cytometry analysis of the proportion of apoptotic cells in 
SKOV3 and OVCAR3 cells after knockdown of PRR34_AS1 and SPAG5_AS1, respectively. (D) Fluorescent image showing live/dead SKOV3 
and OVCAR3 cells after knockdown of PRR34_AS1 or SPAG5_AS1 using calcein-M and PI staining (living cells in green fluorescence, dead 
cells in red fluorescence). 
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production in cancer cells is particularly important for 

anoikis resistance, and it is dependent on the PI3K/AKT 

and ERK signaling pathways [40]. While the Warburg 

effect has traditionally suggested down-regulation of 

OXPHOS in tumor cells, recent studies have revealed 

that tumor cells can switch between glycolysis and 

OXPHOS in different metabolic environments [41, 42]. 

Moreover, cancer stem cells have been closely linked  

to oxidative phosphorylation [43–45]. Inhibition of 

OXPHOS has emerged as a potential therapeutic target 

in ovarian cancer. Therefore, further exploration of the 

regulatory mechanisms involving the identified five 

lncRNAs in ovarian cancer is warranted. 

 
Considering the increasing importance of the tumor 

microenvironment (TME) and immunotherapy in cancer 

treatment, including ovarian cancer, we conducted 

immune infiltrate analysis to investigate the differences 

between the high-risk and low-risk groups. M2-like 

macrophages, plasma cells, and neutrophils were found 

to be enriched in the high-risk group. Numerous studies 

have suggested that M2-like macrophages promote 

cancer development by helping cancer cells evade 

immune clearance [46, 47]. M2 macrophages contribute 

to tumor development primarily by inhibiting immune 

clearance, promoting proliferation, and stimulating 

angiogenesis [48]. TAMs have been shown to contribute 

to the genetic instability of cancer cells by recruiting 

ROS [46]. Furthermore, M2-like macrophages can 

impair the activity of dendritic cells (DCs), natural 

killer cells (NKs), and cytotoxic T lymphocytes (CTLs) 

through the release of cytokines [47]. Neutrophils and 

plasma cells were also observed to be infiltrated in  

the high-risk group. Neutrophils have been reported to 

promote ovarian cancer metastasis. Neutrophils, which 

account for the largest proportion of granulocytes, 

possess chemotactic, phagocytic, and bactericidal 

effects. In the TME, neutrophils acquire a suppressor 

phenotype, leading to impaired signal transduction 

between neutrophils and T cells, resulting in T cell 

immunoparalysis and weakened anti-tumor effects  

[49]. Neutrophils are recruited to the omentum before 

metastasis in ovarian cancer, promoting the formation 

of a microenvironment conducive to ovarian cancer  

cell survival. Furthermore, ovarian cancer cells secrete 

specific cytokines to recruit neutrophils to the site of 

metastasis, where they release neutrophil extracellular 

traps (NETs) that capture isolated ovarian cancer cells 

and promote metastasis. B cells are classified into six 

subtypes based on marker expression, including naive B 

cells, germinal center, IgM memory, switched memory, 

memory-like, and plasma cells [50]. Plasma cells  

play an anti-tumor role by producing antibodies. High 

levels of plasma cells have been associated with better 

prognosis in patients with gastric cancer, non-small cell 

lung cancer, and other malignant tumors. However, the 

effect of plasma cells appears to be opposite in breast 

cancer and cervical cancer, suggesting that plasma cells 

may have different effects in different malignancies [51] 

Therefore, these findings provide insights into the 

relationship between the five identified lncRNAs and 

the TME, potentially identifying novel targets for 

immunotherapy in ovarian cancer. 

 

To further explore potential targets in ovarian cancer,  

we analyzed the DEGs between the high-risk and low-

risk groups and visualized them using a volcano plot 

(Figure 7C). We observed that GPX3, an extracellular 

antioxidant, was significantly upregulated in the high-

risk group, which supports the extracellular antioxidant 

defense of ovarian cancer cells and contributes to  

the progression of ovarian cancer [52]. In addition,  

GPX3 plays a beneficial role in ovarian cancer cell 

clonogenicity and survival, which acts as a key measure 

of anchorage-independent cell survival. By eliminating 

extracellular oxidants like H2O2, GPX3 is crucial for 

ovarian cancer cells to thrive in ascites [23, 52]. 

Consistently, oxidative stress-related pathways, such  

as OXPHOS and chemical carcinogenesis-ROS, were 

enriched in the high-risk group, indicating their involve-

ment in ovarian cancer promotion (Figure 6B and 

Supplementary Figure 2B). GPX3 plays a critical role in 

the response to oxidative stress and has been implicated 

in macrophage escape [53]. Thus, the inhibition of 

GPX3 in ovarian cancer cells may hold potential for the 

development of novel anti-tumor drugs in the future. 

 

Additionally, we examined the expression of the  

five identified lncRNAs in various ovarian cancer  

cell lines, demonstrating their upregulation in ovarian 

cancer cells. We also conducted a series of apoptosis- 

related experiments, validating that the inhibition of 

PRR34_AS1 or SPAG5_AS1 can promote apoptosis 

and anoikis in ovarian cancer cell lines. However, our 

study has several limitations that need to be addressed. 

First, we lacked validation using clinical samples in our 

study. Second, the specific mechanisms by which these 

lncRNAs affect anoikis, inhibit immune infiltration, and 

promote ovarian cancer progression remain unknown. 

Further research is warranted to address these limitations 

and gain a better understanding of the underlying 

mechanisms. 

 

CONCLUSIONS 
 

In conclusion, the study conducted a comprehensive 

analysis of prognostic arlncRNAs in ovarian cancer.  

It identified a 5 arlncRNA signature that accurately 

predicted the prognosis of ovarian cancer patients.  

The signature model demonstrated its potential as  

an independent prognostic factor and outperformed  

age and stage in predicting survival. The study also 
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provided insights into the biological functions and 

pathways associated with the signature, highlighting 

immune-related pathways and oxidative phosphory-

lation. Moreover, the 5 arlncRNAs were found to 

regulate immune infiltration and oxidative stress in 

ovarian cancer. The expression of these arlncRNAs 

were validated in ovarian cell lines and the biological 

function of siPRR34_AS1 or siSPAG5_AS1 were 

validated to promote apoptosis and anoikis in ovarian 

cancer cell lines. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Construction of nomogram and validation its predictive value. (A) Nomogram was constructed to 

predict the 1-year, 3-year, and 5-year overall survival of ovarian cancer patients. (B) Calibration curves were generated to assess the 
predictive accuracy of the nomogram for the 1-year, 3-year, and 5-year overall survival rates. 
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Supplementary Figure 2. Molecular pathways related to the risk model identified through KEGG and GSEA enrichment 
analysis. (A) Pathway enrichment analysis using KEGG databases. (B) GSEA analysis revealing enriched pathways in the high-risk group and 

low-risk group. 
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Supplementary Tables 
 

Supplementary Table 1. Clinicopathological characteristics and risk group of 5 arlncRNAs in 421 patients with 
ovarian cancer in TCGA. 

 High-risk group Low-risk group 

(N = 211) (N = 210) 

Age 

≤60 118 (55.9%) 114 (54.3%) 

>60 93 (44.1%) 96 (45.7%) 

Stage 

I/II 13 (6.2%) 12 (5.7%) 

III 164 (77.7%) 165 (78.6%) 

IV 32 (15.2%) 32 (15.2%) 

Missing 2 (0.9%) 1 (0.5%) 

Status 

Survive 73 (34.6%) 86 (41.0%) 

Dead 138 (65.4%) 124 (59.0%) 

 

 

Supplementary Table 2. The specific sequences of primers required for qRT-PCR and siRNA. 

Target Sequence 

LINC01094 RT primer 
F: TGTAAAACGACGGCCAGT 

R: CAGGAAACAGCTATGACC 

AC106801.1 RT primer 
F: AATAAGCCTAACCATTACCATAG 

R: TTGTTGAAGCGTGGAGATT 

PRR34-AS1 RT primer 
F: CCGCGATTTGGCGTTAACTT 

R: TCCAAAGATGGCCTCGGTTC 

SPAG5-AS1 RT primer 
F: AACTTTGCTGAAGAGGCGGA 

R: TATGGCAGGAAGGACATTGGG 

CACNA1G-AS1 RT primer 
F: TGTGCTTCACCATGCTCCAT 

R: TTAGTGCTC CGGCCAACAA 

siPRR34-AS1 UAAGUUAACGCCAAAUCGCGG (dT)(dT) 

siSPAG5-AS1 GGAGGUUGUUCAUGGUAAA (dT)(dT) 

 

 


